
Local Induction of Decision Trees: Towards Interactive Data Mining “” 

Truxton Fulton* 
Simon KasiP 

Steven Salzberg* 
David Waltzt 

Abstract 

Decision trees are an important data mining tool with 
many applications. Like many classification tech- 
niques, decision trees process the entire data base in 
order to produce a generalization of the data that can 
be used subsequently for classification. Large, com- 
plex data bases are not always amenable to such a 
global approach to generalization. This paper explores 
several methods for extracting data that is local to a 
query point, and then using the local data to build 
generalizations. These adaptively constructed neigh- 
borhoods can provide additional information about 
the query point. Three new algorithms are presented, 
and experiments using these algorithms are described. 

Introduction 
For any large, complex body of data, there is often 
a need to compute summaries and extract generaliza- 
tions that characterize the data. Data mining research 
focuses on processing large databases and computing 
summaries, detecting patterns, and performing auto- 
matic classification on new data. For example, modern 
medical databases contain enormous quantities of pa- 
tient data, which can provide great value in the treat- 
ment of future patients. In order to gain the maximum 
value from such databases, data mining tools are es- 
sential. One popular and successful data mining tech- 
nique is the decision tree classifier (BFOS84; Qui93; 
MKS94) which can be used to classify new examples 
as well as providing a relatively concise description of 
the database. 

In this paper we describe a notion of interactive data 
mining where we wait for the user to provide a “query” 
that specifies a neighborhood to be mined. The query 
is in the form of a specific example from the space of 
instances in the database. We then produce informa- 
tion that may contain the classification of the point, 
the confidence in this classification, a summary or a 
visual display of the local neighborhood around the 
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point, a comparison of this neighborhood with others, 
or additional local information. 

Our approach is also intended to address a statis- 
tical problem that is well known in the decision tree 
research community as data fragmentation. This oc- 
curs even in very large databases as the tree induction 
algorithm recursively splits the data into smaller and 
smaller subsets. Thus at many leaves of a decision tree, 
very little data is available to make classification de- 
cisions. However, given a specific query point, if one 
can retrieve all the locally relevant instances in the 
database, then one should be able to build a better 
classifier. 

This paper describes a local approach to building 
decision trees: first collecting data in the vicinity of a 
query example, and then building the tree on the fly. 
The intuition is simply this: when presented with a 
new example for classification, retrieve a set of relevant 
examples from the database, and then build a decision 
tree from those examples. This approach has the po- 
tential to circumvent the data fragmentation problem, 
if the decision is made using sufficient relevant (local) 
information. 

The idea of building local decision trees is similar 
in spirit to the standard k-nearest neighbor algorithm. 
Both ideas face an important implementation question, 
though, which is: how does one decide the appropriate 
local neighborhood? This problem is addressed in the 
algorithms described below, each of which approaches 
it differently. This paper also explores some more so- 
phisticated methods of choosing a neighborhood. For 
some databases and some domains, the importance of 
certain features varies from one part of the space to 
another. For example, the feature “blood pressure” 
might be of great importance in one part of a medi- 
cal database, while genetic factors might be most im- 
portant elsewhere. To capture this notion more for- 
mally, we have devised an algorithm that defines an 
adaptive neighborhood based upon local characteris- 
tics of the data. This extends the usual notion of dis- 
tance and makes it both domain-dependent and query- 
dependent, 

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



Notation 
In this section we give several definitions that are nec- 
essary in the algorithm descriptions. For length con- 
sideration we will omit formal notation. Let X be a set 
of instances called the instance space. To simplify the 
presentation we assume that X is the set of points in 
a multi-dimensional unit square [0, lld. We are given a 
very large set of instances D (a subset of X), which is 
the database of objects. (In machine learning D is of- 
ten referred to as the training set.) With each instance 
in 13 we associate a class label. A typical statistical 
classification problem is to classify new instances in X 
that are not contained in D. 

Decision trees have been established to be a very use- 
ful tool in classification and data mining, where they 
are used to summarize the database D and produce 
classification of new examples. Geometrically, a deci- 
sion tree corresponds to a recursive partitioning of the 
instance space into mutually disjoint regions. Each re- 
gion is represented by a leaf node in the tree, and asso- 
ciated with a particular value (Ci) giving the class label 
of all instances contained in the region. It is important 
to note that geometrically each leaf label corresponds 
to a hyperrectangle in X. For simplicity we refer to 
hyperrectangles as rectangles. We define a monochro- 
matic rectangle to be a rectangle that contains only 
points labelled by the same class label. 

Local Induction Algorithms and 
Memory-Based Reasoning 

Local induction algorithms are based on a simple 
idea. Instead of building a complex statistical model 
that describes the entire space, we construct a sim- 
pler model that describes the space in a particular 
neighborhood. Local learning is a special case of 
memory-based reasoning (MBR). Applications of MBR 
include classification of news articles (MLW92), cen- 
sus data (CMSW92), software agents (MK93), com- 
putational biology (YL93; CS93), robotics (AMS95; 
Atk89; MASSS), computer vision (Ede94), and many 
other pattern recognition and machine learning appli- 
cations. Recent work in statistics addresses the issue 
of adaptive neighborhood to a given query to improve 
K-nearest neighbour algorithms (HT94; Fri94). See 
also the very relevant theoretical framework for local 
learning described in (BV92; VB93). 

There are three key steps in local learning and MBR 
algorithms: 1) Given an instance, retrieve a set of 
instances in the training set that are relevant to the 
query; 2) Build a model (e.g, classifier or function ap- 
proximator) using only retrieved points; 3) Use the 
model to process the query point (classify it or ap- 
proximate a function value). 

In interactive data mining applications the notion 
of local learning should be extended to provide both 
visual and statistical query dependent information. 
Thus, in a particular local neighborhood two features 

may be sufficient to produce a good classification, 
whereas the entire domain may need a very complex 
classifier. In many cases the user may care more about 
query specific accuracy than about an estimate of the 
accuracy of a global classifier (see below). 

Choosing the appropriate local neighborhood 
around a query point is a difficult task, especially in 
high dimensional spaces. In this paper we report three 
new approaches that are primarily designed to comple- 
ment standard decision tree algorithms in interactive 
data mining applications. These methods should be 
most useful when the database is large and when the 
user is interested in exploring only a small neighbor- 
hood around a query point. 

Choosing a local neighborhood via nearest 
neighbors 
The simplest approach to local learning with decision 
trees is simply extracting the k nearest neighbors and 
constructing a decision tree on these instances. If the 
neighborhood size is 1, then the decision tree algo- 
rithm is equivalent to the l-nearest neighbor (l-NN) 
algorithm. If the neighborhood size is N (the full size 
of the training set), then the algorithm is equivalent 
to conventional full induction. Nuances in the train- 
ing set can greatly affect the histogram of accuracy 
over different values of k between 1 and N. In stan- 
dard nearest neighbor algorithms the optimal value of 
Ii is determined by a specially reserved training set 
and cross validation techniques. However, it is clear 
that the best neighborhood size may vary from one 
query point to another. To make the algorithm more 
robust, we use a voting scheme as follows. For a given 
query point, a sequence of k trees is induced using the 
1,2,..., k nearest points. These trees then vote on the 
class of the query point. This is what we call the “lo- 
cal induction voting” (LIV) algorithm. In practice this 
seems to work well, as shown in the experiments be- 
low. The voting method can be implemented in many 
different ways; in these first experiments we use an ad- 
hoc method. We weigh the vote of each tree by the 
number of same-class examples in the leaf that is used 
to classify the example. 

Choosing a local neighborhood via layers 
of composite rectangles 
For the sake of gaining intuition for the algorithm de- 
scribed in this section, assume the target partitioning 
of the space is actually a decision tree T. Given any 
query point II: it will be contained in some leaf node of 
T, which is a monochromatic rectangle R. This implies 
that every other point y in R forms a monochromatic 
rectangle with z and y at its corners. In other words, 
all the points in the database D that are contained in 
the rectangle defined by t and y have the same class 
label. Next, if we remove all points in R from the 
database D, we can now form monochromatic rectan- 
gles with points that are in regions adjacent to R that 
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Figure 1: A 2D local decision tree with the local neigh- 
borhood defined by two layers of homogeneous rectan- 
gles. Only points in the layer one and layer two rect- 
angles are shown, and the local tree is superimposed. 

For each query point x 
For each point yi in the database 

Check if x and yi form a monochomatic rectan- 
gle 

If yes, include yi in the first layer. 
Remove all points in the first layer. 
Repeat procedure and construct the second layer. 
The neigborhood of x is the set of points in both 

layers. 
Construct a decision tree on these points. 

Figure 2: The multi-layer local decision tree algorithm 

are important to the classification of z. We refer to 
all points in the database that form a monochromatic 
rectangle with a given query point x as layer one. 
These points are a superset of points in R. Once we 
remove all points in layer one we can refer to all remain- 
ing points that form monochromatic rectangles with a 
query point as layer two, and so forth. Our algorithm 
defines the adaptive neighborhood of a query point x 
as all points in layer one and layer two. The algorithm 
is given in Figure 2. A two-dimensional example that 
illustrates this idea geometrically is given in Figure 1. 

The algorithm as described in Figure 2 has run- 
ning time O(N2), where N is the size of the database. 
However, it turns out that we can utilize computa- 
tional geometry techniques to reduce the running time 
to O( N logd-1 N) obtaining a practical improvement 
when the dimensionality is small. We provide a very 
rough sketch of the algorithm for two dimensions be- 

low. See (FKSW96) f or a complete description. Given 
a point x we compute the set of monochromatic rect- 
angles that are defined by x and another point in the 
database. Recall these are the points that we include 
in the local neighborhood of 2. We first sort the points 
into four quadrants with the query point x defining the 
origin. We compute the set of monochromatic rectan- 
gles separately in each quadrant. Note that the number 
of non-empty quadrants is bounded by N irrespective 
of dimensionality. We now determine for each point in 
the database if it dominates a point of a different class 
and therefore should be excluded from consideration. 
(A point (xi, xz) dominates another point (yi, yz) if 
1xil > Jyi 1 ). We call this type of dominance monochro- 
matic dominance that extends the standard notion of 
dominance (PS85). We randomly choose a dimension 
and project all points on this dimension. We then com- 
pute a median on the projected points; the median de- 
fines a separator (e.g, vertical line). We recursively 
solve monocromatic dominance separately for points 
larger than the median and smaller than the median. 
We then project all points on the line defined by the 
median. Finally, by climbing up the line we check for 
monochromatic dominance of points on the left of the 
median and the points to the right of the median. The 
algorithm runs in time O(N log N). 

Choosing a local neighborhood via an 
adaptive boundary 
Our third algorithm was inspired by a method of Hastie 
and Tibshirani (HT94), who defined a technique for 
creating an ellipsoidal neighborhood around a query. 
We have implemented an iterative search for a rectan- 
gular neighborhood around a query. Using the obvious 
greedy algorithm, one would start with a hyperrect- 
angle around the query point and expand outwards 
until the enclosed region violated some constraint. A 
reasonable constraint to place on the neighborhood is 
that it must remain linearly separable; i.e., the exam- 
ples contained in the rectangle can be classified using 
a single hyperplane. Once the expansion reaches an 
obstacle (i.e., a point whose inclusion will violate the 
constraint), it must limit growth in some dimension. 
When exploring all possibilities, an obstacle point will 
create a branch in a search tree. This algorithm is 
sketched in Figure 3. The size of such a search tree 
is exponential in the number of dimensions of the fea- 
ture space, and therefore we experimented with several 
greedy approximation algorithms (see (FKSW96)). 

Experiments 
In this section we focus on the performance of the local 
induction voting algorithm used for several scientific 
domains: breast cancer diagnosis, star/galaxy classifi- 
cation, and identification of coding regions in DNA. We 
also performed experiments with the other algorithms 
using artificial datasets. The “dim” astronomy dataset 
contains 4192 examples in 14 dimensions with 2 classes 
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For a given query point 
The initial neighborhood is the query point itself. 
Find a local neighborhood using neighbor- 

hoodsearch(). 
Induce a decision tree T upon the local neigh- 

borhod. 
Classify query point with T. 

Neighborhoodsearch() 
Expand neighborhood in unblocked dimensions un- 

til an obstacle point is reached. 
For each dimensional branch caused by the obstacle 

point : 
Recursively call neighborhoodsearch(). 

Return the highest scoring neighborhood from 
among the branches. 

Figure 3: The adaptive boundary local induction algo- 
rithm 

(stars and galaxies) that occur with approximately 
equal frequency. The human DNA dataset contains 
approximately 40,000 examples in 6 dimensions with 2 
classes (coding and noncoding) which occur with un- 
equal frequency. Each example represents a piece of 
human DNA that is 162 bases long and comes either 
from an exon (a coding region, the part of DNA that is 
used in genes to produce proteins) or from an intron (a 
noncoding region). Noncoding DNA is about six times 
more common than coding DNA in this data set (and 
is at least that common in the human genome), but 
for the sake of these experiments, two different train- 
ing sets of size 300 and 5024 were constructed, each 
containing equal numbers of coding and noncoding re- 
gions. The results from the LIV algorithm on these 
datasets appear in Table 1. The accuracy reported for 
the DNA data set is the unweighted average of the 
two class accuracies; because of the much higher fre- 
quency of noncoding DNA, we did not want to swamp 
the estimate of accuracy on coding DNA in this aver- 
age. 

In these experiments, the decision tree induction al- 
gorithm is implemented using standard axis-parallel 
splits and information gain as the goodness criterion. 
This algorithm is thus very similar to Quinlan’s C4.5 
(Qui93). The decision trees are pruned using standard 
cost-complexity pruning (BFOS84) with a portion of 
the training set set aside as a pruning set. The pur- 
pose of these experiments is to determine whether local 
induction voting is an improvement over full induction. 

The graphs presented in Figure 4 show overall accu- 
racy as a function of the parameter K. Ir’ is the size in 
training points of the largest local window around the 
query point. At each point on the abscissa, all window 
sizes l,..., Ir’ contribute their vote to the classification 

1 num 1 num 1 FI 1 LIV 1 

Table 1: Comparison of full induction to local induc- 
tion voting. 20% of the training sets was reserved for 
pruning. The column labelled FI shows accuracy for 
full induction. The column labelled LIV shows accu- 
racy for the local induction voting algorithm. 

of the query point. In general, accuracy increases and 
plateaus as Ii is increased. Accuracy of the decision 
tree induced upon the full training set is shown as a 
horizontal rule across each graph. The accuracy of the 
local induction voting method typically surpasses the 
accuracy of full induction at a relatively small value of 
K. 

For both of the databases, we experimented with two 
sizes of training set. The intent of using differently 
sized training sets was to determine whether local in- 
duction was better suited for sparse training sets or for 
larger training sets. 

We used artificial data sets to perform detailed ex- 
periments with the multi-layer algorithm and the adap- 
tive neighborhood algorithm. The datasets were gen- 
erated by creating a random decision tree with approx- 
imately 200 nodes in two, four and eight dimensions. 
We randomly generated 400, 800, and 1600 instances. 
Each instance was classified using the “true” decision 
tree. We then used a standard decision tree algorithm, 
k-NN and the two new methods to classify the same 
data. Our multi-layer algorithm in two dimensions ex- 
hibited similar performance to the standard decision 
tree algorithm and outperformed k-NN. In four dimen- 
sions with 800 points, we obtained better results with 
the multi-layer algorithm. With 1600 points the re- 
sults were similar for all methods. We found that the 
our adaptive neighborhood algorithm is computation- 
ally expensive and needs more tuning before it can be 
used effectively on large datasets. 

Local Error Analysis 
Another useful data mining tool provided by decision 
trees (local or global) is error analysis. Figure 5 is a 
histogram of the numbers of query points close to the 
decision tree boundaries for the standard algorithm on 
the star/galaxy data set. For any query, we can com- 
pute its bin in the histogram and report our confidence 
in the prediction basen on the query’s distance to the 
boundary. 

Note that the figure also reveals a difference in the 
distances of correct and incorrect points to a boundary: 

Combining Data Mining ST Machine Learning 17 



85% 

77% 

78% 

2 
L.! 
a 

76% 

0 
z 
s 74% 

The hum-l 62 dataset 0 
with 5024 training points 8 

E 5 72% 
The hum-162 dataset 
with 300 training points 

1 . . . o v ]!;I 
full mductron achieves 78.2 /o accurac 

i 
10 20 30 40 50 60 70 80 90 100 

maximum value of K used in voting 

a 
I 

10 20 30 40 50 60 70 80 90 100 
maximum value of K used in voting 

93% , I 

i 
92% 

I t full induction achieves 93.8 % accuracy 90% - full induction achieves 89.7 % accuracy 

The star/galaxy dataset 
with 300 training points 

The star/galaxy dataset 
with 2500 training points 

91% 1 

10 20 30 40 50 60 70 80 90 100 
maximum value of K used in voting 

86% ’ ’ I 
10 20 30 40 50 60 70 80 90 100 

maximum value of K used in voting 

Figure 4: Accuracy of the local induction voting algorithm compared against full induction for the Hum-162 and 
star/galaxy datasets. 
small training sets. 

The graphs on the left show the performance for large training sets, and on the right for 

250 I 70 

60 

k2 .c 50 
EL 
P 40 
s 
‘s 5 30 

5 20 

10 

0 
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

distance to boundary for incorrect classifications 

0; 
0 0.02 0.04 0.06 0.0s 0.1 0.12 0.14 0.16 0.1s 0.2 

distance to boundary for correct classifications 

Figure 5: Frequency of distances of query points to the closest decision tree boundary for the star/galaxy dataset. 
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incorrectly classified points are likely to be much closer 
than average to a boundary. 

Conclusions 

In this paper we described three new algorithms for 
local induction decision trees and reported on some 
initial experimental data using these techniques. The 
first algorithm, local induction voting, is the simplest 
and so far the best in our experiments. The multi- 
layer composite neighborhood algorithm is more com- 
plex, especially in the efficient O(N logd-’ N) version. 
Its main design goal is to battle data fragmentation 
and to provide an intuitive feel for the distribution 
of points in the local region of the query point. For 
each query point we enumerate all of the monochro- 
matic rectangles that include it. The distribution of 
these rectangles can be helpful for constructing new 
confidence measures to use with classifiers. The third 
method, which created axis-parallel adaptive neighbor- 
hoods, has so far shown inferior experimental perfor- 
mance (which is therefore not reported here) and needs 
further refinement. However, it has an interesting po- 
tential for applications where the concept boundaries 
are locally axis-parallel. 

The main drawback of the algorithms reported here 
is the time to perform a single classification. The run- 
ning time of local induction voting per query is similar 
in practice to standard k-NN algorithms and is dom- 
inated by the size of the training set. However, in 
many situations (e.g., medical diagnosis), accuracy is 
of utmost importance, and it is worth the extra com- 
putation to identify the most accurate method. 

In high dimensional spaces, using monochromatic 
rectangles is problematic because most example points 
do form a monochromatic rectangle with the query 
point in this case. In this situation, one could use 
a stricter definition of monochromatic dominance, or 
one could restrict the rectangle to a limited number 
of dimensions, possibly based on attributes used by a 
fully-induced decision tree to classify the query point. 

The experiments we performed indicate that local in- 
duction voting does outperform full induction in terms 
of accuracy. The similarity of the graphs of accuracy 
vs. Ii in experiments with very different databases in- 
dicates that local induction voting is likely to behave 
similarly for other databases. This makes local induc- 
tion voting a potentially good candidate for improving 
classification tools in general. 
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