
Knowledge discovery in a water quality database

Sago D~eroski
Jo~,ef Stefan Institute

Jamova 39, 61111 Ljubljana, Slovenia
Emaih saso. dzeroski@ij s. si

Jasna Grbovid
Hydrometeorological Institute of Slovenia

Vojkova lb, 61000 Ljubljana, Slovenia

Abstract

We apply rule induction to mine for knowledge in
a database which stores data obtained by monitor-
ing the water quality of the rivers in Slovenia. The
database contains measurement data about the phys-
ical and chemical properties of the water at different
measurement sites, as well as data about the presence
of living organisms. Taken together, the above data
reflect the quality of the water: the physical and chem-
ical properties influence the living organisms, which in
turn give an overall picture of the water quality over a
period of time. We address two problems: (a) analy-
sis of the influence of physical and chemical indicators
of water quality on the presence of selected bioindica-
tors, and (b) classification into quality classes based
on either bioindicator or physical and chemical indi-
cator data. The learned rules are evaluated by a river
biology expert, but also in terms of their performance
on unseen cases.

Introduction
The quality of surface waters, including rivers, depends
on their physical, chemical and biological properties.
The latter are reflected by the diversity and density
of living organisms in the water. Based on the above
properties, surface waters are classified into (one of)
several quality classes which indicate the suitability of
the water for different kinds of use.

According to current legislation on water classifica-
tion in Slovenia (Official 1978), the water belongs 
the first (best) quality class if it is suitable for drinking,
bathing and fisheries. Second class water is suitable for
fisheries and recreation, including bathing; after sim-
ple treatment (coagulation, filtration, disinfection) 
can be used for industrial purposes, even in the food
industry. Third class waters can be used for irriga-
tion and (after conditioning) in the industry, except
the food industry. Water of the fourth (worst) qual-
ity class can be used only for purposes less demanding
than the above ones and after appropriate treatment.

It is well known that the physical and chemical prop-
erties give a limited picture of water quality at a par-
ticular point in time, while the biota (living organisms)

act as continuous monitors of water quality over a pe-
riod of time. This has increased the importance of
biological methods for monitoring water quality (De
Pauw & Hawkes 1993). Since Kolkwitz and Marsson
(1902), who first proposed the use of biota as a means
of monitoring the quality of natural waters, many dif-
ferent methods for mapping biological data to discrete
quality classes or continuous scales have been devel-
oped (De Pauw & Hawkes 1993; Grbovid 1994). Un-
fortunately, the rationales behind these methods are
typically ad hoc and highly subjective and their reli-
abilities have been less than desired (Walley, Boyd,
Hawkes 1992).

Slovenian water authorities use the saprobic index
method, as introduced by Pantle and Buck (1955) and
modified by Zelinka and Marvan (1961), to map bio-
logical data to a continuous scale. The saprobic index
derived from a given water sample is thus a single num-
ber that reflects the quality of the water. Depending
on the value of the saprobic index water can be classi-
fied in four basic classes and three intermediate classes,
i.e., altogether seven classes: 1., 1.-2., 2, 2.-3., 3., 3.-4.,
and 4. Class 1. corresponds to clean waters and class
4. to heavily polluted waters. The four basic classes
correspond to the legislation defined classes, but are
somewhat different, as the latter rely mainly on chem-
ical properties.

The saprobic index is calculated as a weighted av-
erage of the densities of a selected set of living organ-
ism families (or other taxonomical units, referred to as
taxa). The taxa used are such that their biology, im-
portance and ecological role is known. Such taxa are
called bioindicators, since they reflect the overall water
quality as affected by physical and chemical influences
over a period of time. The ecological role and water
quality importance is not known for many taxa and
may furthermore differ from country to country (Gr-
bovi~ 1994). Little is also known about the influence of
physical and chemical water properties on many taxa.
From an ecological and water quality point of view,
these are important research topics.

The paper describes experiments in mining a wa-
ter quality database for knowledge on two topics:
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(a) the influence of physical and chemical water prop-
erties on selected bioindicator taxa and (b) the classi-
fication (quality assessment) of water samples, based
on either bioindieator data or data on the physical
and chemical properties of the sample. The task of
water quality classification is often referred to as the
task of interpretation of, e.g., biological samples (Wal-
ley, Boyd, & Hawkes 1992). The data we used comes
from the Hydrometeorological Institute of Slovenia
(Hidrometereolo~ki Zavod Republike Slovenije, abbr.
HMZ) that performs water quality monitoring for most
Slovenian rivers and maintains a database of water
quality samples.

The data provided by HMZ cover a four year pe-
riod, from 1990 to 1993. Biological samples are taken
twice a year, once in summer and once in winter, while
physical and chemical analyses are performed several
times a year for each sampling site. The physical and
chemical samples include the measured values of sev-
eral different parameters, such as dissolved oxygen and
hardness, while the biological samples include a list of
all taxa present at the sampling site and their density.
The density (abundance level) of each present taxon
is recorded by an expert biologist at three different
qualitative levels, where 1 means the taxon occurs in-
cidentally, 3-frequently, and 5-abundantly. Biological
samples include the corresponding saprobic index value
and the corresponding quality class as determined by
the index. In total, 698 water samples were available
on which both physical/chemical and biological anal-
yses were performed: our experiments were conducted
using these samples.

Given the data described above, we used a rule in-
duction system to mine for knowledge. We formulated
several learning problems: analysis of the influence of
selected physical and chemical water properties on the
presence of selected taxa; water quality classification
starting from a selected set of bioindicators; and wa-
ter quality classification based on a a selected set of
physical and chemical properties. In the remainder of
the paper, we first describe tile methodology used to
learn and evaluate rules and then present the results
for each of the learning problems. Tile evaluation of
induced rules comprises comments by Jasna Grbovi6,
an expert biologist that performs analyses of biological
samples at HMZ and has rich knowledge on the ecology
of plants and animals found in Slovenian rivers, as well
as the classification accuracy and information score of
the rules (estimated on unseen cases).

The methodology of rule induction

To induce rules from the given examples, we used an
extended version (D~eroski, Cestnik, & Petrovskl 1993)
of CN2 (Clark & Boswell 1991). The extended version
can use the m-estimate (Cestnik 1990) for estimating
rule accuracy: the accuracy estimates are used as val-
ues of the search heuristic in CN2. The m-estimate
gives more reliable probability estimates and allows for

different levels of fitting the training examples: smaller
values of the parameter m (which is a positive real
number) correspond to closer fitting (Cestnik 1990).
The rationale behind the parameter m is to allow for
better noise-handling. Another feature of the extended
version of CN2 is the possibility to measure the infor-
mation score (Kononenko & Bratko 1991) of induced
rules. The information score is a performance measure
which is not biased by the prior class distribution. It
accounts for the possibility to achieve high accuracy
easily in domains with a very likely majority class:
classifying into the majority class all the time gives
a zero information score.

CN2 was used to induce sets of unordered rules. The
rules were required to be highly significant (at the 99%
level) and thus reliable. Except for the the significance
threshold and the search heuristic settings, described
below, the parameter settings of CN2 were the default
ones (see Clark & Boswell 1991).

To estimate probabilities for the search heuristic
(i.e., rule accuracy) we used the Laplace estimate
and the m-estimate. Fifteen different values of the
parameter m were tried C0, 0.01, 0.25, 0.5, 1, 2, 4, 8,
16, 32, 64, 128, 256, 512 and 1024), as suggested by
earlier experiments (Cestnik 1990; D~eroski, Cestnik,
& Petrovski 1993). For a given set of examples, we thus
induced 16 sets of rules and chose the best according to
the following lexicographic criterion: (1) information
score, (2) accuracy, (3) smaller value of the parameter
m. The accuracy and the relative information score
are estimated on the training set.

This procedure allows us to choose the right level of
fitting: overfltting is prevented by applying the signifi-
cance threshold. Preliminary experiments showed that
as the parameter m increases, the accuracy and infor-
mation score of the induced rules increase until an opti-
mum is reached; further increasing m causes a decrease
in the accuracy and information score (Li~an-Milo~evi6
1994). This behavior is illustrated in Figure 1.

Note that a behavior of this kind is obtained only if
we use a high significance threshold. If we don’t apply
a significance threshold then accuracy and information
score fall as m grows: this prevents us from being able
to choose an appropriate value of m on the training set.
Earlier experiments chose an appropriate value for m
on the testing set (Cestnik 1990, D~eroski, Cestnik, 
Petrovski 1993), which is a methodological flaw.

For each of the learning problems described below,
two sets of experiments were performed. The first set
induced rules from all 698 examples, aiming to find as
much reliable patterns (and hopefully knowledge) 
possible. The rules derived in this way were inspected
by the expert biologist and evaluated in the light of ex-
isting knowledge on riverine ecology and water quality.
The second batch of experiments was aimed at evaluat-
ing the performance of induced rules in terms of their
accuracy and information score on unseen cases. To
this end, we split the entire dataset into a training
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Figure 1: The accuracy and information score of significant rules learned by using different search heuristics.

(70%- 489 cases) and testing (30% - 209 cases) set 
ten different ways. For each split, we induced a set
of rules according to the above methodology from the
training set, then tested the performance of the rules
on the test set; the results appearing in the text are
the averages over the ten different splits.

The influence of physical and chemical

parameters on selected organisms

Plants are more or less influenced by the follow-
ing physical and chemical parameters (water prop-
erties): total hardness, nitrogen compounds (NO2,
NO3, NH4), phosphorus compounds (PO4), silica
(Si02), iron (Fe), surfactants (detergents), chemical
oxygen demand (COD), and biochemical oxygen de-
mand (BOD). The last two parameters indicate the
degree of pollution: the first reflects the total amount
of degradable matter, while the second reflects the
amount of biologically degradable matter. Animals
are influenced by a different set of parameters: wa-
ter temperature, acidity or alkalinity (pH), dissolved
oxygen (02, saturation of 02), total hardness, chemical
(COD), and biochemical oxygen demand (BOO).

The experiments presented in this section studied
the influence of the physical and chemical parame-
ters listed above on ten plant taxa and seven ani-
mal taxa. On the plant side, eight kinds of diatomae
(BACILLARIOPHYTA: 12200, 13200, 13700, 14200,
17700, 18000, 19400, 21100) and two kinds of green
algae (CHLOROPHYTA: 25400, 30400) were stud-
ied. The animal taxa chosen for study include worms
(OLIGOCHAETA: 37880), crustacea (AMPHIPODA:
49700) and five kinds of insects (50380, 53000, 58900,
59300, 59500). The numbers above are the taxa identi-

fication codes from a code-book of taxa that appear in
Slovene rivers; this code-book is maintained by HMZ.

For each of the selected taxa we defined an attribute-
based learning problem, the attributes being the se-
lected physical and chemical parameters (Hardness,
NO2, //03, NH4,P04, Si02, Fo, Detergents, COD,
B0D for plants; Temperature, PH, 02, Saturation,
COD, B0D for animals). The class is the presence of
the selected taxon (with values Present and Absent).
Seventeen different learning problems (domains) were
thus defined.

We now summarize the experiments with the above
learning problems, carried in accordance with the
methodology specified above. We first give an overview
of the performance of the induced rules, both for rules
derived from the whole data set (calculated on the
training set) and for rules derived from the ten splits
(calculated on the testing set and averaged over the ten
splits). We then give excerpts of the expert rule eval-
uation for selected plant and animal taxa. A detailed
description of the selected taxa, the experiments, the
performance of induced rules, the selected sets of rules,
and the expert evaluation of these rules can be found
in the BSc Thesis of Li~an-Milo~evid (1994).

Table 1 gives an overview of the performance of the
rules as evaluated on the whole dataset (W) and the
ten splits (P) into a training and testing set. The ac-
curacy on the whole (training) dataset ranges between
66% and 85% (the default accuracy, i.e., the majority
class frequency ranges from 50% to 70%), while the
information score ranges between 23% and 50%. The
rule sets for different taxa comprised 10 to 20 rules,
the average rule length was less than five conditions,
and a rule covered on average 15 to 45 examples.
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Table 1: The performance of rules predicting taxa
presence from physical and chemical parameters:
D-default accuracy, A-accuracy, I-information score;
W-whole dataset, P-average on ten splits.

Plant taxa
D A I

Code W P W P W P
12200 55.9 58.4 77.8 65.5 43 20.0
13200 65.8 64.6 77.7 67.7 33 16.6
13700 56.3 59.3 75.6 63.0 38 15.1
14200 59.7 56.5 79.2 64.6 38 14.6
17700 63.2 61.7 78.4 62.6 41 12.1
18000 66.6 71.8 79.8 71.3 41 16.9
19400 60.2 60.8 78.8 69.7 50 29.2
21100 50.0 48.3 69.1 53.1 43 7.0
25400 54.6 59.8 66.3 56.8 34 11.4
30400 69.5 68.4 80.8 67.6 35 5.1
Animal taxa

D A I
Code W P W P W P
37880 67.2 66.0 85.1 70.0 49 20.5
49700 56.7 55.0 75.9 64.6 35 17.6
50380 65.9 67.9 77.9 65.7 31 7.0
53000 68.2 68.9 85.1 70.6 47 17.9
58900 55.3 50.2 67.2 53.3 23 1.4
59300 65.2 75.6 75.5 65.4 28 4.6
59500 65.8 64.6 79.8 71.0 46 26.1

While the performance (accuracy) of tile rules 
the training set is not as high as might be expected,
we should bear in mind that the use of a high sig-
nificance threshold prevents overfitting. More impor-
tantly, the physical and chemical parameters at a cer-
tain point in time do not determine completely the
presence (absence) of a particular taxon: the presence
depends on the physical and chemical parameters over
a longer period of time, on the life time of the taxon,
the water level, and the river bed. To make the prob-
lem even harder, some taxa group together very differ-
ent organisms: an example is the taxon Chironomidae
(green) (58900), where the lowest information score 
the whole dataset was recorded.

The information scores of the rules induced from
70% of the dataset (measured on the remaining 30%)
is much lower for all taxa, but remains positive. This
means that the rules contain useful information about
the influence of physical and chemical parameters on
the presence of the taxa. Nevertheless, tile accuracy
is worse than the default for the taxa 18000, 25400,
30400, 50380, and 59400. In the remainder of the sec-
tion, we give an excerpt from the expert evaluation of
the rules for the diatom Nitzschia palea (19400) and
the water bug Elmis sp. (59500). The rules for these
taxa achieved the highest information scores (29.2%
and 26.1%, respectively) on the 70%-30% splits.

The diatom Nitzschia pales (19400) is present in 420
of the 698 samples and is the most common species in

Slovenian rivers. It is very tolerant to pollution and
lives in waters of a wide quality range, from clean to
polluted waters. It is characteristic of the water quality
class 2.-3. according to the saprobic index and is used
as an indicator of polluted waters.

Selected rule predicting the presence
of the species Nitzschia palea

IF P04 > 0.065
AND Fe < 0.595
AND COD > 25.5
THEN Present [58 O]

IF NO3 > 1.3
AND NH4 < 0.97
AND 13.25 < COD < 16.35
THEN Present [36 O]

IF 4.25 < NO3 < 12.35
AND Si02 > 1.65
AND Detergents > 0.055
THEN Present [50 O]

IF Hardness > 11.85
AND NO2 > 0.095
AND NH4 > 0.09
THEN Present [82 O]

IF NO3 < 5.95 IF NO2 < 0.005
AND Si02 > 4.75 AND NO3 < 7.1
AND COD > 7.95 AND P04 < 0.125
AND 1.3 < BOD < 42.05 AND Detergents < 0.055
THEN Present [59 O] AND BOD < 2

THEN Absent [0 39]

The rules built from the whole dataset confirm that
a larger degree of pollution is beneficial to this species.
From the 18 rules we list six below, chosen to have
large coverage. The numbers in square brackets denote
the numbers of examples of each class covered by the
rule ([58 O] means that the corresponding rule covers
58 examples of class Present, while [0 39] means it
covers 39 examples of the class Absent). From the
rules it is evident that Nitzschia palea needs nitrogen
compounds, phosphates, silica, and larger amounts of
degradable matter (COD and BOD).

The bugs COI, EOPTERA, where the taxon Elmis
sp. (59500.) belongs, are quite common on land but
rare in water. From the literature and expert experi-
ences it is known that this taxon inhabits clean waters:
it is considered an indicator of the quality class 1.-2.

Z Selected rule predicting the presence
Y, of the taxon Elmis sp.

IF 02 < 11.45
AND Hardness > 10.35
AND COD > 2.15
AND BOD < 1.25
THEN Present [36 O]

IF Temperature > 11.75
AND 12.3 < Hardness <14.3
AND BOD < 1.75
THEN Present [14 O]

IF Temperature > 12.75
AND BOD < 0.65
THEN Present [8 O]

IF 23 < COD < 46.45
THEN Absent [0 72]

IF PH > 7.05
AND BOD > 12.15
THEN Absent [0 47]

From the 17 rules induced, five selected by the ex-
pert are listed above. The first rule demands a rela-
tively low quantity of biodegradable matter (pollution)
in order for Elrnis sp. to be present; this has to be even
lower as water temperature increases (see the second
and the third rule). The last two rules predict that the
taxon will be absent if the water is overly polluted as
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indicated by the high values of BOD, COD and pH.
The rules confirm that Elmis sp. is a bioindicator of
clean to mildly polluted waters.

Not all of the induced rules agree with existing ex-
pert knowledge. As an example, let us consider the
rules that predict the presence of the taxon Plecopfera
leuetra sp. (53000), which is used as an indicator of
clean waters. The induced rules do confirm that it is
found mainly in clean waters. However, they also state
that Plecoptera ieuctra sp. can be found in quite pol-
luted water, provided there is enough oxygen. Thus,
they enhance current knowledge on the bioindicator
role of this taxon.

Another example are the rules that predict the pres-
ence of the taxon Cymbella sp. (13200). The rules
point out that the taxon can be found in moderately
to critically polluted waters (as indicated by the toler-
ance of large quantities of biodegradable matter, i.e.,
large values of BOD). In water monitoring practice,
however, Cymbella sp. is used as an indicator of clean
to mildly polluted waters.

Biological classification of river water

quality

This section describes the experiments in prcdicting
the biological water quality class, as determined by the
saprobic index, from two different sets of attributes.
The first set consists of all the physical and chemi-
cal parameters mentioned in the previous section, al-
together 13 parameters. The second consists of the 17
taxa from the previous section and 10 additional taxa,
altogether 27 taxa. The 13 parameters give rise to real
valued attributes, while the 27 taxa give rise to discrete
valued attributes with four (linearly ordered) values: 
1, 3, and 5. As mentioned in the introduction, there
are seven water quality classes. The majority class 2.
comprises 339 of the 698 examples, thus the default
accuracy is 48.6%.

IF Temperature < 12.55
AND PH < 8.45

AND NO2 < 0.235
AND 1.75 < NO3 < 7.15
AND Detergents < 0.025
AND COD < 4.25
AND HOD < 2.35
THEN QualityClass = 1.-2.

[9 80 2 0 0 00]

IF Temperature > 12.65
AND PH < 8.65
AND Saturation > 57.3
AND NO2 < 0.375
AND NH4 > 0.065
AND P04 < 0.39
AND Si02 < 10.75
AND COD > 2.65
AND 1.25 < BOD < 4.75
THEN QualityClass = 2.

[0 8 152 5 0 00]

For illustration, let us take a look at two rules that
predict the water qualy class from physical and chem-
ical parameters: these are the rules with greatest cov-
erage derived from the whole dataset. While we would
need expertise in both the chemistry and biology of wa-
ter quality to thoroughly evaluate these rules, they are
intuitive and understandable. The class 1.-2. requires
relatively cold water and very small quantities of pol-
lutants (NO2, NO3, detergents, COD, BOD). Class

2. waters are usually warmer and somewhat larger
quantities of pollutants are allowed, provided there is
enough oxygen (Saturation > 57.3).

The rules induced on the entire dataset reach 81.5%
classification accuracy when using physical and chem-
ical parameters and 71.1% when using bioindicators,
the information scores being 62% and 44%. When
learning on 70% of the dataset, the corresponding ac-
curacies on the testing set are 60% and 58%, the infor-
mation scores being 32% and 28%. It is interesting to
note that better performance is achieved when predict-
ing from physical and chemical parameters, despite the
fact that biological quality is predicted. However, to
determine the quality class a much larger set of bioindi-
cators is used than the one used in our experiments.

IF BACILLhRIOPHYTA_Navicula_cryptocephala = 0
AND CHLOEOPHYTA_Scenedesmus_obliquus = 0
AND DIPTERA_Chironomidae_green = 3
AND COLEOPTERA_Elmis_sp. = 3
THEN QualityClass = 1.-2. [1 16 1 0 0 00J

IF BACILLARIOPHYTA_Navicula_cryptocephala = 1
AND BACILLARIOPHYTA_Nitzschia_palea = 1
THEN QualityClass = 2. [0 3 32 9 2 0 1]

Let us finally take a look at the two rules above that
predict the water quality class from the 27 bioindi-
cators. The first predicts class 1.-2. when Elmis
sp. (59500) and Chironomidae green (58900) occur
frequently (3) and the species Scenedesmus obliquus
(31900) and Navicula cryptocephala (17700) are absent
(0). It is in agreement with existing expert knowledge:
Elmis sp. and Chironomidae green are indicators of
clean waters, while Navicula cryptocephala is indicative
of polluted waters (class 3.). The second rule predicts
class 2. when Navicula cryptocephala and Nitzschia
palea occur incidentally (1). Both species are indica-
tive of heavily polluted waters if they occur in larger
quantities: as they only occur incidentally, the rule is
in agreement with expert knowledge.

Discussion
The experiments we have performed indicate that rule
induction can be used to analyze water quality data
and discover different kinds of knowledge. We in-
duced rules that describe the influence of physical and
chemical properties of the water in Slovenian rivers
on the presence of selected living organisms that are
currently used as bioindicators of river water quality.
Expert evaluation of these rules showed that they do
indeed capture useful knowledge, as indicated by their
positive information scores. In some cases, the rules
just confirmed the expert knowledge of the biology
of the bioindicator taxon concerned. In others, it re-
vealed new aspects of the biology of the studied taxon,
which extend existing knowledge without conflicting it.
There were even cases when the rules indicated that the
given taxon is used as an indicator for a wrong class of
biological water quality.
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While the above analysis concerned 17 taxa with rel-
atively well known biology that are routinely used as
bioindicators of water quality, we have still been able
to find some new knowledge on the biology of the taxa
studied and their bioindicator roles. A promising di-
rection for further work is to extend the analysis to
taxa about which relatively little is known and which
are currently not used as bioindicators. This could
contribute new knowledge both to biology and to the
practice of water quality monitoring, as some of the
taxa analyzed may turn out to be very good bioindi-
cators. Additional methods of data analysis from the
areas of machine learning and statistics may be used
in the process.

We also induced rules that predict the river water
quality class (as provided through the saprobic index).
The rules that use bioindicator data to this end are
mainly consistent with existing expert knowledge: this
is understandable, as bioindicator data (albeit on 
much larger set of indicators) is used to derive the
saprobic index. The rules that predict the biologi-
cal quality class from the physical and chemical wa-
ter properties are surprisingly accurate and informa-
tive and deserve a more detailed further analysis by
experts fluent in both biological and chemical aspects
of water quality. It would be reasonable to induce clas-
sification rules that use both bioindicator and chemi-
cal/physical data, as the two are complementary to a
certain degree.

A serious problem is the use of the saprobic index for
classification. The saprobic index and similar methods
are rather ad hoc and leave much to be desired (Walley,
Boyd, & Hawkes 1992). An alternative approach that
has been tried for British rivers is to have an expert
classify the samples and then induce classification rules
(Walley, Boyd, & Hawkes 1992; D~eroski et al. 1994).
Another possibility is to use clustering methods (with
a heavy expert interaction) to identify the classes and
then induce rules that describe these classes. We hope
to investigate the success of these approaches for Slove-
nian rivers and propose a more objective and reliable
methodology for water quality assessment.
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