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Abstract 

Cosmological N-body simulations on parallel com- 
puters produce large datasets - about five hundred 
Megabytes at a single output time, or tens of Giga- 
bytes over the course of a simulation. These large 
datasets require further analysis before they can be 
compared to astronomical observations. We have im- 
plemented two methods for performing halo finding, a 
key part of the knowledge discovery process, on paral- 
lel machines. One of these is a parallel implementation 
of the friends of friends (FOF) algorithm, widely used 
in the field of N-body cosmology. The new isodensity 
(ID) method has been developed to overcome some 
of the shortcomings of FOF. Both have been imple- 
mented on a variety of computer systems, and suc- 
cessfully used to extract halos from simulations with 
up to 2563 (or about 16.8 million) particles, which are 
among the largest N-body cosmology simulations in 
existence. 

Introduction 
According to current cosmological theory, most of the 
mass in the universe (e.g., perhaps 90%) is in the form 
of so-called dark matter, whose only significant inter- 
action is gravitational. During the evolution of the 
universe, this dark matter forms dense objects, called 
halos, due to gravitational instability. Within these 
halos, the dark matter is supported against further col- 
lapse by random motions. The normal matter in the 
universe collects at the centers of these halos, where 
star formation leads to the existence of luminous galax- 
ies and other observable phenomena. 

A detailed analytic understanding of the evolution 
of the dark matter is hampered by the highly non- 
linear nature of the problem, and the complexity of the 
structures formed. Hence numerical methods have be- 
come a very important tool for understanding this evo- 
lution, and for comparing cosmological theories with 
astronomical observations. In N-body simulations, 
the mass in the universe is represented by a set of 
N discrete particles, which can be interpreted as a 
Monte Carlo sampling of the (incredibly more numer- 
ous) dark matter particles. Simulations with larger iV 
produce more accurate results, because the sampling 
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is more complete. Larger N also gives larger dynamic 
range, in terms of the range between the smallest and 
largest scales which can be addressed in a single simu- 
lation. This is important, for example, for investigat- 
ing small-scale structure in simulations with a volume 
large enough to sample a fair region of the universe 
(Zurek et al. 1994), or for better resolution of sub- 
structure in simulations of clusters of galaxies (Carl- 
berg 1994). 

Recently, systems with N as large as 2563 have been 
simulated on massively parallel computers. These large 
simulations produce correspondingly large datasets, 
posing a challenge for analysis, which has tradition- 
ally been done on workstations. Practical consider- 
ations like available memory, reasonable turnaround 
time, and a desire to study time-dependent processes 
make it increasingly desirable for critical data analysis 
tasks to run on the same parallel machines that per- 
formed the simulations. One such task is halo finding: 
identifying all the isolated collections of gravitationally 
bound particles, i.e., the dark matter halos. Galax- 
ies are believed to form at the centers of these halos, 
so once they have been found, their distributions and 
properties can be compared to astronomical observa- 
tions of galaxies and galaxy clusters. 

The halo finding methods discussed here use data 
at a single output time. Other methods (Couchman 
& Carlberg 1992; Carlberg 1994; Summers, Davis, 
& Evrard 1995) use data from several output times, 
which is expected to be useful since halos should per- 
sist as distinct objects over time, apart from processes 
such as halo formation, merging, and disruption. How- 
ever finding halos independently at different individual 
times should be a useful check of the robustness of the 
method in finding persistent halos, as well as an objec- 
tive tool to study the evolution of halos. 

The methods have been applied to real data sets 
obtained from cosmological simulations. Table 1 lists 
the basic parameters of simulations which have been 
analyzed and will be referred to later. (Note 1 Mpc 
= 3.26 x106 light years.) Models 2, 3 and 4 are sub- 
regions extracted from larger simulations. 

In the next section we describe the friends of friends 
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Model N Volume 
Model 1 16,777,216 (100 Mpc)” cube 
Model 2 525,002 (20 M~c)~ cube 
Model 3 8,599 $r (10 M~c)~ sphere 
Model 4 1,578,230 (10 M~c)~ cube 

Table 1: Simulation Parameters 

(FOF) halo finding method, and note some shortcom- 
ings. This motivates the subsequent description of the 
new isodensity (ID) method, based on kernel density 
estimation (McLachlan 1992). Finally we explain how 
the two methods have been implemented on parallel 
computers, and present some timing results. 

The Friends of Friends Method 
In the friends of friends (FOF) method, (Davis et al. 
1985) one specifies a linking length, blink, and identi- 
fies all pairs of particles with a separation of hEink or 
less. Such pairs are designated friends, and halos are 
defined as sets of particles that are connected by one or 
more friendship relations, i.e., friends of friends. The 
linking length is usefully parameterized as a density, 
and following (Summers, Davis, & Evrard 1995), we 
define Smin as the density, divided by the background 
cosmology density (p), defined by two particles, of av- 
erage mass, inside a sphere of radius blink. 

A second parameter in FOF is the minimum number 
of particles (N,i,J in a halo. This is necessary because 
the particles represent a Monte Carlo sampling of the 
underlying matter distribution. Because of the essen- 
tial randomness in the particles’ positions, there will 
be statistical fluctuations in the number of particles 
in any particular region. Hence it is possible to find 
groups of friends that do not form persistent objects 
in the simulation. Obviously, chance associations in- 
volving larger numbers of particles are less likely than 
those involving fewer, so by setting Nmin sufficiently 
large one hopes to avoid most of these spurious halos. 

Figure 1 show the results of FOF on Model 3, using 
Nmin = 10, and the left hand panels of figure 2 show the 
effects of increasing Nmin to 30. These figures demon- 
strate two problems with FOF: joining halos together, 
and poor distinction of small halos from noise. The 
first problem is that at the center of the cluster, FOF 
finds one large halo which is clearly composed of at 
least several distinct halos. This is due to the fact that 
using FOF, everything in a region where the density is 
above Smin is joined into a single halo, whether or not 
the region includes objects which are distinct at some 
higher density. (This problem was previously noted by 
(Bertschinger & Gelb 1991).) From the density plots 
it is seen that there is no value of amin which will dis- 
tinguish the halos in the high density region without 
missing some of the lower density halos. 

The second problem is related to Nmin: The value 
of Nmin = 10 is seen to be too small, since many of the 
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Figure 1: The FOF halo finding results for Model 3. 
(See text for various details in what follows. The com- 
plete model is shown in the left panels of Figure 3.) 
The upper panels show particle positions, projected 
into an arbitrary plane; the middle panels show one 
spatial coordinate and one velocity coordinate; the 
lower panels show the density (as calculated by ID) 
against one spatial coordinate. The horizontal line in 
the lower panels indicates a density of 350 p, corre- 
sponding to the &in value used for the FOF identifi- 
cation. The panels on the left show the particles in the 
single most massive halo found by FOF; those on the 
right show the particles in the other FOF halos, using 
Nmin = 10. 

small halos found have high internal velocity scatter 
(and hence are not bound), in contrast to others which 
are clearly distinct, compact objects in velocity space. 
At a higher N,,+, of 30, most of the spurious halos are 
rejected, but one remains, and in addition several real 
(but small) halos have been rejected. 

We suggest here a simple improvement to Nmin: 
Take as a parameter some minimum number of friends 
(i.e., direct links), Nfmin, and only accept halos which 
have at least one particle with at least Nfmin friends. 
The advantage of Nfmin over Nmin is that diffise, rela- 
tively low-density linked groups (possibly with many 
particles), are rejected, while isolated tight clumps 
(still with at least Nf min particles, but possibly less 
than Nmin) are accepted as real halos. The effects of 
Nfmi+, in Model 3 are shown in the right hand panels 
of figure 2, using Nfmin = 10. In this case all of the 
spurious halos are rejected, and more real halos are 
accepted than for Nmin = 30. 

One could consider alternative criteria for rejecting 
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Figure 2: The same as the right hand panels of figure 1, 
but with alternatives to Nmin = 10: on the left Nmin 
= 30, and on the right Nfman = 10. 

spurious halos, such as using actual particle velocities 
to calculate whether putative halos are gravitationally 
bound. It is probably most productive to perform these 
procedures in a later stage of analysis when the halos 
are actually studied, cataloged, correlated, compared 
to observational data, etc. 

The Isodensity (ID) Method 
The main aim of the isodensity (ID) method is to im- 
prove on FOF by identifying halos over a wide range 
of densities, thereby exploiting the full dynamic range 
available in a simulation. In some respects the method 
corresponds to applying the FOF method at a range 
of densities or linking lengths, a course suggested by 
(Davis et al. 1985), but in an integrated and consistent 
way. 

The idea of ID is to calculate a spatial density field 
defined by the particles, and identify halo centers as 
local peaks in this field. Isodensity surfaces are then 
grown around each center, to find those particles be- 
longing to each peak. When the isodensity surfaces of 
different centers touch at some density, then one in- 
stead considers their common isodensity surface. As 
mentioned regarding FOF, in any local spatial region 
there will be statistical fluctuations in the number of 
particles in the region, which will lead to noise in the 
calculated density field (relative to the hypothetical 
underlying mass distribution being sampled by the N- 
body particles). The ID method rejects density peaks 
which are merely noise peaks by using an estimate of 
the uncertainty in the calculated density field. 

The ID method is related to the DENMAX algo- 
rithm (Bertschinger & Gelb 1991; Gelb & Bertschinger 
1994), especially in terms of motivation, but differs in 
most details. (Zurek et al. 1994) also use a similar 
method, but they only consider spherical isodensity 
surfaces. 

The density field calculated from the particles should 
satisfy two conditions. First, the density should be in 
some sense spatially continuous, in that nearby parti- 
cles should generally have similar densities. This con- 
dition is necessary for the interpretation of the method 
in terms of isodensity surfaces. Second, the statistical 
uncertainty of each estimate must be computable so 
that chance associations can be reliably rejected. 

The density at each particle, pi, is calculated as the 
sum of the masses, mj, of the nearest Nk,,., particles, 
divided by the volume of the sphere enclosing those 
particles. This is a form of kernel density estimation, 

(1) .:,; 
j 

using the nearest neighbor method to set the kernel 
smoothing scale, hi, and a kernel function, Ic, with uni- 
form density. A variable smoothing scale is important 
because of the large range in densities present in the 
simulations. By using the nearest neighbor method 
with, e.g., Nkern = 24, the local resolution in the den- 
sity is tailored to the actual resolution available, in 
terms of the local number of particles. 

The uncertainty in the calculated density can be esti- 
mated by assuming that the underlying density distri- 
bution is roughly uniform on scales that contain NkeTn 
bodies, and that the particle positions are sampled at 
random from this density field. Then the uncertainty 
in the density is just due to Poisson noise, and the dis- 
persion, [T, is simply l/d= times the density. For 
non-uniform kernels the situation is more complicated. 
We have experimented with alternative kernel func- 
tions, but find that for the same level of uncertainty 
in the density field, they are more computationally ex- 
pensive. 

In principle the ID method could use alternative den- 
sity measures, so long as the requirements of continuity 
and known uncertainty are satisfied. One possibility is 
the phase space density: the mass per spatial volume 
element per velocity volume element. This may be 
advantageous for cosmology simulations, because low 
density halos generally have small internal velocities, 
(e.g., see figure 3) and hence have similar phase space 
densities to halos with higher spatial density. 

The isodensity surfaces are defined implicitly by cal- 
culating for each particle a linking length, blink, such 
that each particle links to precisely Nlink spatial neigh- 
bors. Then, taking all the particles above some density, 
each group of linked particles (cf FOF), is considered to 
be surrounded by a single isodensity surface. The value 
of Niink should be large enough that at zero density, 
all particles are linked together, but not unnecessarily 
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large since this would compromise the spatial resolu- smaller halos by ID. One halo found by FOF (with 
tion of the method. In practice values of 12 to 24 have Nfmin = 10) is not found by ID; this is because it has 
been used. fewer particles than Nkefn = 24 used by ID in this case. 

We first present a simplified version of the ID 
method: One first sorts the particles by their density, 
and then considers each particle in turn in order of den- 
sity from highest to lowest. Each particle is assigned a 
halo number, to specify which halo it belongs to. The 
halo number for each particle is calculated based on the 
halo numbers of the higher density particles to which 
it is linked, as follows: If there are no linking particles, 
the particle is given a new, unused halo number. If 
the linking particles all have the same halo number, 
the particle gets that number. Otherwise, the link- 
ing particles have different halo numbers. In this case 
the halos corresponding to those halo numbers are said 
to overlap at the density of the particle being consid- 
ered. A new halo number is generated to represent the 
overlap of those halos, and for future halo linking pur- 
poses, particles with those old numbers are taken to 
have the new halo number, so that the new halo num- 
ber can in turn participate in overlaps. However the 
original numbers are recorded so that the previously 
distinct halos are still identified as such. To keep track 
of these overlaps, a tree of halo numbers is constructed, 
where the leaves correspond to the central regions of 
distinct halos, and the internal nodes correspond to 
regions, defined by isodensity surfaces, where various 
halos overlap. 

The first modification which is made to this simpli- 
fied method is to take account of the known uncer- 
tainty in the density field to reject noise peaks. If the 
halo central (peak) density (pC), is.less than nu above 
the overlap density (pO), with u calculated at p,,, then 
the smaller halo is rejected, and joined into the larger 
halo. The value of n is a parameter of the method; 
an appropriate value (typically 3 to 4) can be deter- 
mined by examining test cases (such as Model 3) in 
detail. The motivation for the above condition is that 
if it fails, then there is a reasonable probability (al- 
though not rigorously defined here) that the peak is a 
noise peak in some local region with mean density of 
approximately pO. 

A second modification is made to the simple method 
to improve computational efficiency and facilitate par- 
allelism. Instead of considering each particle in turn 
in order of density, one makes discrete density cuts, 
and the particles above each cut are worked on at the 
same time in a consistent way. The cuts are made so 
that they are small compared to the uncertainty in the 
density, so that the consequences of this modification 
on the results should be small. 

Figure 3 show results obtained using ID. In this par- 
ticular case all of the halos found by ID turn out to be 
real, in terms of their internal velocities (when exam- 
ined individually). Also, ID distinguishes halos even 
in the high density central region of the cluster - the 
single large central halo found by FOF is split into 9 
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Figure 3: As in in figures 1 and 2. The panels on the 
left show all the particles; those on the right show the 
particles in the non-overlapping inner region of each 
halo found by ID. 

In general the results of ID and FOF with Nfinin 
= 10 are rather similar, as shown in figure 4. The 
main noticeable systematic difference is in high density 
regions, where ID finds more halos. In this case FOF 
with Nfntin actually found more halos in total than 
ID, again because with the parameters used, FOF can 
detect halos which have fewer particles. 

Implement at ion 
We implement ID as a series of linking passes which 
will be defined shortly. Linking passes are used to 
calculate the particle kernel scale and linking lengths, 
then the particle densities, and finally the particle halo 
numbers. In the last step, successive density cuts are 
made in which particles without halo numbers are it- 
eratively linked to those with halo numbers, and new 
halos are identified from local density peaks that pass 
the noise criterion. With many density cuts and several 
iterations on each cut, this step involves many indi- 
vidual linking passes, but executes quickly nonetheless 
because each pass involves relatively few particles. 

A linking pass is defined as follows: Given two sub- 
sets of the particles, called sinks and sources, then for 
each sink, one finds all the sources within some dis- 
tance of that sink, where the distance may depend on 
the sinks and sources. For each sink and its list of 
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Figure 4: Comparison of particles and halos from ID 
and FOF (projected into an arbitrary plane). (From 
Model 2.) 

linking sources, some calculations are performed, and 
information in the sink is updated. Because the den- 
sity of particles is so irregular, an adaptive act-tree is 
used to identify the candidate sources quickly. The 
neighbor-finding procedure is almost identical to that 
described in (Warren & Salmon 1995) in the context of 
smooth particle hydrodynamics (SPH). In fact, a large 
portion of the code is in a common library which han- 
dles all data structure manipulation and explicit com- 
munication on message passing parallel architectures. 
The library was originally designed to implement par- 
allel “Fast” summation algorithms, e.g., (Barnes & Hut 
1986) for the computation of gravitational interactions 
in O(N log N) time, but the data structures are far 
more general, as evidenced by this paper. The library 
distributes the data so that the sinks are uniquely 
assigned to processors, while read-only copies of the 
source data are transmitted and stored, on demand, 
on multiple processors. These two conditions com- 
pletely eliminate any coherence problems associated 
with communication and storage and greatly simplify 
the programming. The libraries (and hence any appli- 
cations that use them) have been ported to a wide va- 
riety of systems including message-passing and shared- 
memory machines, as well as networks of workstations 
and uniprocessor systems. In particular, the FOF and 
ID methods described here have been tested on single 
and multi-processor SPARC workstations, a 32-node 
CM-5 at the Australian National University and a 512- 
node Intel Paragon at Caltech. 

Friends of friends can be implemented almost as a 
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special case of ID, using the number of friends as a 
measure of density. Other simplifications include not 
keeping track of halo overlaps or noise estimations. 
Furthermore, density cuts are not restricted as they 
are in ID - they can instead be based on efficiency 
considerations. It is best to minimize the number of 
distinct density cuts, subject to the condition that for 
each cut a large fraction of the particles link on the 
first iteration. 

Results 
Figure 5 shows the halos found by ID in Model 1. The 
halo finder ran for approximately 75 minutes on a 512 
node Paragon at Caltech, and required over 5 Giga- 
bytes of memory. This computation would have been 
prohibitively time-consuming on a uniprocessor system 
- assuming we could have found one with sufficient 
memory! 

Figure 5: All 29,729 halos from Model 1, as found by 
ID, projected into an arbitrary plane; the box is 100 
Mpc on a side. 

Figure 6 shows some additional timing results from 
halo finding on a Paragon. The density calculation 
shows very good scaling, with the CPU time per pro- 
cessor, per number of particles on that processor, 
roughly constant. (The results for the density calcula- 
tion for model 1 with 512 processors are not available, 
but are expected to be of the same order.) 

The scaling is less good for the step involving density 
cuts and halo number calculation: when the number of 
processors is large, increasing the number of processors 
and keeping the total number of particles fixed does not 
reduce the time per processor. This is likely due to the 
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Figure 6: Timing results for the ID method. The time 
is the average CPU time on each processor, N’art is 
the total number of particles, and Nproc the number of 
processors. The different point shapes indicate some- 
what different parameters, (for which the results may 
not be totally comparable), and the numbers corre- 
spond to model numbers from table 1 (in particular, 
different Npart). The dashed line indicates the slope 
for constant time independent of Nproc. 

fact that this part of the method involves many link- 
ing passes with relatively few particles in each pass, 
and the small linking passes parallelize less well than 
large ones. Hence for this step one should use as few 
processors as possible, within limits set by memory 
constraints. In general, halo finding is memory lim- 
ited rather than CPU-time limited, as are the simula- 
tions themselves. Fortunately, the linking passes with 
the poorest parallel efficiencies require less memory so 
fewer processors can be used, compared to the density 
calculation step. 

Conclusions 
We have presented a new isodensity (ID) algorithm 
for finding halos in N-body cosmology simulations, 
and described an implementation on parallel comput- 
ers. This new method has advantages compared to the 
friends of friends (FOF) algorithm, which has also been 
implemented in parallel. In particular the ID method 
robustly finds density peaks even in the high density 
central regions of clusters. Our tests indicate that 
these halos are “real” in the sense of being gravitation- 
ally bound, persistent objects in the simulation, so the 
ID method is a genuine knowledge discovery process. 
The use of a statistical estimate of the uncertainty 

in density estimation to distinguish real peaks from 
chance associations is novel and effective, but lacks a 
firm theoretical foundation. 

By implementing these methods on parallel ma- 
chines we are able to use them to begin the analysis of 
the massive datasets produced by modern high reso- 
lution N-body cosmology simulations. This will allow 
us to address the task of accurately interpreting these 
simulations, to understand the physical processes in- 
volved in the formation and evolution of dark matter 
halos, and to compare the simulations to astronomical 
observations. 
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