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Abstract

Most existing decision tree systems use a greedy ap-
proach to induce trees -- locally optimal splits are in-
duced at every node of the tree. Although the greedy
approach is suboptimal, it is believed to produce rea-
sonably good trees. In the current work, we attempt to
verify this belief. We quantify the goodness of greedy
tree induction empirically, using the popular decision
tree algorithms, C4.5 and CART. We induce decision
trees on thousands of synthetic data sets and com-
pare them to the corresponding optimal trees, which
in turn are found using a novel map coloring idea. We
measure the effect on greedy induction of variables
such as the underlying concept complexity, training
set size, noise and dimensionality. Our experiments
show, among other things, that the expected classifi-
cation cost of a greedily induced tree is consistently
very close to that of the optimal tree.

Introduction

Decision trees are known to be effective classifiers in
a variety of domains. Most of the methods developed
have used a standard top-down, greeay approach to
building trees, which can be summarized as follows.
Recursively do the following until no more nodes can
be split: choose the best possible test at the current
node according to some goodness measure and split the
current node using that test; after a complete tree is
grown, prune it back to avoid overfitting the training
data (Breiman et al. 1984; Quinlan 1993). The choice
of a "best" test is what makes this algorithm greedy.
The best test at a given internal node of the tree is
only a locally optimal choice; and a strategy choosing
locally optimal splits necessarily produces suboptimal
trees (Goodman & Smyth 1988).

Optimality of a decision tree may be measured in
terms of prediction accuracy, size or depth. It should
be clear that it is desirable to build optimal trees in
terms of one or more of these criteria. Maximizing
classification accuracy on unseen data (within the con-
straints imposed by the training data) is obviously de-
sirable. Smaller, shallower decision trees imply better
comprehensibility and computational efficiency. Shal-
low trees are also more cost-effective, as the depth of

a tree is a measure of its classification cost. How-
ever, because the problem of building optimal trees
is known to be intractable (Hyafil & Rivest 1976;
Murphy & McCraw 1991), a greedy heuristic might
be wise given realistic computational constraints.

The goal of this paper is to examine closely the con-
sequences of adopting a greedy strategy. We ask the
question, if we had unlimited resources and could com-
pute the optimal tree, how much better should we ex-
pect to perform? An alternative way of asking the
same question is, what is the penalty that decision tree
algorithms pay in return for the speed gained by the
greedy heuristic?

Setting up the Experiments

Our experimental framework is quite simple -- we use
C4.5 (Quinlan 1993) and CART (Breiman et al. 1984)
to induce decision trees on a large number of random
data sets, and in each case we compare the greedily
induced tree to the optimal tree. The implementation
of this framework raises some interesting issues.

Optimal Decision Tree for a Training Set. The
problem of computing the shallowest or smallest deci-
sion tree for a given data set is NP-complete (Hyafil 
Rivest 1976; Murphy & McCraw 1991), meaning that
it is highly unlikely that a polynomial solution will be
found. Previous studies that attempted comparisons
to optimal trees (e.g., (Cox, Qiu, & Kuehner 1989))
used approaches like dynamic programming to gener-
ate the optimal trees. Because it is slow, this option is
impractical for our study, in which we use hundreds of
thousands of artificial data sets. Our solution is to first
generate a random decision tree D, and then generate
data sets for which D is guaranteed to be the optimal
tree. The main idea behind ensuring the optimality of
a random decision tree is coloring its leaf nodes with
appropriate class labels.

An instance is a real valued vector Xi =
(x~l,zi2,...,xia) plus a class label c~. xis are the at-
tributes of Xi, and d is its dimensionality. Consider a
binary decision tree D in two attributes. (The ensuing
argument applies to arbitrary dimensions.) D induces
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a hierarchical partitioning of the attribute space, which
can be drawn as a map M. The boundaries of M are
the splits (test nodes) in D, and the regions of M are
the leaf nodes in D. Assuming that each leaf node of
D contains instances of only one class, we can color M
by assigning a distinct color to each class in D. Now
consider a data set S consistent with D, which has
the additional property that S requires every leaf node
of D, i.e., every leaf node of D contains at least one
instance of S.

It should be clear that D is the smallest binary de-
cision tree consistent with S, provided no two neigh-
boring regions of M have the same color. Informally,
any decision tree that has fewer leaves than D needs
to either ignore some decision regions of D, or merge
(parts of) two or more regions into one. The former
possibility is ruled out because S requires all decision
regions in D. The latter is impossible because no deci-
sion regions of the same color are adjacent, so no two
regions can be merged. Hence, any decision tree con-
sistent with S has to have at least as many leaf nodes
as D. Moreover, if D was a perfectly balanced tree to
start with, then any decision tree consistent with S has
to be at least as deep as D.

In our experiments, we start with perfectly balanced,
empty trees. We then generate random tests at the
decision nodes, ensuring that no leaf region is empty.
Finally we color the leaves to ensure optimality with
respect to size, using the following procedure. We first
compute the adjacency information of the leaf nodes.
After initializing the class labels at all leaf nodes to k
(> number of leaves), we go back and change the label
of each leaf to be the smallest number in [1, k] that is
not yet assigned to any neighbor. This heuristic pro-
cedure worked quite well in all our experiments. (For
instance, decision trees of 64 leaf nodes in the plane
were colored with 5 classes on average.) A sample ran-
dom decision tree in 2-D, along with the class labels
assigned by the above coloring procedure, is shown in
Fig. 1.

Tree Quality Measures. In all our experiments, we
report tree quality using six measures:

¯ Classification accuracy: accuracy on the training
data;

¯ Prediction accuracy: accuracy on an independent,
noise-free testing set;

¯ Tree size: number of leaf nodes;
¯ Maximum depth: distance from the root to the far-

thest leaf node; (distance from A to B is the number
of nodes between, and including, A and B)

¯ Average depth: mean distance from the root to a
leaf node in the tree;

¯ Expected depth: number of tests needed to classify
an unseen example. We compute expected depth by
averaging, over all the examples in the testing set,
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Figure 1: The partitioning induced by a random deci-
sion tree of 32 leaf nodes. Class labels assigned by our
coloring procedure are shown (for most nodes).

the length of the path that the example followed in
the tree.

Control Variables. The effectiveness of greedy in-
duction can not be measured independently of training
data characteristics. For instance, if the training data
is very noisy, it is likely that no induction method will
be able to generate accurate trees. In this paper, we
study the effectiveness of greedy induction in controlled
settings with respect to the following parameters:

¯ concept complexity (measured as the size of the op-
timal decision tree),

¯ size of the training set,
¯ amount and nature of noise in the training data

(noise in class labels versus noise in attributes), and
¯ dimensionality (number of attributes).

Tree Induction Methods Used. The tree induction
methods we use are C4.5 (Quinlan 1993) and CART
(Breiman et al. 1984). One main difference between
C4.5 and CART is the goodness criterion, the criterion
used to choose the best split at each node. C4.5 uses
the information gain 1 criterion, whereas CART uses
either the Gini index of diversity or the twoing rule. All
the experiments in this paper were repeated using in-
formation gain, Gini index and twoing rule. In no case
did the results show statistically significant differences
between goodness measures--the differences in accu-
racies, sizes and measurements of depth were always
much less than one standard deviation. For brevity,
we report only the results with information gain (i.e.,
C4.5) in the rest of this paper. We implemented all
the goodness measures using the OC1 system (Murthy,

1Quinlan suggested gain ratio as an improvement over
information gain. However the two measures are equivalent
in our experiments as all our decision trees are binary.
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Optimal Training Classification Prediction Tree Size Depth
Size Set Accuracy Accuracy Maximum Average Expected

8 1000 100.0 99.54-0.1 9.84-1.7 4.84-0.7 (3) 3.6=1=0.3 (3) 2.94-0.3 (3)
16 1000 100.0 98.74-0.3 20.74-3.3 7.24-1.0 (4) 5.0=t=0.4 (4) 3.94-0.4 (4)
32 1000 100.0 97.24-0.6 40.4-t-6.8 9.3=t=1.0 (5) 6.34-0.5 (5) 5.0+0.5 (5)
64 1000 100.0 94.34-0.9 71.74-10.3 11.54-1.2 (6) 7.4-t-0.5 (6) 5.84-0.5 (6)

Table 1: Effects of concept complexity. No noise in data. Numbers in parentheses are for the optimal trees.

Kasif, & Salzberg 1994). Although C4.5 and CART
differ in respects other than the goodness measures, we
have not implemented these differences. In the experi-
ments in which the training data is noise-free, no prun-
ing was used with either method. In the experiments
using noisy training sets, we augment both methods
with cost complexity pruning (Breiman et al. 1984),
reserving 10% of the training data for pruning.

Experiments
This section describes five experiments, each of which
is intended to measure the effectiveness of greedy in-
duction as a function of one or more control variables
described earlier. The procedure is more or less the
same for all experiments.

For each setting of the control variables:
generate 100 random trees with no class labels;
for each tree Dom generated in the above step:

color Dopt with class labels;
generate a large, noise-free testing set

for which Dom is optimal;
generate 50 training sets using Dopt;
for each training set T:

greedily induce a tree D on T;
record D and Dopt;

report the mean and std. dev. of the quality
measures for the 5000 trees.

The instances in the training and testing sets are
always generated uniformly randomly, and are labeled
using the optimal decision tree. The size of the testing
set is linearly dependent on the complexity of the op-
timal tree and the dimensionality of the data, whereas
the size of the training set is a control variable. More
precisely, [T[ = C * (D - 1) * 500, where [T[ is the size
of the testing set, C is the size of the optimal tree and
D is the number of attributes. For instance, for a size
16 concept in 4 dimensions, we use a testing set of size
16 ¯ (4 - 1) * 500 = 24,000. We ensure that no sub-
tree of the optimal decision tree is consistent with the
testing set.

In all the tables in this paper, each entry comprises
of the average value of a tree quality measure over 5000
trees and the standard deviation (one a). Numbers 
parentheses correspond to the optimal trees. The a’s
are omitted when they are zero. Optimal values are
omitted when their values are obvious. The optimal
trees always give 100% prediction accuracy in our ex-

periments, because the testing set has no noise. In
addition, they give 100% classification accuracy when
the training data is noise-free.

Experiment 1: The purpose of this experiment is
to evaluate the effectiveness of greedy induction as a
function of the size of the optimal tree. All training
sets comprise of 1000 random 2-D instances. There is
no noise in the training data. Table 1 summarizes the
results.
Observations: The prediction accuracy of greedily
induced trees decreases as the size of the optimal tree
for the data increases. This can be either be due to
the inadequacy of greedy search or due to inadequate
training data. (The training set size remained at 1000
though the concept complexity increased from 8 to 64.)
In Experiment 2, we increase the size of the training
set in proportion with the size of the optimal tree, in
order to better isolate the effects due to greedy search.

The difference between the sizes of greedily induced
and optimal trees increases with the size of the optimal
tree in Table 1. However, it can be seen on closer
observation that the variances, not just the differences
in size, are increasing. Greedily induced tree sizes are
just more than one a away from the optimal in 3 out of
4 rows, and less than one std. dev. away for concepts
of size 64.

The maximum depth measurements in Table 1 show
that greedily induced trees can have decision paths
which are about twice as long as those in the optimal
trees, even for moderately complex concepts. However,
the average depth measurements show that the deci-
sion paths in greedily induced trees only have about
one test more than those in the optimal trees. In terms
of the third depth measurement, the expected depth,
greedily induced trees are almost identical to the op-
timal ones, for all the concept sizes considered in this
experiment. This is a very desirable, although some-
what counterintuitive, trend which is seen consistently
throughout our experiments. (Note that no pruning
was used in this experiment.)

Experiment 2: The purpose of this experiment is to
isolate the effects of concept complexity, from those
of the training set size. The size of the training sets
now grows linearly with the concept complexity--25
training points on average are used per each leaf of the
optimal tree. There is no noise. Table 2 summarizes
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Optimal Training Classification Prediction Tree Size Depth
Size Set Accuracy Accuracy Maximum Average Expected
8 200 100.0 97.5+0.7 8.5±1.5 4.4=1=0.6 (3) 3.4+0.3 (3) 2.84-0.3 (3)

16 4OO 100.0 97.1±0.7 17.5±3.3 6.6±0.9 (4) 4.7±0.5 (4) 3.8±0.5 (4)
32 800 100.0 96.64-0.7 38.04-7.1 9.1±1.0 (5) 6.2±0.5 (5) 4.S±0.5 (5)
64 1600 100.0 96.4±0.6 76.3±12.3 11.6=t=1.2 (6) 7.5±0.6 (6) 5.8±0.6 (6)

Table 2: Effects of concept complexity and training set size. No noise. Numbers in parentheses are for the optimal
trees.

Class Classification Prediction Tree Size Depth
Noise Accuracy Accuracy Maximum Average I Expected
o% loo.o (loo.o) 93.9±1.4 31.14-6.2 8.2±0.9 5.6±0.4I 4.8±0.5
5% 92.1±1.3 (95.1±0.01) 89.5±2.4 21.9±5.1 7.0±0.8 4.9±0.5 4.4±0.4
lO% 87.7±1.3 (90.5-4-0.02) 88.2-1-2.6 22.24-5.1 7.0±0.8 4.9+0.4 4.4±0.4
15% 83.5+1.3 (86.1±0.05) 86.6±2.9 22.4±5.4 7.0+0.8 4.9-t-0.5 4.4±0.4
20% 79.7±1.4 (81.9±0.05) 84.9±3.1 22.7±5.2 7.1±0.8 4.9±0.5 4.4±0.4
25% 76.14-1.4 (77.8+0.03) 83.14-3.4 23.34-5.7 7.14-0.8 4.8±0.5 4.4±0.4

Table 3: Effects of noise in class labels. Numbers in parentheses are for the optimal trees. Optimal trees are of size
32.

the results.
Observations: It is interesting to note that the pre-
diction accuracy does not drop as much with increase
in optimal tree size here as it does in Experiment 1.
In fact, when the optimal trees grew 8 times as large
(from 8 to 64), the accuracy went down by just more
than one standard deviation. In addition, none of the
differences in tree size between greedily induced and
optimal trees in Table 2 are more than one a. This
is surprising, considering no pruning was used in this
experiment. In terms of the three depth measures, the
observations made in Experiment 1 hold here also.

Comparing the entries of Tables 1 and 2, line by line,
one can see the effect of the training set size on pre-
diction accuracy. When the training set size increases,
the prediction accuracy increases and its variance goes
down. In other words, the more (noise-free) training
data there is, the more accurately and reliably greedy
induction can learn the underlying concept.

Experiment 3: This experiment is intended to evalu-
ate the effectiveness of greedy induction in the presence
of noise in class labels. The training sets are all in 2-D,
and consist of 100 instances per class, uniformly ran-
domly distributed in each class, k% noise is added into
each training set by incrementing by 1 the class labels
of a random k% of the training points. All concepts
are of size 32, so all optimal tree depth values are equal
to 5.0. Pruning was used when noise level is greater
than 0%. Table 3 summarizes the results.
Observations: As is expected, the classification and
prediction accuracies decrease when the amount of
noise is increased. The tree size and and depth mea-
surements vary significantly when the first 5% of noise

is introduced (obviously because pruning is started),
and remain steady thereafter.

One needs to be careful in analyzing the results of
experiments 3 and 4, in order to separate out the ef-
fects of noise and the effect of the greedy search. What
we want to investigate is whether the greedy heuristic
becomes less and less effective as the noise levels in-
crease, or if it is robust. For instance, the fact that
the classification accuracy decreases linearly with in-
crease in noise in Table 3 is perhaps not as significant
as the fact that the prediction accuracy decreases more
slowly than classification accuracy. This is because the
former is an obvious effect of noise whereas the later
indicates that greedy induction might be compensating
for the noise.

Several patterns in Table 3 argue in favor of the effec-
tiveness of pruning, which has come to be an essential
part of greedy tree induction. Classification accuracies
of the greedy trees are close to, and less than, those
of the optimal trees for all the noise levels, so overfit-
ting is not a problem. Prediction accuracies of greedily
induced trees with pruning are better than their clas-
sification accuracies, again indicating that there is no
strong overfitting. Tree size and depth measurements
remained virtually unchanged in the presence of in-
creasing noise, certifying to the robustness of pruning.

Experiment 4: This experiment is similar to the
previous one, in that we measure the effectiveness of
greedy induction as a function of noise in the training
data. However, this time we consider noise in attribute
values. The training sets again comprise 100 2-D in-
stances per class, uniformly randomly distributed in
each class, k% noise is introduced into each training
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Attribute Classification Prediction Tree Size Depth
Noise Accuracy Accuracy Maximum [ Average Expected
0% lOO.O (loo.o) 93.94-1.4 31.14-6.2 8.24-0.9 5.64-0.4 4.84-0.5
5% 95.24-1.3 (08.04-0.4) 90.04-2.3 22.24-5.3 7.04-0.8 4.94-0.5 4.44-0.4
10% 93.5+1.4 (96.04-0.7) 88.74-2.6 22.65=5.5 7.0±0.8 4.94-0.5 4.44-0.4
15% 92.14-1.6 (94.14-1.0) 87.44-2.8 23.35=5.6 7.05=0.8 5.05=0.5 4.45=0.4
20% 90.7+1.8 (92.25=1.3) 86.24-3.1 23.74-5.6 7.04-0.8 4.94-0.5 4.45=0.4
25% 89.45=2.0 (9o.6+1.~)85.04-3.4 23.75=5.5 7.05=0.8 4.94-0.5 4.35=0.4

Table 4: Effects of noise in attribute values. Numbers in parentheses are for optimal trees. Optimal trees are of
size 32.

#Dim. Classification Prediction Tree Size Depth
Accuracy Accuracy Maximum I Average [ Expected.

2 I00.0 98.75=0.3 20.75=3.3 7.24-1.0 5.0+0.4 3.94-0.4
4 I00.0 98.34-0.7 23.95=6.0 6.65=0.9

I
5.04-0.5 4.05=0.4

8 100.0 98.05=0.8 24.54-6.5 6.34-0.9 4.94-0.5 4.15=0.2
12 100.0 97.94-0.9 25.45=6.8 6.34-0.9 4.94-0.5 4.15=0.2

Table 5: Effects of dimensionality. Training set size=1000. No noise. Optimal trees are of size 16.

set by choosing a random k% of the instances, and by
adding an e E [-0.1,0.1] to each attribute. All the
concepts are of size 32, so all the optimal depth mea-
surements are equal to 5.0. Cost complexity pruning
was used in cases where the noise level was greater than
0%. The results are summarized in Table 4.
Observations: There results with attribute noise (Ta-
ble 4) and noise in class labels (Table 3) are very simi-
lar, except for the classification accuracies. The values
for prediction accuracy, tree size and depth measure-
ments in the presence of k% noise are almost the same
whether the noise is in attribute values or class labels.
The classification and prediction accuracies decrease
with increasing noise. The tree size and depth mea-
surements decrease when the first 5% of the noise is
introduced (due to pruning) and remain steady there-
after.

However, introducing k% attribute noise is not
equivalent to introducing k% class noise. Changing
the attributes of an instance by a small amount affects
the classification of only those instances lying near the
borders of decision regions, whereas changing the class
labels affects the classification of all the instances in-
volved. This can be seen from the classification ac-
curacies of the optimal trees in Tables 3 and 4. The
classification accuracy of the greedy trees is quite close
to, and less than that of the optimal trees in both
tables. All the prediction accuracy values in Table 4,
unlike those in Table 3, are less than the corresponding
classification accuracies.

Experiment 5: Our final experiment attempts to
quantify the effect of dimensionality on the greedy
heuristic. All the training sets consist of 1090 uni-
formly randomly generated instances, wish no noise,

as in Experiment 1. No pruning was used. All con-
cepts are of size 16, so the optimal tree depths are 4.0.
Table 5 summarizes the results.
Observations: The changes in all tree quality mea-
sures are quite small when dimensionality is increased
from 2 to 12. This result is surprising because, intu-
itively, higher dimensional concepts should be much
more difficult to learn than lower dimensional ones,
when the amount of available training data does not
change. Our experiments indicate that the effects due
to dimensionality do not seem to be as pronounced
as the effects due to concept complexity (Table 1) 
noise. The quantity that does increase with increasing
dimensionality is the variance. Both prediction accu-
racy and tree size fluctuate significantly more in higher
dimensions than in the plane. This result suggests that
methods that help decrease variance, such as combin-
ing the classifications of multiple decision trees (see
(Murthy 1995) for a survey), may be useful in higher
dimensions.

Discussion and Conclusions
In this paper, we presented five experiments for evalu-
ating the effectiveness of the greedy heuristic for deci-
sion tree induction. In each experiment, we generated
thousands of random training sets, and compared the
decision trees induced by C4.5 and CART to the corre-
sponding optimal trees. The optimal trees were found
using a novel graph coloring idea.

We summarize the main observations from our ex-
periments below. Where relevant, we briefly mention
related work in the literature.

¯ The expected depth of greedily induced decision trees
was consistently very close to the optimal. Garey
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and Graham (1974) showed that a recursive greedy
splitting algorithm using information gain (not using
pruning) can be made to perform arbitrarily worse
than the optimal in terms of expected tree depth.
Goodman and Smyth (1988) argued, by establish-
ing the equivalence of decision tree induction and a
form of Shannon-Fano prefix coding, that the aver-
age depth of trees induced by greedy one-paas (i.e.,
no pruning) algorithms is nearly optimal.

¯ Cost complexity pruning (Breiman et 02. 1984) dealt
effectively with both attribute and class noise. How-
ever, the accuracies on the training set were overly
optimistic in the presence of attribute noise.

¯ Greedily induced trees became less accurate as the
concepts became harder, i.e., as the optimal tree size
increased. However, increasing the training data size
linearly with concept complexity helped keep the ac-
curacy stable.

¯ Greedily induced trees were not much larger than
the optimal, even for complex concepts. However,
the variance in tree size was more for higher dimen-
sion02 and more complex concepts. Dietterieh and
Kong (1995) empirically argued that even in terms
of prediction accuracy, variance is the main cause for
the failure of decision trees in some domains.

¯ For a f~ed training set size, increasing the dimen-
sion02ity did not affect greedy induction as much as
increasing concept complexity or noise did. Several
authors (e.g., (Fukanaga & Hayes 1989)) have 
gued that for a finite sized data with no a priori
probabilistie information, the ratio of training sam-
ple size to the dimensionality must be aa large aa
possible. Our results are consistent with these stud-
ies. However, with a reasonably large training set
(1000 instances), the drop in tree quality was quite
small in our experiments, even for a 6-fold (2 to 12)
inereaae in dimensionality.

¯ The goodness measures of CART and C4.5 were
identical in terms of the quality of trees they gen-
eratetL It has been observed earlier (e.g.,(Breiman
et 02. 1984; Mingers 1989)) that the differences be-
tween these goodness criteria are not pronounced.
Our observation that these measures consistently
produced identical trees, in terms of six tree qual-
ity measures, in a large scale experiment (involving
more than 130,000 s~rnthetic data sets) strengthens
the existing results. --

Many researchers have studied ways to improve upon
greedy induction, by using techniques such aa limited
lookahead search and more elaborate classifier repre-
sentations (e.g., decision graphs instead of trees). (See
(Murthy 1995) for a survey.) The results in the cur-
rent paper throw light on why it might be difficult to

2The fact that we only used binary splits in reabvalued
domains may be one reason why information gain, Gini
index and twoing rule behaved similarly.

improve upon the simple greedy algorithm for decision
tree induction.
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