
Local Induction of Decision Trees: Towards Interactive Data Mining “”

Truxton Fulton*
Simon KasiP

Steven Salzberg*
David Waltzt

Abstract

Decision trees are an important data mining tool with
many applications. Like many classification tech-
niques, decision trees process the entire data base in
order to produce a generalization of the data that can
be used subsequently for classification. Large, com-
plex data bases are not always amenable to such a
global approach to generalization. This paper explores
several methods for extracting data that is local to a
query point, and then using the local data to build
generalizations. These adaptively constructed neigh-
borhoods can provide additional information about
the query point. Three new algorithms are presented,
and experiments using these algorithms are described.

Introduction
For any large, complex body of data, there is often
a need to compute summaries and extract generaliza-
tions that characterize the data. Data mining research
focuses on processing large databases and computing
summaries, detecting patterns, and performing auto-
matic classification on new data. For example, modern
medical databases contain enormous quantities of pa-
tient data, which can provide great value in the treat-
ment of future patients. In order to gain the maximum
value from such databases, data mining tools are es-
sential. One popular and successful data mining tech-
nique is the decision tree classifier (BFOS84; Qui93;
MKS94) which can be used to classify new examples
as well as providing a relatively concise description of
the database.

In this paper we describe a notion of interactive data
mining where we wait for the user to provide a “query”
that specifies a neighborhood to be mined. The query
is in the form of a specific example from the space of
instances in the database. We then produce informa-
tion that may contain the classification of the point,
the confidence in this classification, a summary or a
visual display of the local neighborhood around the

*Computer Science Department, Johns Hopkins Univer-
sity, Baltimore, MD 21218. Email: !astncame@cs.jhu.edu

tNEC Research Institute, Princeton, NJ 08540. Email:
waltz@research.nj.nec.com

14 KDD-96

point, a comparison of this neighborhood with others,
or additional local information.

Our approach is also intended to address a statis-
tical problem that is well known in the decision tree
research community as data fragmentation. This oc-
curs even in very large databases as the tree induction
algorithm recursively splits the data into smaller and
smaller subsets. Thus at many leaves of a decision tree,
very little data is available to make classification de-
cisions. However, given a specific query point, if one
can retrieve all the locally relevant instances in the
database, then one should be able to build a better
classifier.

This paper describes a local approach to building
decision trees: first collecting data in the vicinity of a
query example, and then building the tree on the fly.
The intuition is simply this: when presented with a
new example for classification, retrieve a set of relevant
examples from the database, and then build a decision
tree from those examples. This approach has the po-
tential to circumvent the data fragmentation problem,
if the decision is made using sufficient relevant (local)
information.

The idea of building local decision trees is similar
in spirit to the standard k-nearest neighbor algorithm.
Both ideas face an important implementation question,
though, which is: how does one decide the appropriate
local neighborhood? This problem is addressed in the
algorithms described below, each of which approaches
it differently. This paper also explores some more so-
phisticated methods of choosing a neighborhood. For
some databases and some domains, the importance of
certain features varies from one part of the space to
another. For example, the feature “blood pressure”
might be of great importance in one part of a medi-
cal database, while genetic factors might be most im-
portant elsewhere. To capture this notion more for-
mally, we have devised an algorithm that defines an
adaptive neighborhood based upon local characteris-
tics of the data. This extends the usual notion of dis-
tance and makes it both domain-dependent and query-
dependent,

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Notation
In this section we give several definitions that are nec-
essary in the algorithm descriptions. For length con-
sideration we will omit formal notation. Let X be a set
of instances called the instance space. To simplify the
presentation we assume that X is the set of points in
a multi-dimensional unit square [0, lld. We are given a
very large set of instances D (a subset of X), which is
the database of objects. (In machine learning D is of-
ten referred to as the training set.) With each instance
in 13 we associate a class label. A typical statistical
classification problem is to classify new instances in X
that are not contained in D.

Decision trees have been established to be a very use-
ful tool in classification and data mining, where they
are used to summarize the database D and produce
classification of new examples. Geometrically, a deci-
sion tree corresponds to a recursive partitioning of the
instance space into mutually disjoint regions. Each re-
gion is represented by a leaf node in the tree, and asso-
ciated with a particular value (Ci) giving the class label
of all instances contained in the region. It is important
to note that geometrically each leaf label corresponds
to a hyperrectangle in X. For simplicity we refer to
hyperrectangles as rectangles. We define a monochro-
matic rectangle to be a rectangle that contains only
points labelled by the same class label.

Local Induction Algorithms and
Memory-Based Reasoning

Local induction algorithms are based on a simple
idea. Instead of building a complex statistical model
that describes the entire space, we construct a sim-
pler model that describes the space in a particular
neighborhood. Local learning is a special case of
memory-based reasoning (MBR). Applications of MBR
include classification of news articles (MLW92), cen-
sus data (CMSW92), software agents (MK93), com-
putational biology (YL93; CS93), robotics (AMS95;
Atk89; MASSS), computer vision (Ede94), and many
other pattern recognition and machine learning appli-
cations. Recent work in statistics addresses the issue
of adaptive neighborhood to a given query to improve
K-nearest neighbour algorithms (HT94; Fri94). See
also the very relevant theoretical framework for local
learning described in (BV92; VB93).

There are three key steps in local learning and MBR
algorithms: 1) Given an instance, retrieve a set of
instances in the training set that are relevant to the
query; 2) Build a model (e.g, classifier or function ap-
proximator) using only retrieved points; 3) Use the
model to process the query point (classify it or ap-
proximate a function value).

In interactive data mining applications the notion
of local learning should be extended to provide both
visual and statistical query dependent information.
Thus, in a particular local neighborhood two features

may be sufficient to produce a good classification,
whereas the entire domain may need a very complex
classifier. In many cases the user may care more about
query specific accuracy than about an estimate of the
accuracy of a global classifier (see below).

Choosing the appropriate local neighborhood
around a query point is a difficult task, especially in
high dimensional spaces. In this paper we report three
new approaches that are primarily designed to comple-
ment standard decision tree algorithms in interactive
data mining applications. These methods should be
most useful when the database is large and when the
user is interested in exploring only a small neighbor-
hood around a query point.

Choosing a local neighborhood via nearest
neighbors
The simplest approach to local learning with decision
trees is simply extracting the k nearest neighbors and
constructing a decision tree on these instances. If the
neighborhood size is 1, then the decision tree algo-
rithm is equivalent to the l-nearest neighbor (l-NN)
algorithm. If the neighborhood size is N (the full size
of the training set), then the algorithm is equivalent
to conventional full induction. Nuances in the train-
ing set can greatly affect the histogram of accuracy
over different values of k between 1 and N. In stan-
dard nearest neighbor algorithms the optimal value of
Ii is determined by a specially reserved training set
and cross validation techniques. However, it is clear
that the best neighborhood size may vary from one
query point to another. To make the algorithm more
robust, we use a voting scheme as follows. For a given
query point, a sequence of k trees is induced using the
1,2,..., k nearest points. These trees then vote on the
class of the query point. This is what we call the “lo-
cal induction voting” (LIV) algorithm. In practice this
seems to work well, as shown in the experiments be-
low. The voting method can be implemented in many
different ways; in these first experiments we use an ad-
hoc method. We weigh the vote of each tree by the
number of same-class examples in the leaf that is used
to classify the example.

Choosing a local neighborhood via layers
of composite rectangles
For the sake of gaining intuition for the algorithm de-
scribed in this section, assume the target partitioning
of the space is actually a decision tree T. Given any
query point II: it will be contained in some leaf node of
T, which is a monochromatic rectangle R. This implies
that every other point y in R forms a monochromatic
rectangle with z and y at its corners. In other words,
all the points in the database D that are contained in
the rectangle defined by t and y have the same class
label. Next, if we remove all points in R from the
database D, we can now form monochromatic rectan-
gles with points that are in regions adjacent to R that

Combining Data Mining Q Machine Learning 15

Figure 1: A 2D local decision tree with the local neigh-
borhood defined by two layers of homogeneous rectan-
gles. Only points in the layer one and layer two rect-
angles are shown, and the local tree is superimposed.

For each query point x
For each point yi in the database

Check if x and yi form a monochomatic rectan-
gle

If yes, include yi in the first layer.
Remove all points in the first layer.
Repeat procedure and construct the second layer.
The neigborhood of x is the set of points in both

layers.
Construct a decision tree on these points.

Figure 2: The multi-layer local decision tree algorithm

are important to the classification of z. We refer to
all points in the database that form a monochromatic
rectangle with a given query point x as layer one.
These points are a superset of points in R. Once we
remove all points in layer one we can refer to all remain-
ing points that form monochromatic rectangles with a
query point as layer two, and so forth. Our algorithm
defines the adaptive neighborhood of a query point x
as all points in layer one and layer two. The algorithm
is given in Figure 2. A two-dimensional example that
illustrates this idea geometrically is given in Figure 1.

The algorithm as described in Figure 2 has run-
ning time O(N2), where N is the size of the database.
However, it turns out that we can utilize computa-
tional geometry techniques to reduce the running time
to O(N logd-1 N) obtaining a practical improvement
when the dimensionality is small. We provide a very
rough sketch of the algorithm for two dimensions be-

low. See (FKSW96) f or a complete description. Given
a point x we compute the set of monochromatic rect-
angles that are defined by x and another point in the
database. Recall these are the points that we include
in the local neighborhood of 2. We first sort the points
into four quadrants with the query point x defining the
origin. We compute the set of monochromatic rectan-
gles separately in each quadrant. Note that the number
of non-empty quadrants is bounded by N irrespective
of dimensionality. We now determine for each point in
the database if it dominates a point of a different class
and therefore should be excluded from consideration.
(A point (xi, xz) dominates another point (yi, yz) if
1xil > Jyi 1). We call this type of dominance monochro-
matic dominance that extends the standard notion of
dominance (PS85). We randomly choose a dimension
and project all points on this dimension. We then com-
pute a median on the projected points; the median de-
fines a separator (e.g, vertical line). We recursively
solve monocromatic dominance separately for points
larger than the median and smaller than the median.
We then project all points on the line defined by the
median. Finally, by climbing up the line we check for
monochromatic dominance of points on the left of the
median and the points to the right of the median. The
algorithm runs in time O(N log N).

Choosing a local neighborhood via an
adaptive boundary
Our third algorithm was inspired by a method of Hastie
and Tibshirani (HT94), who defined a technique for
creating an ellipsoidal neighborhood around a query.
We have implemented an iterative search for a rectan-
gular neighborhood around a query. Using the obvious
greedy algorithm, one would start with a hyperrect-
angle around the query point and expand outwards
until the enclosed region violated some constraint. A
reasonable constraint to place on the neighborhood is
that it must remain linearly separable; i.e., the exam-
ples contained in the rectangle can be classified using
a single hyperplane. Once the expansion reaches an
obstacle (i.e., a point whose inclusion will violate the
constraint), it must limit growth in some dimension.
When exploring all possibilities, an obstacle point will
create a branch in a search tree. This algorithm is
sketched in Figure 3. The size of such a search tree
is exponential in the number of dimensions of the fea-
ture space, and therefore we experimented with several
greedy approximation algorithms (see (FKSW96)).

Experiments
In this section we focus on the performance of the local
induction voting algorithm used for several scientific
domains: breast cancer diagnosis, star/galaxy classifi-
cation, and identification of coding regions in DNA. We
also performed experiments with the other algorithms
using artificial datasets. The “dim” astronomy dataset
contains 4192 examples in 14 dimensions with 2 classes

16 KDD-96

For a given query point
The initial neighborhood is the query point itself.
Find a local neighborhood using neighbor-

hoodsearch().
Induce a decision tree T upon the local neigh-

borhod.
Classify query point with T.

Neighborhoodsearch()
Expand neighborhood in unblocked dimensions un-

til an obstacle point is reached.
For each dimensional branch caused by the obstacle

point :
Recursively call neighborhoodsearch().

Return the highest scoring neighborhood from
among the branches.

Figure 3: The adaptive boundary local induction algo-
rithm

(stars and galaxies) that occur with approximately
equal frequency. The human DNA dataset contains
approximately 40,000 examples in 6 dimensions with 2
classes (coding and noncoding) which occur with un-
equal frequency. Each example represents a piece of
human DNA that is 162 bases long and comes either
from an exon (a coding region, the part of DNA that is
used in genes to produce proteins) or from an intron (a
noncoding region). Noncoding DNA is about six times
more common than coding DNA in this data set (and
is at least that common in the human genome), but
for the sake of these experiments, two different train-
ing sets of size 300 and 5024 were constructed, each
containing equal numbers of coding and noncoding re-
gions. The results from the LIV algorithm on these
datasets appear in Table 1. The accuracy reported for
the DNA data set is the unweighted average of the
two class accuracies; because of the much higher fre-
quency of noncoding DNA, we did not want to swamp
the estimate of accuracy on coding DNA in this aver-
age.

In these experiments, the decision tree induction al-
gorithm is implemented using standard axis-parallel
splits and information gain as the goodness criterion.
This algorithm is thus very similar to Quinlan’s C4.5
(Qui93). The decision trees are pruned using standard
cost-complexity pruning (BFOS84) with a portion of
the training set set aside as a pruning set. The pur-
pose of these experiments is to determine whether local
induction voting is an improvement over full induction.

The graphs presented in Figure 4 show overall accu-
racy as a function of the parameter K. Ir’ is the size in
training points of the largest local window around the
query point. At each point on the abscissa, all window
sizes l,..., Ir’ contribute their vote to the classification

1 num 1 num 1 FI 1 LIV 1

Table 1: Comparison of full induction to local induc-
tion voting. 20% of the training sets was reserved for
pruning. The column labelled FI shows accuracy for
full induction. The column labelled LIV shows accu-
racy for the local induction voting algorithm.

of the query point. In general, accuracy increases and
plateaus as Ii is increased. Accuracy of the decision
tree induced upon the full training set is shown as a
horizontal rule across each graph. The accuracy of the
local induction voting method typically surpasses the
accuracy of full induction at a relatively small value of
K.

For both of the databases, we experimented with two
sizes of training set. The intent of using differently
sized training sets was to determine whether local in-
duction was better suited for sparse training sets or for
larger training sets.

We used artificial data sets to perform detailed ex-
periments with the multi-layer algorithm and the adap-
tive neighborhood algorithm. The datasets were gen-
erated by creating a random decision tree with approx-
imately 200 nodes in two, four and eight dimensions.
We randomly generated 400, 800, and 1600 instances.
Each instance was classified using the “true” decision
tree. We then used a standard decision tree algorithm,
k-NN and the two new methods to classify the same
data. Our multi-layer algorithm in two dimensions ex-
hibited similar performance to the standard decision
tree algorithm and outperformed k-NN. In four dimen-
sions with 800 points, we obtained better results with
the multi-layer algorithm. With 1600 points the re-
sults were similar for all methods. We found that the
our adaptive neighborhood algorithm is computation-
ally expensive and needs more tuning before it can be
used effectively on large datasets.

Local Error Analysis
Another useful data mining tool provided by decision
trees (local or global) is error analysis. Figure 5 is a
histogram of the numbers of query points close to the
decision tree boundaries for the standard algorithm on
the star/galaxy data set. For any query, we can com-
pute its bin in the histogram and report our confidence
in the prediction basen on the query’s distance to the
boundary.

Note that the figure also reveals a difference in the
distances of correct and incorrect points to a boundary:

Combining Data Mining ST Machine Learning 17

85%

77%

78%

2
L.!
a

76%

0
z
s 74%

The hum-l 62 dataset 0
with 5024 training points 8

E 5 72%
The hum-162 dataset
with 300 training points

1 . . . o v]!;I
full mductron achieves 78.2 /o accurac

i
10 20 30 40 50 60 70 80 90 100

maximum value of K used in voting

a
I

10 20 30 40 50 60 70 80 90 100
maximum value of K used in voting

93% , I

i
92%

I t full induction achieves 93.8 % accuracy 90% - full induction achieves 89.7 % accuracy

The star/galaxy dataset
with 300 training points

The star/galaxy dataset
with 2500 training points

91% 1

10 20 30 40 50 60 70 80 90 100
maximum value of K used in voting

86% ’ ’ I
10 20 30 40 50 60 70 80 90 100

maximum value of K used in voting

Figure 4: Accuracy of the local induction voting algorithm compared against full induction for the Hum-162 and
star/galaxy datasets.
small training sets.

The graphs on the left show the performance for large training sets, and on the right for

250 I 70

60

k2 .c 50
EL
P 40
s
‘s 5 30

5 20

10

0
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

distance to boundary for incorrect classifications

0;
0 0.02 0.04 0.06 0.0s 0.1 0.12 0.14 0.16 0.1s 0.2

distance to boundary for correct classifications

Figure 5: Frequency of distances of query points to the closest decision tree boundary for the star/galaxy dataset.

18 KDD-96

incorrectly classified points are likely to be much closer
than average to a boundary.

Conclusions

In this paper we described three new algorithms for
local induction decision trees and reported on some
initial experimental data using these techniques. The
first algorithm, local induction voting, is the simplest
and so far the best in our experiments. The multi-
layer composite neighborhood algorithm is more com-
plex, especially in the efficient O(N logd-’ N) version.
Its main design goal is to battle data fragmentation
and to provide an intuitive feel for the distribution
of points in the local region of the query point. For
each query point we enumerate all of the monochro-
matic rectangles that include it. The distribution of
these rectangles can be helpful for constructing new
confidence measures to use with classifiers. The third
method, which created axis-parallel adaptive neighbor-
hoods, has so far shown inferior experimental perfor-
mance (which is therefore not reported here) and needs
further refinement. However, it has an interesting po-
tential for applications where the concept boundaries
are locally axis-parallel.

The main drawback of the algorithms reported here
is the time to perform a single classification. The run-
ning time of local induction voting per query is similar
in practice to standard k-NN algorithms and is dom-
inated by the size of the training set. However, in
many situations (e.g., medical diagnosis), accuracy is
of utmost importance, and it is worth the extra com-
putation to identify the most accurate method.

In high dimensional spaces, using monochromatic
rectangles is problematic because most example points
do form a monochromatic rectangle with the query
point in this case. In this situation, one could use
a stricter definition of monochromatic dominance, or
one could restrict the rectangle to a limited number
of dimensions, possibly based on attributes used by a
fully-induced decision tree to classify the query point.

The experiments we performed indicate that local in-
duction voting does outperform full induction in terms
of accuracy. The similarity of the graphs of accuracy
vs. Ii in experiments with very different databases in-
dicates that local induction voting is likely to behave
similarly for other databases. This makes local induc-
tion voting a potentially good candidate for improving
classification tools in general.

Acknowledgements

This material is based upon work supported in part by
the National Science foundation under Grant Nos. IRI-
9116843, IRI-9223591, and IRI-9220960 with equip-
ment support from NSF Grant No. CDA-9421531.

References
Christopher Atkeson, Andrew Moore, and Stefan
Schaal. Locally weighted learning. Ariificial Intel-
ligence Review, 1996 (to appear).
C. Atkeson. Using local models to control move-
ment. In Neural Information Processing Systems
Conf., 1989.
L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth In-
ternatl. Group, 1984.
L. Bottou and V. Vapnik. Local learning algorithms.
Neural Computation, 4:888-900, 1992.
R. Creecy, B. Masand, S. Smith, and D. L. Waltz.
Trading MIPS and memory for knowledge engineer-
ing. Communications of the ACM, 35(8):48-64, 1992.
S. Cost and S. Salzberg. A weighted nearest neighbor
algorithm for learning with symbolic features. Ma-
chine Learning, lO(1):57-78, 1993.
S. Edelman. Representation, similarity and the cho-
rus of prototypes. Minds and Machines, 1994.
T. Fulton, S. Kasif, S. Salzbern, and D. Waltz. Local
induction’of decision trees: T&vards interactive data
mining. Technical renort. Johns Honkins Universitv.
Baltimore, MD 21218, 1996. 1

”

J. H. Friedman. Flexible metric nearest neighbor
classification. Technical report, Stanford University,
Statistics Dept., November 1994.
T. Hastie and R. Tibshirani. Discriminant adap-
tive nearest neighbor classification. Technical report,
Stanford University, Statistics Dept., December 1994.
A. Moore, C. Atkeson, and S. Schaal. Memory-based
learning for control. Artificial Intelligence Review (to
appear), 1995.
P. Maes and R. Kozierok. Learning interface agents.
In Proc. of the Eleventh National Conf. on Artificial
Intelligence, pages 459-465, Washington, D.C., 1993.
MIT Press.
Sreerama K. Murthy, Simon Kasif, and Steven
Salzberg. A system for induction of oblique decision
trees. Journal of Artificial Intelligence Research, 2:1-
33, August 1994.
B. Masand, G. Linoff, and D. L. Waltz. Classifying
news stories using memory based reasoning. In Pro-
ceedings of the SIGIR, pages 59-65, 1992.
F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.
J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, San Mateo, CA, 1993.
V. Vapnik and L. Bottou. Local learning algorithms
for pattern recognition and dependency estimation.
Neural Computation, 51893-909, 1993.
T.-M. Yi and E. Lander. Protein secondary structure
prediction using nearest-neighbor methods. Journal
of Molecular Biology, 232:1117-1129, 1993.

Combining Data Mining 6r Machine Learning 19

