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Abstract 

The prediction of RNA secondary structure on 
the basis of sequence information is an impor- 
tant tool in biosequence analysis. However, it has 
typically been restricted to molecules containing 
no more than 4000 nucleotides due to the com- 
putational complexity of the underlying dynamic 
programming algorithm used. We desribe here an 
approach to RNA sequence analysis based upon 
scalable computers, which enables molecules con- 
taining up to 20,000 nucleotides to be analysed. 
We apply the approach to investigation of the en- 
tire HIV genome, illustrating the power of these 
methods to perform knowledge discovery by iden- 
tification of important secondary structure motifs 
within RNA sequence families. 

the molecules, as documented by their extensive use 
for the interpretation of molecular evolution data. 

Introduction 
One of the major problems facing computational 
molecular biology is the fact that sequence information 
about important macromolecules such as proteins and 
RNA molecules exists in far greater quantities than 
information about the three-dimensional structure of 
these biopolymers. The development and implemen- 
tation of computational methods capable of predicting 
structure reliably on the basis of sequence information 
will provide huge benefits in terms of our understand- 
ing of the relationship between sequence and structure. 
They will also help greatly in tasks such as drug discov- 
ery and verification, as well as in the study of molecular 
evolution. These methods can then be applied to the 
vast quantities of sequence information at our disposal 
to discover important motifs and trends within various 
macromolecules, without having to laboriously and ex- 
pensively measure the 3D structure of each and every 
molecule by hand. 

The most popular computational approach to the 
prediction of RNA secondary structure from sequence 
information is based upon dynamic programming. The 
main difficulty with this algorithm is the fact that its 
computational complexity grows as the cubic power 
of the RNA chain length, and that its memory re- 
quirements grow quadratically with chain length. This 
drawback has limited its use in the past to RNA 
molecules containing up to a few thousand nucleotides. 
Unfortunately, many molecules of great biological in- 
terest, such as HIV molecules, contain 10,000 or more 
nucleotides. The genome of HIV is dense with informa- 
tion for the coding of proteins and biologically signifi- 
cant RNA secondary structures. The latter play a role 
in both the entire genomic HIV-l sequence and in the 
separate HIV-l messenger RNAs which are basically 
fragments of the entire genome. The total length of 
HIV-l (about 9200 bases) makes biochemical analysis 
of secondary structure of the HIV-l full genome infea- 
sible. For RNAs of this size computer prediction of the 
folded structure is the only approach that is available 
at present. 

It turns out that the full-blown task of three- 
dimensional structure prediction is much too difficult 
to be solved with current knowledge and methods. A 
simpler problem, however, the prediction of secondary 
structure, is tractable. Functional secondary struc- 
tures are conserved in evolutionary phylogeny, and 
they represent a qualitatively important description of 

The goal of this paper is to demonstrate the unique 
ability of concurrent computers to enable data-mining 
of families of RNA sequences of the size and scope of 
HIV, by allowing identification of important motifs. 
Sequence data-mining problems of this magnitude, re- 
quiring secondary structure prediction for a number of 
long RNA sequences, have never before been tackled 
because of their severe computational demands. We 
report the fastest secondary structure predictions ever 
achieved, and for the largest sequences that have ever 
been analyzed (- 10000 nucleotides). Our results show 
that concurrency can be applied in this problem do- 
main to allow novel sequence analysis and knowledge 
discovery on a large scale. Most importantly, massively 
parallel machines enable not just the prediction of sec- 
ondary structure for long individual sequences, but also 
knowledge discovery in the form of comparisons be- 
tween secondary structures for families of sequences. 
We have been able to exploit this power to allow the 
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identification of prominent secondary * structure motifs 
within the HIV genome. Our results point the way to 
a number of new sequence analysis possibilities in-the 
future. 

RNA Secondary Structures 
RNA structure can be broken down conceptually into 
a secondary structure and a tertiary structure. The 
secondary structure is a pattern of complementary base 
pairings, see Figure 1. The tertiary structure is the 
three-dimensional configuration of the molecule. As 
opposed to the protein case, the secondary structure of 
RNA sequences is well defined; it provides the major 
set of distance constraints that guide the formation 
of tertiary structure, and covers the dominant energy 
contribution to the 3D structure. 

Figure 1: (1.h.s.) The spatial structure of the pheny- 
lalanine tRNA form yeast is one of the few known 
three dimensional RNA structures. (r.h.s.) The sec- 
ondary structure extracts the most important informa- 
tion about the structure, namely the pattern of base 
pairings. 

A secondary structure of a sequence is a list of base 
pairs i, j with i < j such that for any two base pairs i, j 
and Ic, 1 with i 5 Ic holds (i) i = k if and only if j = 1 
and (ii) Ic < j implies i < k < 1 < j. The first con- 
dition says that each nucleotide can take part in not 
more that one base pair, the second condition forbids 
knots and pseudoknots ‘. Knots and pseudoknots are 
excluded by the great majority of folding algorithms 
which are based upon the dynamic programming con- 
cept. 

A base pair k, 1 is interior to the base pair i, j, if 
i < k < 1 < j. It is immediately interior if there is no 
basepairp,qsuchthati<p<Ic<Z<q< j. For 
each base pair i, j the corresponding loop is defined 
as consisting of i, j itself, the base pairs immediately 
interior to i, j and all unpaired regions connecting these 
base pairs. The energy of the secondary structure is 
assumed to be the sum of the energy contributions of 

‘A pseudoknot is a configuration in which a nucleotide 
that is inside a loop base pairs with a nucleotide outside 
that loop. 

all loops. (Note that two stacked base pairs constitute 
a loop of size 4; the smallest hairpin loop has three 
unpaired bases, i.e., size 5 including the base pair.) 

Experimental energy parameters are available for 
the contribution of an individual loop as functions of its 
size and type (stacked pair, interior loop, bulge, multi- 
stem loop), of the type of its delimiting base pairs, and 
partly of the sequence of the unpaired strains (Turner, 
Sugimoto, & Freier 1988). Inaccuracies in the mea- 
sured energy parameters, the uncertainties in parame- 
ter settings that have been inferred from the few known 
structures, and most importantly, effects that are not 
even part of the secondary structure model, limit the 
predictive power of the algorithms. Nevertheless, local 
structures can be computed in quite some detail, and 
a majority of the base pairs is predicted correctly. 

A convenient way of displaying the size and distri- 
bution of secondary structure elements is the moun- 
tain representation introduced in (Hogeweg & Hesper 
1984). In this representation a base paired to a base 
downstream is drawn as a step up, a base paired to a 
base upstream corresponds to step down, and an un- 
paired base is shown as horizontal line segment, see 
Figures 2 and 3. The resulting graph looks like a 
mountain-range where: 
Pealcs correspond to hairpins. The symmetric slopes 
represent the stack enclosing the unpaired bases in the 
hairpin loop, which appear as a plateau. 
Plateaus represent unpaired bases. When interrupting 
sloped regions they indicate bulges or interior loops, 
depending on whether they occur alone or paired with 
another plateau on the other side of the mountain at 
the same height respectively. 
Valleys indicate the unpaired regions between the 
branches of a multi-stem loop or, when their height 
is zero, they indicate unpaired regions separating the 
components of secondary structures. 
The height of the mountain at sequence position Ic is 
simply the number of base pairs that enclose position 
k; i.e., the number of all base pairs (i, j) for which 
i < k and j > k. The mountain representation allows 
for straightforward comparison of secondary structures 
and inspired a convenient algorithm for alignment of 
secondary structures (Konings & Hogeweg 1989). 

In this contribution we shall be interested in the 
secondary structure of the RNA genomes of a cer- 
tain class of single-stranded RNA viruses. Lentiviruses 
such as HIV-l and HIV-2 are highly complex retro- 
viruses. Their genomes are dense with information 
for the coding of proteins and biologically significant 
RNA secondary structures. The latter play a role 
in both the entire genomic HIV-l sequence and in 
the separate HIV-l messenger RNAs which are ba- 
sically fragments and combinations of fragments of 
the entire genome. By predicting the minimum free 
energy secondary structure of the full length HIV-l 
and other known lentiviruses sequences (HIV-2, SIV, 
CAEV, visna, BIV and EIAV) and their various splic- 
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ing products, and by comparison of the predicted struc- 
tures, a first step can be made towards the unravelling 
of all important secondary structures in lentiviruses. 

Elucidation of all the significant secondary struc- 
tures is necessary for the understanding of the molec- 
ular biology of the virus. So far a number of signifi- 
cant secondary structures have been determined that 
play a role during the various stages of the viral life 
cycle (see section 4). We expect a high number of 
undiscovered biologically functional secondary struc- 
tures to be still present within the various transcripts. 
A systematic analysis of the 5’ end of the HIV genome 
showed an abundance of functional secondary struc- 
tures (Baudin et al. 1993). Secondary structures fur- 
ther downstream could well be involved in the splicing, 
regulation of translation of the various mRNAs, or reg- 
ulation of the stability of the full length sequence and 
its various splicing products. 

Parallel Decomposition Issues and 
Related Work 

Dynamic programming, when applied to RNA folding, 
requires CPU time that scales roughly as the cubic 
power of the sequence length, and memory that scales 
quadratically with sequence length. Even so, sequences 
such as HIV that are approximately 10000 nucleotides 
in length still require only on the order of 35 minutes 
to fold on 256 nodes of the Intel Delta supercomputer. 
The same calculation would require on the order of 60 
hours on a high-end workstation. 

On the other hand, memory requirements are a se- 
vere problem for RNA molecules the size of HIV. The 
simplest RNA folding calculation, which computes just 
the single minimum free energy structure, requires of 
the order of 1 Gigabyte of memory for a sequence of 
the length of HIV-l. More sophisticated algorithms 
that compute averages over a larger number of struc- 
tures near the minimum free energy typically require 
upwards of 2 Gigabytes. Distributed massively par- 
allel architectures can easily satisfy these memory re- 
quirements for viruses such as HIV. These resources 
are the primary reason that scalable architectures are 
necessary for performing RNA folding computations 
on large macromolecules. 

As a consequence of the additivity of the energy con- 
tributions, the minimum free energy of an RNA se- 
quence can be calculated recursively by dynamic pro- 
gramming (Waterman 1978; Zuker & Sankoff 1984). 
This method is at the heart of our approach. The basic 
logic of the folding algorithm is derived from sequence 
alignment: In fact, folding of RNA can be regarded 
as a form of alignment of the sequence to itself. The 
implementation of sequence alignment algorithms on 
massively parallel architectures in discussed in detail 
in (Jones 1992). 

The algorithm proceeds by calculating energies for 
every subsequence and can be parallelized very easily: 
all subsequences with a common length are indepen- 

dent of each other and can therefore be computed con- 
currently, as in the case of sequence alignment. The 
major computational difficulty in the case of folding, 
distinguishing it from standard sequence alignment, is 
the fact that each entry requires the expZ&t knowl- 
edge of a large number data belonging to smaller sub- 
sequences. 
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Figure 2: Efficiency of the parallelization versus the 
number N of nodes for the Touchstone Delta imple- 
mentation, showing scaling curves for various sequence 
lengths. 

The eficiency of the parallelization is measured by 
E(N) := T*/(Nt), h w ere T* is the (hypothetical) sin- 
gle node execution time, N is as usual the number of 
nodes used for the calculation and t is real time used 
for the folding (including the backtracking step). The 
data in Figure 2 show that we achieve efficiencies of 
more than-go% when the smallest possible number of 
nodes is used for the computation. 

Knowledge Discovery within the 
Secondary Structure of Lentiviruses 

Retroviruses are viruses that in their life cycle alternate 
between a single stranded RNA stage and a double 
stranded DNAstage. The lentiviruses are a subclass 
of the retroviruses, characterized by long incubation 
times and a similar genomic organization. The genome 
of a lentivirus consists of a single RNA molecule with 
about 7000 to 10000 nucleotides. Almost all of this 
genome is used for coding for various viral proteins 
and RNA secondary structures. Below we highlight the 
role of some of the- known functional secondary- struc- 
tures. We then describe the progress we have made 
towards the discovery of new scientific knowledge by 
mining information from a number of RNA sequences 
on massively parallel computers. 

The minimum free energy structure was predicted 
for the 22 available full-length HIV-l sequences: 
HIVANT70, HIVBCSG3C, HIVCAMl, HIVD31, 
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HIVELI, HIVHAN, HIVHXB2R, HIVJRCSF, 
HIVLAI, HIVMAL, HIVMN, HIVMVP5180, 
HIVNDK, HIVNL43, HIVNY5CG, HIVOYI, 
HIVRF, HIVSF2, HIVU455, HIVYUlO, HIVYU2, 
HIVZ2Z6) and for 9 sequences of related lentiviruses: 
EIAV (equine infectious anemia virus), CAEV (caprine 
arthritis encephalitis virus), BIV106 (bovine immun- 
odeficiency virus), VLVCG (visna virus), three simian 
immunodeficiency viruses SIVMM239, SIVMM251 
(from macaque) and SIVSYK (from Syke’s monkey), 
and two HIV-2 sequences HIV2BEN and HIV2ST. 

The majority of the secondary structures exhibit two 
distinct domains: whereas the 5’ half consists of a large 
number of fairly small components, the 3’ part is a 
single compone& (except for a region of about one 
hundred nucleotides). The boundari between the two 
structural domains coincides roughly with the end of 
the pal gene. 
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Figure 3: Mountain representation of the sec- 
ondary structure of the 5’ end of seven HIV-l se- 
quences (HIVLAI, HIVOYI, HIVBCSG3C: dotted line, 
HIVELI, HIVDNK: dashed line, HIVANT70: solid 
line, HIVMAL: long-dashed line) The secondary struc- 
tures were aligned at the sequence level. Although the 
structures do show considerable variation, some fea- 
tures are conserved: (i) The TAR hairpin structure is 
present in six out of seven sequences. (ii) The cen- 
ter of the Primer Binding Site (PBS) is always single 
stranded (sometimes as a hairpin loop, sometimes as 
an internal loop), thus exposing this part of the se- 
quence for base pairing with the tRNA primer. (iii) 
The center of the packaging signal (PACK) is always 
present as a hairpin. 

At the 5’ end of the viral HIV-l RNA molecule re- 
sides the trans-Activating Responsive (TAR) element 
(Berkhout 1992); binding of the TAT protein to TAR is 
necessary for high levels of transcription. On the basis 
of biochemical analysis (Baudin et al. 1993) and com- 
puter prediction of the 5’ end of the genome it is known 
that the TAR region in HIV-l forms a single, isolated 
stem loop structure of about 60 nucleotides with about 
20 base pairs interrupted by two bulges. This structure 
is indeed predicted in the minimum free energy struc- 
tures of six of the seven sequences in Figure 2. Besides 
in HIV-l, a functional TAR structure has also been ob- 
served in HIV-2 and various SIV types while all other 
known lentiviruses have a tat gene. Although the sec- 
ondary structure of TAR is strongly conserved within 
HIV-l, it varies considerably between the various hu- 
man (HIV-l and HIV-2) and simian (SIV) lentiviruses, 
as is also reflected in the minimum free energy foldings. 
Our analysis shows that CAEV, visna, EIAV and BIV 
all have a short hairpin structure at their 5’ end. 

The packaging signal is essential for the packaging of 
full length genomes into new virion particles. All anal- 
yses of its secondary structures are consistent with a 
short (5 base pairs) hairpin structure that carries a 
GGAG loop (Harrison & Lever 1992). Indeed, this 
feature is shared by all the sequences in Figure 2. 
However, the predictions in the literature for the more 
global secondary structure of this region of the RNA 
(beyond the 6 base pair hairpin) vary considerably. A 
large variation in the predicted secondary structures is 
also present in the minimum free energy structures of 
the various HIV-l sequences. 

The Primer Binding Site (PBS) at the 5’ of the vi- 
ral genome (Baudin et al. 1993) is necessary for the 
initiation of reverse transcription of the HIV genomic 
RNA into DNA. It is a sequence of 18 nucleotides that 
is complementary to the nucleotides at the 3’ end of 
the tRNA with which it base pairs. The tRNA serves 
as a primer to initiate the reverse transcription of the 
viral RNA. In absence of the primer, part of the Primer 
Binding Site is paired to bases outside the PBS. The 
binding of the primer could therefore lead to a rear- 
rangement of the secondary structure of the 5 ’ end 
of <he molecule. Indeed, such rearrangements were 
observed up to 69 nucleotides upstream and 72 nu- 
cleotides downstream of the PBS after the binding of 
the primer (Isel et al. 1995). Computer prediction 
of the secondary structure of RNA can play a role in 
guiding these types of experiments and explaining their 
results. 

Within the enw gene of lentiviruses resides the Rev 
response element <RRE) . The consensus secondary 
structure of the RRE in HIV-l is a multi-stem loop 
structure consisting of five hairpins supported by a 
large stem structure (Konings 1992). The interaction 
of RRE with the Rev protein reduces splicing and in- 
creases the transport of unspliced and single-spliced 
transcripts to the cytoplasm, which is necessary for the 
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Figure 4: Alignment of the RRE regions of 17 se- 
quences based solely on the minimum free energy sec- 
ondary structure. The mountain representation re- 
veals the five-fingered motif, the Roman numerals cor- 
respond to the numbering of the hairpins in (Dayton, 
Powell, & Dayton 1989). 5  out of 22 sequences showed 
a different pattern here. We  find three different fold- 
ing patterns each highlighted by one example. The 
first one (thick black line) corresponds to the consen- 
sus five-fingered motif that is presented in (Konings 
1992). The second one (light gray) is present among 
other in HIVLAI. The third (dark gray) corresponds 
to the structure proposed (Mann et a2. 1994). 

formation of new virion particles (Malim et al. 1989). 
Figure 33 shows an alignment of the RRE region of 
17 out of the 22 HIV-l sequences based entirely on 
the predicted secondary structures and without gaps. 
Most of the secondary structures show the five-fingered 
hairpin motif. An alternative structure is present in 
which hairpin III is relatively large and a few of the 
other hairpins have disappeared from the minimum 
free energy structure. A comprehensive analysis of the 
base pairing probabilities in the RRE shows that the 
hairpins II, IV, and V, as well as the basis of hairpin III 
are meta-stable in the sense that they allow for differ- 
ent structures with nearly equal probabilities (Huynen 
et al. 1996). This structural versatility within a sin- 
gle sequence is here reflected in the variation in the 
minimum free energy secondary structure of closely 
related sequences. Although there is structural ver- 
satility in the hairpins, the stem structure on top of 
which the hairpins are located is generally present in 
the minimum free energy folding. The comparisons of 

the prediction obtained for different, evolutionarily re- 
lated RNAs can be used to identify local misfoldings 
in the same way as a comparative analysis can be used 
to infer the structure from the phylogeny. 

Discussion 
Our implementation of motif-detection within RNA 
sequence sequence families on up to 512 nodes of 
the Delta supercomputer demonstrates that massively 
parallel distributed memory computer architectures 
are well-suited to the problem of folding the largest 
RNA sequences available. W ith sequences comprising 
several thousand nucleotides, efficiencies above 80% 
are obtained on partitions of the machine containing 
about 100 nodes. As the partition size increases be- 
yond 100 nodes the efficiency deteriorates to 20-40%, 
even for the larger sequences studied. Not surprisingly, 
the optimal partition sizes are those for which the to- 
tal available memory on each node is utilized. These 
results are extremely encouraging. Apart from the in- 
sight they provide into the HIV virus itself, they indi- 
cate that even longer virus genomes containing up to 
30000 nucleotides can be folded on the existing Delta 
architecture, with future scalable machines promising 
to extend this range even further. One long molecule 
of special interest is the Ebola virus, which contains 
roughly 20000 nucleotides. 

We  have determined the minimum free energy struc- 
ture of a  set of HIV-l, HIV-2, and related lentiviruses. 
The results show the presence of known secondary 
structures such as TAR, RRE, and the packaging signal 
that have been predicted on the basis of biochemical 
analysis, phylogenetic analysis, and the folding of small 
fragments of the sequence. In HIV-l we observe a strik- 
ing difference between the secondary structures of the 
first half and the second half of the molecule. Whereas 
the first 4000 nucleotides form a large number of inde- 
pendent components, the second 5000 nucleotides form 
a single huge component, on top of which the RRE is 
located. In general, although some relatively local pat- 
terns and the overall pattern with short range interac- 
tions in the 5’ end and long range interactions at the 
3’ end appear conserved, there is extensive variation 
in the secondary structure between the various HIV-l 
sequences. 

The folding algorithm discussed in this paper pre- 
dicts only the thermodynamically most stable sec- 
ondary structure. Under physiological conditions, 
i.e., at or above room temperature, however, RNA 
molecules do not take on only the most stable struc- 
ture, they seem to rapidly change their conformation 
between structures with similar free energies. A real- 
istic investigation of RNA structures has to account 
for this fact which is of utmost biological importance. 
The simplest way to do this is to compute not only the 
optimal structure but all structures within a certain 
range of free energies (Waterman & Byers 1985). A 
more recent algorithm (McCaskill 1990) is capable of 
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computing physically-relevant averages over all possi- 
ble structures, by calculating an object known as the 
partition function. From it, the full matrix P = {p;j} 
of base pairing probabilities, which carries the biologi- 
cally most relevant information about the RNA struc- 
ture, can be obtained. In fact, a sequential implemen- 
tation (Hofacker et al. 1993) has been ported recently 
to a CRAY-Y-MP and has been successfully applied to 
analyzing the base pair probabilities of a complete 
HIV-l genome (Huynen et al. 1996). A comparative 
analysis of base-pair probabilities of RNA viruses re- 
quires an implementation of the partition function al- 
gorithm on massively parallel computers. Work in this 
direction is in progress. 
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