
Applying a Data Miner to Heterogeneous Schema Integration

Son Dao Brad Perry
Information Sciences Laboratory

Hughes Research Laboratories
Malibu, CA 90265

{son,perry}@isl.hrl.hac.com

Abstract

An application of data mining techniques to heteroge-
neous database schema integration is introduced. We
use attribute-oriented induction to mine for charac-
teristic and classification rules about individual at-
tributes from heterogeneous databases. Each mining
request is conditioned on a subset of attributes identi-
fied as "common" between the multiple databases. We
develop a method to compare the rules for two or more
attributes (from different databases) and use the simi-
larity between the rules as a basis to suggest similarity
between attributes. As a result, we use relationships
between and among entire sets of attributes from mul-
tiple databases to drive the schema integration process.
Our initial efforts and prototypes applying data min-
ing to assist schema integration prove promising and,
we feel, identify a fruitful application area for data
mining research.
goywords : schema integration, multi-database in-
terrelationships, attribute similarity, data mining,
attribute-oriented induction.

Introduction

A large organization may have hundreds or even
thousands independently developed and autonomous
databases. US West reports having 5 terabytes of data
managed by 1000 systems, with customer information
alone spread across 200 different databases (Drew et
ai. 1993). In such a multidatabase environment, the
sharing and exchange of information among the seman-
tically heterogeneous components is often desired. A
federated architecture for database systems has been
recognized as one of several settings in which we can
consider the semantic heterogeneity problem (Drew et
ai. 1993). It is also pointed out in that a key aspect of
identifying and semi-automatically resolving semantic
heterogeneity involves making semantics explicit.

One important problem in identifying and resolv-
ing semantic heterogeneity is to determine equivalent
attributes between component databases. Research
in this field has usually been carried out in pairwise
comparing fashion. However, incremental and multi-
attribute relationships across database boundaries have

not been considered, and the semantics behind data is
hardly revealed.

There is a new and active research area in database
community whose aim is to discover knowledge hidden
in huge amounts of data: Data Mining. Useful data
patterns are to be discovered that are beyond the struc-
tural level. We believe that integration semantics can
be naturally expressed via relationships among multi-
database attributes. The incorporation of data mining
techniques to identify these relationships is a natural
approach and will provide more powerful solutions to
the semantic integration problem.

We describe our initial efforts for exploiting data
mining techniques in the difficult problem of semi-
automated heterogeneous schema integration. In this
paper we analyze how knowledge discovered through
attribute-oriented induction (Cai, Cercone, &Han
1991) can be used to assist schema integration.

Background

A framework for schema integration involves identi-
fying a representation basis, inter-database relation-
ships, and schema conforming/restructuring rules (Ba-
tini, Lenzerini, ~z Navathe 1986). If we can iden-
tify all attributes from heterogeneous databases as
being {equivalent, superclass, subclass, sibling, or
incompatible} then complete, automated integration
can occur. Thus, one method of integration relies on
identifying semantic relationships between attributes.
One approach is to compare attribute names (Hayne
& Ram 1990) and determine degrees of similarity from
a lexicon of synonyms. Another approach is to com-
pare structural information, or meta-data, (Navathe
& Buneman 1986; Larson, Navathe, & Elmasri 1989);
although no solid theoretical foundation yet exists to
compute degrees of similarity from meta-data. Com-
paring data at the content level is also employed by us-
ing statistics such as mean, variance, and coefficient of
variance for individual attributes (Li & Clifton 1994).
In all approaches, attributes are compared in a pairwise
fashion, at best, to decide their equivalence. Relation-
ships between and among entire classes of attributes
from multiple databases have not been utilized.

Dao 63

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



Data mining is defined as "the nontrivial extraction
of implicit, previous unknown, and potentially useful
information from data" (Piatetsky-Shapiro & Frawley
1991). Various techniques for data mining have been
suggested: each using a specialized set of input require-
ments and producing a specialized form of knowledge.
To apply data mining to schema integration requires
identifying a specific class of mining techniques and
then exploiting the knowledge generated.

General Architecture

Figure 1: General Architecture

Applying data mining to schema integration (figure 1)
is currently under implementation and experimenta-
tion in our Heterogeneous DataBase (HDB) prototype
(Dao & Ebeid 1992) at Hughes Research Laborato-
ries. SDD is the smart data dictionary process that
maintains and services a federated schema to our het-
erogeneous database environment (Dao, Keirsey, & et
at. 1991). KBSIT is the knowledge-based schema
integration tool that exists as one of the services
the SDD controls to construct and evolve the feder-
ated schema. DBMiner is an implementation of the
attribute-oriented induction process described in (Cai,
Cercone, & Han 1991; Fu & Hart 1994). Whenever
KBSIT requires knowledge about the relationship be-
tween two or more attributes, it constructs a mining
request that is sent to DBMiner. DBMiner mines the
databases to satisfy the request and returns a set clas-
sification and/or characterization rules. KBSIT ana-
lyzes these rules, as described herein, and computes a
suggested relationship for the attributes of interest.

Data Mining for Schema Integration
Attribute-oriented Induction
In (Cai, Cercone, & Han 1991), an attribute-oriented
induction method to extract rules from relational
databases is developed. Assuming conceptual hierar-
chies on instances of attributes, each attribute value of
a tuple can be replaced by a higher level concept. In
this way, a generalized relation with fewer tuples is pro-
duced. This process is repeated until some threshold is
reached. The final relation is then transformed into a

64 KDD-95

logical formula, or a rule, according to the correspon-
dence between relational tuples and logical formulas
(Gallaire, Minker, & Nicolas 1984). Two kinds of rules
can be derived in this approach: characteristic rules
and classification rules.

We use h(B -- bjl{Ai}) to represent the request to
mine for characteristic rules for instance bj of attribute
B in relevance to attributes {Ai}. h(B[{Ai}) repre-
sents mining for rules for all instances of B. Similarly
l(B = biI{Ai}) and l(BI{Ai}) are be used for classifi-
cation rule requests.

Figure 2 outlines the general process performed by
attribute-oriented induction for learning characteristic
rules (see (Cai, Cercone, & Han 1991) for the com-
plete algorithm), where: (1) An input relation is con-
structed. (2) The training data is selected from the in-
put relation (to learn rules for all graduate students, we
select out the Category attribute and keep all tuples).
(3) The training data is recursively "compressed" 
concept hierarchies on attribute instances. Each at-
tribute instance can be replaced by a more abstract
instance from the concept hierarchies, then duplicate
tuples are removed from the training relation. (4) 
final "generalized relation" is computed. Each tuple
in the generalized relation represents a logic formula
characterizing the tuples in the initial training data.
We can translate the generalized relation into logic for-
mula(s) about the characteristic nature of the training
data on the learning criteria (i.e., characteristic rules
for graduate student tuples):

V(t).Category(t) E graduate

(Birth_Place(t) E Canada A GPA(t) E excellent) 
(Major(t) E science A Birth_Place(t) E foreignA

GPA(t) E good)

A similar process is performed to learn classification
rules from an input relation of positive and negative
instances of an initial tuple class.

The generalized relation for characteristic rules cov-
ers all positive data and.forms a necessary condition
of the target class, where condition(t) is a formula on
attribute values of tuple t:

target_attribute(t) E target_class =~ condition(t)

The generalized relation for classification rules
distinguishes the target class from the contrasting
class(es). The learned rule forms sufficient co ndition
of the form:

target_attribute(t) E target_class ~ condition(t)

Applicability to Schema Integration
Our goal is to apply the data mining techniques of (Cai,
Cercone, & Han 1991) to the problems of schema inte-
gration in our heterogeneous database prototype. We
show how both classification and characteristic rules
can be used to guide and suggest relationships among
attributes.



NI GTA

FrN~ MX X.9
Ph.D. sauh X3

LM
Monk l~x/), c~apsU~ Vk--~Drt, &$
Wm~ MS. smsl~l~cs 3.2

/ \

O / \

GPA

hk~ry Vsno~vN- 3J
O~m 3.9
~.brj 3.3

3,4
3.S

Wq 3.2

Figure 2: Attributed-oriented Induction Example

Applicability of Characteristic Rules For at-
tribute B1 from DB1, we discover a set of characteristic
rules CHR1 (n is the number of instance values for B1
in DBI):

CgRn : h(B1 = bnI{Ai}) ... CHR~, : h(B1 = bl,l{Ai})

For attribute B2 from DB2, we discover a set of
characteristic rules CHR2 (m is the number of instance
values for B2 in DB2):

CHR=, : h(B2 = b2, l{A,}) ... CIIR2= : h(B2 = b==l{A,})

Any tuple violating rule CHRij cannot participate
in the tuple class (Bi = bij). Yet, ifa tuple does satisfy
CHRij then we have no information on its participa-
tion in tuple class (Bi = bij). To ascertain whether B1
and B2 represent similar attribute semantics, we com-
pare the rules from CHR1 and CHR2. This is possible
because, although B1 and B2 have unknown relation-
ship, we constructed the two characteristic rule sets
based on a set of attributes ({Ai}) known to be com-
mon to the two databases. Comparing a rule CHRtl
with a rule CHR21 we find:

chr-l: CHRli n CHR21 = 0 (no tuple can satisfy
both CHRti and CHR21): we know that bli and b2j
cannot be two encodings of the semantically com-
patible (equivalent, superclass, subclass) underlying
instance (regardless of whether bli = b2j).

Furthermore, if

V(i, j) CHRll n CHR2j = {~

then we can assume that B1 is semantically incompat-
ible with B2.

Applicability of Classification Rules For at-
tribute B1 from DB1, we discover a set of classification
rules CLRI :

CLRal : I(BI = bnl{Ai}) ... CLR~, : l(B, = bl,l(Ai})

For attribute B2 from DB2, we discover a set of
classification rules CLR~:

CLR2] : l(B2 = b21]{Ai}) ... CLR2m : l(B2 = b2,,~I{A,})

Any tuple satisfying rule CLl~ii must participate in
the tuple class (Bi = bij). Yet, if a tuple does not sat-
isfy CLRii then we have no information on its partic-
ipation in tuple class (Bi = hi~). To ascertain whether
B1 and B2 are representing similar attribute semantics,
we compare the rules from CLR1 and CLR2. Compar-
ing a rule CLR~i with a rule CLR2/we find:

clr-l: CLRli = CLR2j (every tuple satisfying
CLRli will also satisfy CLR2i and vice versa):

(1) if bli = b2i then these two rules suggest that B~
is equivalent to B2.

(2) if b~i ~ b2j then B1 is equivalent to B2 only if
there is a translation between instances b~i and b2j
establishing equivalent semantics using different
encodings.

clr-2: CLRIi < CLR2j (every tuple satisfying
CLRli also satisfies CLR2j, but not vice versa):

(1) if bli = b2i then these two rules suggest that 
is a subclass of B~.

(2) if b~i 7~ b2i then B1 is a subclass of B2 only if
there is a translation M between b~i and b2j such
that M(bli) < M(b2i) (i.e., the translation of b~j
is equivalent to or a superclass of the translation
of bli).

clr-3: CLR~i > CLR2i (every tuple satisfying
CLR2i also satisfies CLRli, but not vice versa): this
is the duM case of clr-2.

clr-4:CLR~iACLR21 ~ 0 (there exists tuples satis-
fying a subset of the conditions of CLRIi and CLR21
but not completely satisfying both): This "weak"
correspondence suggests that B1 and B2 may be
sibling concepts of some common, yet unknown, su-
perconcept. We use the term "weak" because this
correspondence provides nothing more than a casual
suggestion that must be further verified before inte-
gration could take place using it.

clr-5: CLR~i n CLR2j = 0 & bli = b2j (there is
no correspondence between the classification rules

Dao 65



on equal instance values bli and b2j): B1 can be in
a positive relationship (equivalent, subclass, super-
class) with B2 only if there is a translation for the
instances of B1 and B2 into a compatible encoding.

Deriving the Suggested Relationship We need
to combine the comparisons of rules in CHR into a sin-
gle integration conclusion. We form a table chrTBL
of dimension n × m where entry chrTBL(i,j) repre-
sents the outcome from comparing rules CHRli and
CHR2j. Finally, a series of reductions/manipulations
are performed to generate a single integration sugges-
tion, termed H(B1/B2I{Ai}). H(B1/B2I{Ai}) will be
one of (inc, eq_inc, null, O), where: inc says (B1 incom-
patible with B2); eq_inc says (B1 and B2 do not use
equivalent encodings to represent attribute instances);
null says no consistent reduction exists; and O says
that {Ai} did not provide enough relevance to mine
attributes B1 and B2.

The reduction of chrTBL to H(B1/B2I{Ai}) is ac-
tually quite straight-forward. If every entry in the
table is 0 (i.e., upholds relationship chr-1), then 
reduce to conclusion inc. If every entry on the di-
agonal of chrTBL is 0, then we reduce to conclusion
eq_inc. If some elements of chrTBL are 0 and others
are not, then we reduce to null. Otherwise, there was
not enough information to draw a conclusion about the
two attributes.

Similarly we combine the comparisons of rules in
CLR into a table clrTBL and then a single integration
conclusion, termed L(B1/B21{Ai}). L(B1/B21{Ai})
will be one of (eq, sup, sub, sibl, null, 0), where: eq says
(B1 equivalent with B2); sup says (B1 a superclass of
B2); sub says (B1 a subclass of B2); sibl says (B1 
sibling with B2); null says no consistent reduction ex-
ists; and 0 says that {Ai} did not provide enough rele-
vance to mine attributes B1 and B2. The reduction of
clrTBL is more involved than that for chrTBL; but
we perform the following basic algorithm1: (1) if out-
come = (i.e., clr-1) exists at least once in every row
and column of clrTBL, then we suggest eq as the re-
lationship; (2) if outcomes = or < occur at least once
in every row and column, then we suggest subclass as
the relationship; (3) if outcomes = or > occur at least
once in every row column, then we suggest superclass;
(4) if both (2) and (3) hold, then we suggest null; (5)
if outcomes =, sibl, <, or > occur at least once in ev-
ery row and column, then we suggest sibling; and (6)
if none of (1)-(5) hold, we suggest 0 as the relation-
ship. If we are only concerned about the discovering
the relationship when B1/B2 are using the same in-
stance encodings, then the above reduction still holds
but the "every row and column" must be the diagonal
elements of clrTBL.

1The full paper (Dao & Perry 1995) contains details
on the reduction of chrTBL and clrTBL to a single
suggestion.

66 KDD-95

Data Mining Summary
Attribute-oriented induction has been presented as a
tool to discover attribute relationships for schema inte-
gration. For our scenario, the integration engine is the
application using attributed-oriented induction (e.g.,
requesting discovery knowledge from DBMiner) and re-
sponsible for generating mining requests (h(Bl{Ai}) or
l(B[{Ai})). KBSIT instructs DBMiner to learn clas-
sification and characteristic rules for data instances
of two attributes from heterogeneous databases. The
rules can then be compared to arrive at a singular
suggestion, H(B1/B2 I{A,}) or L(Bz/B2 I{Ai}), for the
integration relationship between attributes from two
databases.

Schema Integration with Data Mining
KBSIT operates as an autonomous server to integrate
relational schemas based on correspondences between
attributes from the heterogeneous schemas. At any
point during its processing, KBSIT will have: (1) 
knowledge base of attribute relationships (i.e., corre-
spondences) identified between two or more database
schemas; and (2) an integrated representation of those
relations rendered comparable by the knowledge base.
When KBSIT reaches an impasse, where it cannot de-
termine the relationship between two heterogeneous at-
tributes, it must use its current knowledge base to de-
rive data mining requests for DBMiner. From these
requests, KBSIT can reduce the discovered rules to
a common suggestion about semantic correspondence.
Figure 3 summarizes this information flow between
KBSIT and DBMiner.

derived attribute

KBSIT~ Common
,~ ’

IK._~Atlxs (CA)

~ In r~elevance to
rules’~,,~[_ _ ~,.,’~ a subset of CA

Figure 3: Schema Integration/Data Mining Loop

Schema Integration State

In order to understand how KBSIT generates requests
to DBMiner, we will examine a "snapshot" of its inte-
gration processing. At any given point, KBSIT has a
current set of federated attributes that represent those
local database attributes that have been unified into
common semantic structures (label this set CA). Now,
should KBSIT be at a point where it has insufficient
knowledge to unify attributes Bz (from DB1) and B2



(from DB2), it must generate a mining request based
on CA to learn about B1/B2. In the naive case, we
submit the request L(B1/BzlCA) to learn based on
all the common attributes we have identified 2. Un-
fortunately, it may be the case that a subset of the
attributes from CA properly determine the relation-
ship between B1/B2; yet, when conditioned on all data
from CA, DBMiner becomes inundated with meaning-
less data correlations and derives incorrect, null, or
over-qualified rules. Thus, the data that B1/B2 is con-
sidered in relevance to is critical in the successful dis-
covery of proper integration relationships.

A more positive way to examine the state of KBSIT
is to consider the power set of CA and the 2n subsets
it represents. Ideally, we would like submit requests
L(B1/B21S) for each set S in the power set of CA and
gather, from DBMiner, the B1/B2 relationships for ev-
ery possible relevance subset. Our task would then be
to determine which relationship (from the power set
requests) to use as the suggestion for B1/B2. We re-
duce to a single suggestion adhering to the following
prejudices:

¯ We favor the discovery of a strong relationship over
weaker relationships. If the data miner is able to
recover eq as an implicit attribute relationship based
on some relevance set, then we are inclined to use it
over other suggestions (similarly for sup or sub over
sibl).

¯ We favor few attribute correlations over complex,
many attribute suggestions. This prejudice taints
the mining process to prefer suggestions that are
derived from fewer relevant attributes (i.e., smaller
relevance clauses) - we use this assumption to guide
the mining/integration algorithm to seek fundamen-
tal/primary relationships over spurious and artifac-
tual coincidences.

DBMiner Control Process
Computing mining requests based on the power set of
CA is, of course, not computationally practical. We
must devise a control process in KBSIT that gener-
ates requests to DBMiner that approaches the ideal
scenario.

We define an ordering and comparison function on
the relationships computed for any two attributes
BI/B2 as:

eq > sup > sibl eq > sub > sibl

sibl > null > O sup ¢ sub

compare(r1, r2) = positive if ra > r2, else negative

We begin mining for a relationships between B1/B2
by computing L(B1/B21{Ai}) for each common at-
tribute Ai E CA. Then, for a specific L(B1/B2]{Aj}),
we compute L(Bx/B2I{Ai,Ak}).k ¢ fo r al l k E

2This section holds equally for H(Bx/B2ICA), we use
only L(Ba/B2ICA) to minimize confusion and assume the
parallel reading with H substituted for L.

{1...]CAI}. Any particular L(B1/B21{Aj,Ak}) that
does not compare as positive with L(B1/B21{Aj})
marks the end of the "search" down this branch. For
all positive steps, we then make a next step from
L(B1/B2[{Aj,Ak}) to L(B1/B21{Aj,Ak,Ap}).j 
k # p and apply the same "positive comparison" crite-
ria for stopping or continuing search down this branch.
Once we have exhausted the search from Aj, we com-
pute the overall suggested relationship to be the most
positive relationship in the search tree. This process is
repeated beginning from every attribute Ai E CA. The
final suggested relationship for B1/B2 is then the most
positive relationship among the set of Ai search trees.
KBSIT can add this relationship to its knowledge-base
and attributes BI/B2 to its set of common attributes.

Note that in the worst case this search is still the
power set evaluation; but, in our experiments, we have
found that the search tree is terminated fairly quickly
and relationships are determined after minimal search
iterations. Nevertheless, the control loop presented
should be augmented to work in a breadth first fashion
and/or perform a cutoff when the relevance sets grow
too large.

Integration Analysis

In this section we summarize the analyses and lessons
learned from applying the techniques presented herein
to actual heterogeneous database environments. There
are four general analyses that should be presented to
judge the scope, applicability, and future directions of
our current data mining for schema integration.
Analysis 1: The current algorithms use instance-
level mining and comparison for relationship discov-
ery. We have found that this process performs well
for finite and discrete domains (i.e., Birth_Place or
Diagnosed_Disease). Yet, the algorithms are too fo-
cused on individual instances to capture general rela-
tionships in continuous valued domains. We feel that
intelligent pre-clustering techniques, applied to the at-
tributes in isolation, may generate a discretized do-
main readily applicable to our mining/integration tech-
niques.
Analysis 2: Attributes that require instance-level
translations to unify are not satisfactorily handled.
Our mining and rule-composition algorithms properly
identify the need for translations for relationships to
occur. Yet, how to suggest such translations is often
extremely domain-specific. We have some initial tech-
niques that use the knowledge mined to suggest trans-
lations, but this area needs more work to be acceptable
in general schema integration servers.
Analysis 3: We currently compare all conditions from
the mined rules to suggest relationships. We are work-
ing on techniques to use only those conditions that rep-
resent a high degree of coverage of the data instances.
The motivation being that if one database has the
only occurrences of an infrequently occurring attribute
value, we do not want this value to adversely affect

Dao 67



or distort the mining results. The attribute-oriented
induction process we are using to discover rules can
compute this coverage for us, we need to define how to
exploit it in the rule comparison/reduction algorithms.
Analysis 4: We currently generate and control min-
ing requests to DBMiner in a heuristic manner that
is non-tractable in degenerate cases. Clearly we need
to incorporate algorithms such as those developed in
(Agrawal & Srikant 1994) to control DBMiner in 
tractable and optimized manner for all cases. Nev-
ertheless, our heuristic control algorithm has behaved
satisfactorily for a number of heterogeneous database
case studies.

None of the above analyses identify flaws in the ap-
proach described herein. Instead, each outlines a task,
or direction, required to extend the approach to a more
general-purpose schema integration engine.

Conclusion
Our schema integration/data mining prototype has
been tested on actual heterogeneous databases and the
results prove promising that our approach leads to au-
tomated discovery of integration relationships based on
multi-database correspondences (Dao & Perry 1995).

In this paper we discussed the problems and partial
solutions to the difficult area of semantic-level hetero-
geneous schema integration. Specifically, we addressed
the following points:

¯ How to compare and combine knowledge discovered
by attributed-oriented inductive mining (Cai, Cer-
cone, & Han 1991), applied to multiple databases,
to gain insight on the semantic correspondence of
attributes from heterogeneous schemas.

¯ How to generate, in a controlled and heuristic man-
ner, the mining in relevance to clauses from the cur-
rent set of common attributes.

¯ How to combine the pieces into a unified and con-
trolled schema integration with data mining algo-
rithm.

¯ The architecture of our prolotype system. The ideas
and algorithms described herein have been validated
in our prototype system (figure 1).

We have outlined a new field for applying data min-
ing technology and enhancing the difficult problem of
schema generation/maintenance in federated database
systems. We are currently experimenting extensively
with the attribute-oriented data mining technique, but
acknowledge that it will most likely take a parallel min-
ing effort of various techniques to attain the level of
semi-automated schema integration we seek.

Our future plans include completing, enhancing, and
further testing the prototype system. We have only
begun to see the results of mining for integration re-
lationships and need to do more experimentation to
validate our initial results. For the long-term, we have
two goals in this new technology direction. First, we

68 KDD-95

are building our prototype such that is not dependent
on any one data mining technique, but uses a set of
available techniques as services to aid the integration
process. Second, we plan to investigate methods to ex-
ploit the instance-level constraints generated by data
miners, coupled with domain knowledge, to suggest
translations (i.e., scaling, mapping, etc.) between at-
tributes for specific integration relationships to occur.

References
Agrawal, R., and Srikant, R. 1994. Fast algorithms for
mining association rules. In Proc. 2Oth VLDB.

Batini, C.; Lenzerini, M.; and Navathe, S. 1986. A com-
parative analysis of methodologies for database schema
integration. Computing Surveys 18(4).
Cai, Y.; Cercone, N.; and Han, J. 1991. Attribute-
oriented induction in relational databases. In Piatetsky-
Shapiro, G., and Frawley, W., eds., Knowledge Discovery
in Databases. AAAI Press. 213-228.
Dao, S., and Ebeid, N. 1992. Interoperability of het-
erogeneous information management systems: a federated
approach. Technical Report 585, Hughes Research Labo-
ratories.
Dao, S., and Perry, B. 1995. Data mining for semantic
schema integration: Extended report. Technical report,
Hughes Research Laboratories.
Dao, S.; Keirsey, D.; and et al., R. W. 1991. Smart data
dictionary: a knowledge-object-oriented approach for in-
teroperability of heterogeneous information management
systems. In Proc. 1st International Workshop on Interop-
erability in Multidatabase Systems.
Drew, P.; King, R.; McLeod, D.; Rusinkiewicz, M.; and
Silberschatz, A. 1993. Report of the workshop on se-
mantic heterogeneity and interoperation in multidatabase
systems. SIGMOD Record 22(3).

Fu, Y., and Han, J. 1994. DBMiner user’s guide. Tech-
nical report, School of Computing Science, Simon Fraser
University.

Gallaire, H.; Minker, J.; and Nicolas, J. 1984. Logic
and databases: A deductive approach. ACM Computing
Survey 16(2).

Hayne, S., and Ram, S. 1990. Multiuser view integration
system (muvis): An expert system for view integration. 
Proc. 6th International Conference on Data Engineering.

Larson, J.; Navathe, S.; and Elmasri, R. 1989. A the-
ory of attribute equivalence in database with application
to schema integration. IEEE Transactions on Software
Engineering 15(4).
Li, W., and Clifton, C. 1994. Semantic integration in
heterogeneous databases using neural network. In Proc.
20th VLDB.
Navathe, S., and Buneman, P. 1986. Integrating user
views in database design. Computers 19(1).
Piatetsky-Shapiro, G., and Frawley, W. 1991. Knowledge
discovery in databases. AAAI Press.


