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Abstract 

We explore the possibility of importing “black- 
box” models learned over data sources at remote 
sites to improve models learned over locally avail- 
able data sources. In this way, we may be able 
to learn more accurate knowledge from globally 
available data than would otherwise be possible 
from partial, locally available data. Proposed 
meta-learning strategies in our previous work are 
extended to integrate local and remote models. 
We also investigate the effect on accuracy perfor- 
mance when data overlap among different sites. 

Introduction 
Much of the research in inductive learning concen- 
trates on problems with relatively small amounts of 
data residing at one location. With the coming age of 
very large network computing, it is likely that orders 
of magnitude more data in databases at various sites 
will be available for various learning problems of real 
world importance. Frequently, local databases repre- 
sent only a partial view of all the data globally avail- 
able. For example, in detecting credit card fraud, a 
bank has information on its credit card transactions, 
from which it can learn fraud patterns. However, the 
patterns learned may not represent all of the fraud pat- 
terns found in transactions at other banks. That is, a 
bank might not know a fraud pattern that is prevalent 
at other banks. 

One approach to solving this problem is to merge 
transactions from all databases into one database and 
locate all the fraud patterns. It is not uncommon that 
a bank has millions of credit card transactions; pool- 
ing transactions from all banks will create a database 
of enormous size. Learning fraud patterns from mil- 
lions of transactions already poses significant efficiency 
problems; processing transactions gathered from all 
banks is likely infeasible. In addition, transactions 
at one bank are proprietary; sharing them with other 
banks means giving away valuable customer purchas- 
ing information. Exchanging transactions might also 
violate customers’ privacy. 
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Another solution is to share the fraud patterns in- 
stead of the transaction data. This approach benefits 
from a significant reduction of information needed to 
be merged and processed. Also, proprietary customer 
transaction information need not be shared. You might 
now ask that if the data are proprietary, the fraud pat- 
terns can also be proprietary. If the patterns are en- 
coded in programs, the executables can be treated as 
“black boxes.” That is, by sharing the black boxes, 
one doesn’t have to worry about giving away valuable 
and proprietary information. The next question is how 
we can merge the black boxes. 

We adopted the general approach of meta-learning 
(Chan & Stolfo 1993) and developed techniques for 
coalescing multiple learned models. During meta- 
learning, the learned models are treated as black boxes 
so that they can use any representation and can be gen- 
erated by any inductive learning algorithm. That is, 
our meta-learning techniques are representation- and 
algorithm-independent. In this paper we explore the 
use of meta-learning to improve the accuracy’perfor- 
mance of locally learned models by merging them with 
ones imported from remote sites. That is, at each site, 
learned models from other sites are also available. Fur- 
thermore, we investigate the effects on local accuracy 
when the local underlying training data overlap with 
those at remote sites. This situation arises in practice 
(eg. a person may be a customer at several banks, 
and/or commit the same credit card fraud at differ- 
ent banks). In this paper we overview the concept of 
meta-learning and its techniques, followed by a discus- 
sion on how meta-learning can improve local learning. 
We then empirically evaluate local meta-learning and 
the effect of data replication on performance. 

Meta-learning 
Given a number of classifiers and their predictions 
for a particular unlabeled instance, one may combine 
them by picking the prediction with the largest num- 
ber of votes. Our approach introduced in (Chan & 
Stolfo 1993) is to meta-learn a set of new classifiers 
(or meta-classifiers) whose training data are based on 
predictions of a set of underlying base classifiers. Re- 
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Figure 1: Local meta-learning at a site with three remote sites. 

sults from (Chan & Stolfo 1995) show that our meta- 
learning techniques are more effective than voting- 
based methods. 

Our techniques fall into two general categories: the 
arbiter and combiner schemes. We distinguish between 
base classifiers and arbiters/combiners as follows. A 
base classifier is the outcome of applying a learning 
algorithm directly to “raw” training data. The base 
classifier is a program that given a test datum provides 
a prediction of its unknown class. For purposes of this 
study, we ignore the representation used by the classi- 
fier (to preserve the algorithm-independent property). 
An arbiter or combiner, as described below, is a pro- 
gram generated by a learning algorithm that is trained 
on the predictions produced by a set of base classifiers 
and the raw training data. The arbiter/combiner is 
also a classifier, and hence other arbiters or combiners 
can be computed from the set of predictions of other 
arbiters/combiners. 

An arbiter is learned by some learning algorithm 
to arbitrate among predictions generated by different 
base classifiers. That is, its purpose is to provide an 
alternate and more educated prediction when the base 
classifiers present diverse predictions. This arbiter, to- 
gether with an arbitration rule, decides a final classifi- 
cation outcome based upon the base predictions. The 
arbiter is trained from examples that do not have a 
common prediction among the majority of the base 
classifiers. More details of this arbiter scheme are in 
(Chan & Stolfo 1995). 

The aim of the combiner strategy is to coalesce the 
predictions from the base classifiers by learning the re- 
lationship between these predictions and the correct 
prediction. For example, a base classifier might con- 
sistently make the correct predictions for class c; i.e., 
when this base classifier predicts class c, it is proba- 
bly correct regardless of the predictions made by the 
other base classifiers. In the combiner strategy the pre- 
dictions of the learned base classifiers on the training 
set form the basis of the meta-learner’s training set. A 
composition rule, which varies in different schemes, de- 
termines the content of training examples for the meta- 

l 

learner. The correct classification and predictions from 
the base classifiers constitute a training example in the 
class-combiner scheme. Attributes of the original ex- 
ample is added in the class-attr-combiner scheme. The 
details of these two schemes appear in (Chan & Stolfo 
1995). From these examples, the meta-learner gener- 
ates a meta-classifier, that we call a combiner. In clas- 
sifying an instance, the base classifiers first generate 
their predictions. Based on the same composition rule, 
a new instance is generated from the predictions, which 
is then classified by the combiner. We note that a com- 
biner computes a prediction that may be entirely dif- 
ferent from any proposed by a base classifier, whereas 
an arbiter chooses one of the predictions from the base 
classifiers and the arbiter itself. 

Local Meta-learning 
Our previous work (Chan & Stolfo 1995) assumes a 
certain degree of “raw” data sharing. As we discussed 
earlier, situations might arise when data sharing is not 
feasible, but sharing of “black-box” learned models is 
possible. In this scenario a local site can “import” clas- 
sifiers learned at remote sites and use them to improve 
local learning. The problem we face is how we can take 
advantage of the imported “black-box” classifiers. Our 
approach is to treat it as an integration problem and 
use meta-learning techniques to integrate the collective 
knowledge of the constituent classifiers. 

Since only the local data set, called T;, is available at 
site i, we are limited to that data set for meta-learning. 
A classifier, Ci, is trained from Ti locally and a set of 
classifiers, Cj where j # i, is imported from other sites 
j,j = l,.., n. Using Ti, each Cj then generates pre- 
dictions Pij and Ci produces Pii. Pij and Pii form 
the meta-level training set according to the strategies 
described earlier. That is, the local and remote clas- 
sifiers are treated as base classifiers in our previous 
work. Once the meta-level training set is created, the 
corresponding meta-classifier is learned by applying a 
local machine learning algorithm to this new training 
set. Figure 1 depicts the relationship among various 
classifiers and sites during local meta-learning. 
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However, the predictions Pii generated by the lo- 
cal classifier Ci on the local training set Ti will be 
more correct than the predictions, Pij, generated by 
the remote classifiers because Ci was trained from Ti. 
As a result, during meta-learning, the trained meta- 
classifier will be heavily biased towards the local clas- 
sifier (recall that the remote classifiers were not trained 
on the local data set Ti). For example, a local nearest- 
neighbor classifier can predict the local training set 
perfectly and the meta-learner will ignore all the re- 
mote classifiers. That is, we can’t use the remote clas- 
sifiers to improve local learning, which defeats the pur- 
pose of importing the remote classifiers. 

To resolve this situation, at the local site, we parti- 
tion Ti into two sets, T~I and Ti::2, from which classi- 
fiers Gil and Ci2 are trained. C’<l then predicts on Ti::z 
and Ciz on Ti1. The union of the two sets of predic- 
tions form the predictions for the local classifier (Pii). 
This method, called 2-fold cross validation partition- 
ing, tries to approximate the behavior of Ci on unseen 
data. The process of obtaining the predictions Pij from 
the remote classifiers remains unchanged. Now, during 
meta-learning, remote classifiers will not be automati- 
cally ignored since the local classifier is also judged on 
“unseen” data. The next section discusses our experi- 
mental evaluation of the local meta-learning approach. 

Experimental Results 
Four inductive learning algorithms were used in our ex- 
periments reported here: ID3 (Quinlan 1986), CART 
(Breiman ei al. 1984), BAYES (described in (Clark & 
Niblett 1989)), and CN2 (Clark & Niblett 1989). ID3 
and CART are decisions tree learning algorithms and 
were obtained from NASA Ames Research Center in 
the IND package (Buntine & Caruana 1991). BAYES 
is a simple Bayesian learning algorithm. CN2 is a rule 
learning algorithm and was obtained from Dr. Clark 
(Boswell 1990). 

Four data sets were used in our studies. The DNA 
splice junction (SJ) data set (courtesy of Towell, Shav- 
lik, and Noordewier (Towell, Shavlik, & Noordewier 
1990)) contains sequences of nucleotides and the type 
of splice junction, if any, at the center of each se- 
quence. Exon-i&on, intron-exon, and non-junction. 
are the three classes in this task. Each sequence has 
60 nucleotides with eight different values per nucleotide 
(four base ones plus four combinations). The data set. 
contains 3,190 training instances. The protein coding 
region (PCR) data set (courtesy of Craven and Shav- 
lik (Craven & Shavlik 1993)) contains DNA nucleotide 
sequences and their binary classifications (coding or 
non-coding). Each sequence has 15 nucleotides with 
four different values per nucleotide. The PCR data set 
has 20,000 sequences. The secondary protein struc- 
ture data set (SS) (Q ian & Sejnowski 1988), courtesy 
of Qian and Sejnowski, contains sequences of amino 
acids and the secondary structures at the correspond- 
ing positions. There are three structures (alpha-helix, 

beta-sheet, and coi[) and 20 amino acids (21 attributes, 
including a spacer (Qian & Sejnowski 1988)) in the 
data. The amino acid sequences were split into shorter 
sequences of length 13 according to a windowing tech- 
nique used in (Qian & Sejnowski 1988). The SS data 
set has 21,625 sequences. The artificial (ART) data 
set has 10,000 instances randomly generated from a 
disjunctive boolean expression that has 4 symbolic (26 
values) and 4 numeric (1,000 values) variables. A total 
of 4.6 x 1017 instances are possible. 

To simulate the multiple-site scenario, we divided 
the training set into equi-sized subsets (each subset 
representing a site) and varied the number of subsets 
(sites) from 2 to 64. We also ensured that each subset 
was disjoint but with proportional distribution of ex- 
amples of each class (i.e., the ratio of examples in each 
class in the whole data set is preserved). The arbiter, 
class-combiner, and class-attn’bute-combinerstrategies 
were evaluated. The prediction accuracy on a separate 
test set is our primary comparison measure. The dif- 
ferent strategies were run on the above four data sets, 
each with the above four learning algorithms and the 
results are plotted in Figure 2. Due to space limita- 
tions, only results from two data sets are shown; the 
rest appears in (Chan 1996). The plotted accuracy 
is the average accuracy of local meta-classifiers over 
lo-fold cross-validation runs. In each run, m sites gen- 
erate m local classifiers and m local meta-classifiers, 
after “exchanging” all local classifiers. In the following 
performance graphs, avg-base denotes the average ac- 
curacy of the local/base classifiers as our standard base 
line. Statistical significance was measured by using the 
one-sided t-test with a 90% confidence value. 

When compared to the base accuracy, at least one 
of the three local meta-learning strategies yields sig- 
nificantly higher accuracy in 13 out of the 16 cases 
(mostly at 4 or more subsets). Local meta-learning 
still has higher accuracy (not significantly) in 2 of the 
3 remaining cases. Larger improvement usually oc- 
curs when the size of the local data set is smaller (the 
number of subsets/sites are larger). In many cases the 
arbiter strategy improves accuracy more than the two 
combiner strategies. 

While many of the base classifiers drop in accuracy 
when the data set size gets smaller, some of the meta- 
learning strategies roughly maintain the same level of 
accuracy. One apparent example is the arbiter strategy 
using ID3 as the learner in the Coding Regions data 
set (top right graph in Figure 2). The arbiter strat- 
egy stays above 70% accuracy while the base accuracy 
drops to below 60%. The arbiter strategy maintains 
the accuracy in 8 out of 16 cases. For the Coding 
Regions data set, the arbiter strategy improves local 
learning by a wide margin using 3 of the 4 learners. 

The results obtained here are consistent with those 
from non-local meta-learning (Chan & Stolfo 1995), 
where raw data can be shared among sites. Meta- 
learning improves accuracy in a distributed environ- 
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ment and the arbiter strategy is more effective than 
the two combiner techniques. Next, we investigate the 
effects on accuracy of local meta-learning when differ- 
ent sites posses some degree of common data. 

Experimental Results on Data 
Replication 

As we discussed previously in the introduction, dif- 
ferent sites might have some overlapping data. To 
simulate this phenomenon, we allow some amount of 
replication in each partition of data. We prepare each 
learning task by generating subsets of training data 
for the local/base classifiers according to the following 
generative scheme: 

1. 

2. 

3. 

4. 

Starting with N disjoint subsets, randomly choose 
from any of these sets one example X, distinct from 
any other previously chosen in a prior iteration. 

Randomly choose a number T from l...(N - l), i.e. 
the number of times this example will be replicated. 

Randomly choose T subsets (not including the subset 
from which X was drawn) and assign X to those T 
subsets. 

Repeat this process until the size of the largest (repli- 
cated) subset is reached to some maximum (as a per- 
centage, A, of the original training subset size). 

In the experiments reported here, A ranged from 
0% to 40%, with 10% increments. Each set of incre- 
mental experimental runs, however, chooses an entirely 
new distribution of replicated values. No attempt was 
made to maintain a prior distribution of training data 
when incrementing the amount of replication. This 
“shot, gun” approach provides us with some sense of a 
“random learning problem” that we may be faced with 
in real world scenarios where replication of information 
is likely inevitable or purposefully orchestrated. 

The same experimental setup was used as in the 
prior experiments. Results for the replicated data sce- 
nario using the class-combiner and class-attr-combiner 
strategies are plotted in Figure 3. Due to space limi- 
tations, only 8 of the 32 cases are shown, the rest ap- 
pears in (Chan 1996). 7 out of 32 cases show significant 
accuracy improvement when the degree of replication 
increases; 6 of these 7 cases occur in the Coding Re- 
gions data set. 20 out of 32 cases show no significant 
accuracy changes across all subset sizes and degrees of 
replication. The remaining 5 cases have some signifi- 
cant accuracy improvement at certain subset sizes. 

In summary, the majority does not show significant 
accuracy improvement when the degree of replication 
increases. This is contrary to one’s intuition since one 
would expect the accuracy to increase when the lo- 
cal sites have a higher percentage of all the available 
data combined. That could imply that local meta- 
learning is quite effective in integrating models from 
remote sites without the help of replicated data. Our 

findings here are consistent with those from non-local 
meta-learning (Chan & Stolfo 1996). 

Concluding Remarks 
We have presented techniques for improving local 
learning by integrating remote classifiers through local 
meta-learning. Our experimental results suggest local 
meta-learning techniques, especially the arbiter strat- 
egy, can significantly raise the accuracy of the local 
classifiers. Furthermore, results from our data repli- 
cation experiments suggest local meta-learning can in- 
tegrate local and remote classifiers effectively without 
having a larger share of global data at a local site. 

We are currently investigating a simplification pro- 
cess for reducing the complexity of the final meta- 
learned structures. Some classifiers could be strongly 
correlated and pruning some of them might not sig- 
nificantly change the performance of the entire struc- 
ture. Finally, the meta-learning techniques reported in 
this paper form the basis of a system under develop- 
ment recently granted support by ARPA to learn fraud 
patterns in network-based financial information sys- 
tems. The use of locally computed meta-classifiers over 
inherently distributed datasets of fraudulent transac- 
tions will provide an early-warning capability protect- 
ing against intruders and information warfare. 
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