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Abstract 

Geoscience studies produce data from various ob- 
servations, experiments, and simulations at an 
enormous rate. Exploratory data mining extracts 
“content information” from massive geoscientific 
datasets to extract knowledge and provide a com- 
pact summary of the dataset. In this paper, we 
discuss how database query processing and dis- 
tributed object management techniques can be 
used to facilitate geoscientific data mining and 
analysis. Some special requirements of large scale 
geoscientific data mining that are addressed in- 
clude geoscientific data modeling, parallel query 
processing, and heterogeneous distributed data 
access. 

Introduction 
A tremendous amount of raw spatio-temporal data is 
generated as a result of various observations, experi- 
ments, and model simulations. For example, NASA 
EOS expects to produce over 1 TByte of raw data and 
scientific data products per day by the year 2000, and 
a loo-year UCLA AGCM simulation (Mechoso et al. 
1991) running at a resolution of lo x 1.25’ with 57 levels 
generates approximately 30 TBytes of data when the 
model’s output is written out to the database every 12 
simulated hours. 

In geoscience studies, a scientist often wants to ex- 
tract interesting geoscientific phenomena that are not 
directly observed from the raw datasets. The time- 
varying location of phenomena reduces the number of 
variables in the data space while their semantic in- 
terpretation makes it more natural for the scientist 
to hypothesize that there might be some meaning to 
the classification problem, for example, based on these 
variables. For example, cyclone tracks, which are the 
trajectories traveled by low-pressure areas over time, 
can be extracted from a sea-level pressure dataset by 
linking observed areas of local pressure minima at suc- 
cessive time steps. Modeled astime-series of polygonal 
cells on the earth surface, these tracks can be used as 
content-based indexes that allow efficient access to “in- 
teresting” regions in a large geophysical dataset. 
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There are obvious similarities between geoscientific 
feature extraction and data mining in business appli- 
cations (Agrawal & Srikant 1995) (e.g., study stock 
market trends by correlating the price movements of 
selected stocks). They both involve sieving through 
large volumes of isolated events and data to locate 
salient (spatio-)temporal patterns in the data. 

The patterns of interest for business data mining 
applications are generally simpler and are formed by 
lists or sets of alpha-numeric data items. On the other 
hand, a geoscientific feature such as a cyclone track 
is a complex spatio-temporal object that is derived 
from massive spatio-temporal datasets through a se- 
ries of computationally expensive algorithms. Geo- 
scientific feature extraction algorithms are often de- 
pendent on complex spatio-temporal definitions of the 
phenomenon of interest. Scientific data mining is fur- 
ther complicated by the fact that scientists often do 
not agree on the precise definition of a natural phe- 
nomenon, leading them to develop similar but incom- 
patible mining routines. 

We cast geoscientific data mining as a database 
query processing problem in order to take advantage 
of established automatic query optimization and par- 
allelization techniques to deliver high performance to 
geoscientific data mining applications. In addition 
to supporting high performance parallel processing, a 
query processing system has to support an expressive 
spatio-temporal data model in order for it to prop- 
erly handle the diversity and complexity of geoscien- 
tific data types. 

Motivated by the requirements of geoscientific data 
mining applications, we are developing an extensible 
parallel geoscientific query processing system called 
Conquest (Shek, Mesrobian, & Muntz 1996). In this 
paper, we describe the design of Conquest, concentrat- 
ing on the features that make it especially suitable for 
geoscientific data mining, specifically geoscientific data 
modeling, parallel query processing, and heterogeneous 
distributed data access. Then we present our experi- 
ences with using Conquest in a real-life geoscientific 
data mining application in which the upward propaga, 
tion of planetary-scale waves affecting the formation of 
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ozone holes are studied. Geoscientific Algebraic Operators 

A large scale geoscientific data analysis application of- 
ten involves the processing and handling of a large 
variety of spatio-temporal geoscientific data, ranging 
from multi-dimensional arrays of floating point num- 
bers (e.g., a sea-level pressure dataset) to time series 
of georeferenced points (e.g., cyclone tracks), and tra- 
ditional alpha-numeric data. 

variable value 

Data Field coordinate space 

Figure 1: Example Geographic Data Field 

A recurring characteristic of these data is that me* 
surements of scientific parameters are recorded over a 
multi-dimensional, and often spatio-temporal, ----^ spar;e. 
As a result, the central idea of the Conquest data 
model is that of the field (see Figure 1) which associates 
parameter values with cells in a multi-dimensional cu- 
ordinate space. Cells can be of various geometric ob- 
ject types of different dimensionality including points, 
lines, polygons, and volumes. The type of the cells and 
hence the coordinate space they lie in are determined 
by coordinate attributes. 

Values recorded for cells lie in a multi-dimensional 
variable space. The types of values that can be asso- 
ciated with a cell in the coordinate space of a field is 
dictated by variable attributes. The data type associ- 
ated with a cell is not limited to simple data types; it 
can belong to a complex spatio-temporal data type or 
even be another field. 

We refer to a cell and the variable value associated 
with it as a cell record. Not all cells in the coordinate 
space of a field are associated with variable values. We 
define a field’s cell coverage (or simply coverage) to be 
the set of distinct (but not necessarily disjoint) cells 
in its coordinate space for which variable values are 
recorded. Given its cell coverage, the field’s cell map- 
pdng maps each ceii in its ceii coverage to a vaiue. The 
cell coverage and cell mapping logically define a field. 

Some important semantic properties of data fields 
are captured in the Conquest data model. For exam- 
ple, the extent within the coordinate space in which 
cells lie and the regularity in which cells lie in the cov- 
erage strongly influence the choice of storage and index 
structures. Moreover, cell records in some fields (e.g., 
time series) have a natural ordering which dictate their 
access patterns. 

The Conquest data model defines an algebra which 
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that used in many relational DBMSs to be applied 
to geoscientific queries. The algebra contains a base 
set of general purpose logical field data manipulation 
operators, while users are allowed to introduce oper- 
ators corresponding to application-specific algorithms. 
Conquest allows scientists to conveniently express their 
intentions by functionally combining complex scientific 
data manipulation operators within the algebra frame- 
work. The set of base logical operators supported can 
be roughly divided into the following classes: 

Set-Oriented Reiationai Operators. We define 
selection, projection, Cartesian product, union, in- 
tersection, difference, and join operators similar to 
their counterparts in the relational algebra. While 
the logical schema for the result of these operators is 
well-defined, the resulting field often does not inherit 
the semantic properties of the input(s). For exam- 
ple, selecting cells in a field based on their variable 
values (e.g., cells in a regular sea-level pressure field 
which recorded parameter value greater than 98Omb) 
in general returns a field whose cell coverage is un- 
strnrtllrfd ir*--.s----. 

Sequence-Oriented Operators. Many geoscien- 
tific data mining applications involve studying the 
change of time-varying parameters. For example, 
given a set of cyclone track fields represented as time 
series of polygonal cyclone extents, we may want 
to find all cyclone trajectories whose spatial extent 
shrinks for 3 consecutive days. As a result, we intro- 
duce a number of sequence-oriented operators which 
generate fields by consuming cell records from input 
fields in sequence, modifying an internal state in the 
orocess, and output cell records of the output field. r---- 
Grouping Operators. Data analysis applications 
often involve evaluating aggregate information on 
collections of related data from a field. We provide 
several cell record collection operators for collecting 
related cell records into subfields in preparation for 
aggregation. The grouping operator associates with 
each cell in a field’s coverage a subfield containing 
all cells in a neighborhood. A nested field is de- 
fined as a field in which the values associated with 
cells in the coverage are fields. The nest operator 
moves selected coordinate attributes of a field into 
the variable space. Each cell in the coverage of the 
resulting field is associated with a field whose coor- 
dinate space is composed of the migrated attributes. 
Nesting a field causes “related” cell records in the 
original field to be grouped in a cell record, in the 
resulting field. The unnest operator has the inverse 
effect of the nest operator. 

Space Conversion Operators. We define oper+ 
tors that support the conversion of the format and 



representation of field data so that differences be- 
tween data fields from different sources can be rec- 
onciliated and then meaningfully compared and cor- 
related. The sample operator derives variable values 
at a user-specified set of cells in the coordinate space 
of a field with an interpolation function. By impos- 
ing a regular grid on a field, sampling (or gridding) 
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variable values at regular grid points through inter- 
polation. In addition, a field’s cells and their vari- 
able values can be changed by applying a mapping 
function to each cell record. Coordinate attribute 
mapping can be used to convert one map projection 
to another, or ‘move” cells relative to their current 
positions by translation or rotation, One use of vari- 
able attribute conversion is to perform aggregation 
on related variable values, after they are collected by 
grouping operators. 

Physical Data Model 
A data field is structured in Conquest as a data stream. 
Conquest uses the cell record as the unit of data pass- 
ing between physical operators, making it possible to 
take advantage of the Conquest grouping operators 
(group, nest and unnest) as a unique mechanism 
control the granularity of data communication. 

to 

Figure 2: Using the Nesting of a Data Field to Con- 
trol the Granularity of Data Communication between 
Conquest Operators 

For example, given a regular 3-D floating-point ar- 
ray measuring sealevel pressure on regularly spaced 
locations on the surface of the earth at regular time in- 
tervals, a cell record is a 4-tuple containing the spatio- 
temporal location and the floating point value recorded 
at the point. Nesting the spatial coordinate dimensions 
inside the time dimension causes the same array to be 
logically viewed as a time series of 2-D spatial array 
each storing the sealevel pressure values recorded on 
the earth surface at the corresponding time (see Figure 
2). This allows cell records in the array to be implicitly 
referenced and hence significantly reduces the overhead 
required to explicitly represent the coordinate of each 
cell. 

Extensible Parallel Query Execution 
Parallelization techniques are commonly used to re- 
move bottlenecks in I/O and computation and improve 
query performance. In particular, Conquest supports 

pipeline processing, partitioning, and multicasting to 
improve query performance. 

Pipeline processing (or dataflow processing) sup- 
ports “vertical” inter-operator parallelism in which two 
connecting operators in a query execution plans are 
assigned to different processors so that execution of 
the operators can overlap. Each operator consumes 
data arriving through a stream from its producer and 
feeds its output to an output stream until it blocks 
(e.g., when the stream buffer is full). In addition 
to its demonstrated effectiveness for traditional set- 
oriented queries, pipeline parallelism naturally sup- 
ports stream query processing techniques which take 
advantage of data ordering to deliver excellent per- 
formance for many sequence- or set-oriented scientific 
queries. The benefit of stream processing is especially 
obvious when a scientific query is coupled with a vi- 
sualization routine which consumes query results as 
thev are b&e mmc?ra.tad. allnwinu viannli~atinn tn f=f + --- o o ---------, ---- ..--- e .-1-1*-d-....- "V "I- 
fectively overlap with query evaluation. 

Intra-operator parallelization (or partitioned paral- 
lelism) is another form of parallelism. It provides op- 
portunities for performance improvement by spread- 
ing I/O and computation across multiple processors or 
storage servers. It is achieved by dividing an input 
stream or dataset among a set of independent oper- 
ators, each responsible for processing or retrieving a 
fragment of the data. In Conquest, a query execution 
plan fragment can be evaluated by a set of Conquest 
processes in a process group, each responsible for eval- 
uating the query execution plan fragment on a portion 
of cell records in the input data stream. 

Conquest also allows a data stream to multicast 
to multiple consumer process groups to provide ad- 
ditional opportunities for I/O and computation to be 
optimized. In addition, the multicast operator explic- 
itly controls data flow to avoid data being sent too 
fast from a producer operator and flooding the system 
when the consumer operators fails to keep pace. 

Automatic Query Parallelization 
Extensibiiity is an important requirement of a geosci- 
entific information system. One of the major impli- 
cations of extensibility to query optimization is that 
the search space of query execution plans has to be 
extended as user-defined operators are introduced. As 
a result, to perform automatic parallelization, the op- 
timizer in an extensible query processing environment 
has to be able to answer the questions of whether an 
operator in a query execution plan can be parallelized, 
and if so, how it can be parallelized. 

The basic approach to achieve intra-operator paral- 
lelism for a anary stream operator is k~ mrtitinn t-he F---------- --- 
input stream into substreams, each of which is assigned 
to a copy of the stream operator. To simplify the dis- 
cussion, we assume that the partitioning is based on 
time ranges. In order words, each processor is assigned 
a fragment of the logical input stream and is respon- 
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while convenient, accessing data from distributed ob- 
jects eliminates opportunities to take advantage of the 
query capability of data repositories to optimize query 
evaluation. Some database servers and scientific data 
format libraries efficiently support some data manipu- 
lation and filtering operations. Most notably, indexes 
can be defined to provide alternative access paths to 
data and to filtered out unnecessary data internally 
without having them to be translated for external con- 
sumption. In addition, many problems do not fit the 
stream paradigm (e.g., slab multi-dimensional subar- 
ray extraction), and fit better into the storage man- 
agement subsystem rather than the query execution 
engine (Graefe 1993). As a result, it is often advanta- 
geous to optimize extraction of data from external data 
sources by pushing operations and filters into the data 
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duce the amount of data that needs to be extracted 
out of the data source. 

A description of our proposed approach to optimize 
access to heterogeneous datasets by taking advantage 
of the fact that some repositories can efficiently execute 
some operations can be found in (Shek, Mesrobian, & 
Muntz 1996). In short, by consulting the data dic- 
tionary, a reference to a distributed object in a query 
execution plan may be mapped to a collection of scan 
operators to the underlying data repositories for the 
object. A set of operator ingestion rules guide how 
operators in a query expression can be “pushed” into 
logical scan operators for execution by the correspond- 
ing repository. 

Data sources supported by Conquest include files in 
popular scientific data formats such as HDF (Nat 1993) 
containing multi-dimensional raster datasets, and ex- 
tended relational DBMS Postgres which is used as both 
a storage and an external content-based index server. 

Implementations and Experiences 
Conquest has been ported to run on massively par- 
allel processor supercomputers (IBM SPl, SP2 and 
Intel Paragon) as well as workstation farms using 
the portable message passing library PVM as the 
inter-process communication mechanism. It has been 
in use for the past two years at UCLA and JPL 
for exploratory data analysis and data mining of 
spatio-temporal phenomena produced by the UCLA 
and ECMWF Atmospheric General Circulation Mod- 
els (AGCMs) and satellite-based sensor data such as 
NCAR’s ECMWF Global Basic Surface and Upper Air 
Advanced Analyses. Previously reported geoscientific 
l-l a a mininv a.rtivitien inrlndc. t.he evtrart.inn anrl anal- .t --I- ---------. s-1* ._“-I- -------- “.__ ---1-1-1--.. ..“llU u-u.- 
ysis of cyclonic activity, blocking features, and oceanic 
warm pools (Stolorz et al. 1995). 

Upward Energy Propagation 
The upward propagation of planetary-scale waves from 
the troposphere into the stratosphere has a profound 
effect on the structure of the stratospheric circulation. 

Occasionally, the rapid growth and upward propaga 
tion of waves during winter in the northern hemisphere 
can lead to a reversal of the high-latitude stratospheric 
wind from westerly (i.e., west to east) to easterly. On 
longer time scales! the weaker upward propagation of 
the planetary waves in the southern hemisphere leads 
to a stronger westerly winds than in the northern hemi- 
sphere. This results in the formation of a well-defined 
“ozone hole” each spring over Antartica, while no such 
ozone hole develops in the Arctic. 

To detect upward propagation of wave energy into 
the stratosphere, we might first compute a measure of 
the phase difference of a particular component (e.g., 
zonal wave number 1, the wave with the longest wave- 
length), at a given latitude, between two pressure levels 

..---- in the u~~“;I troposphere (e.g., CA--l- --J Yfifi--L I--- aumu ana ouuma rev- 
els). Next we locate waves of sufficient strength (am- 
plitude) at the two neighboring pressure levels by com- 
puting the first Fourier coefficient of the geopotential 
height data values measured at these pressure levels. 

We implemented the query as a series of Conquest 
operators which computation can be partitioned along 
the time dimension for parallel evaluation, i.e., the in- 
put datasets can be divided into (equal-size) pieces and 
processed in parallel. This partitioning is driven by the 
fact that the window of relevance of the query is instan- 
taneous because no information from an earlier period 
is needed in order to extract upward wave propagation 
event at a particular time. 

We have performed the study on 3 KDF-based 
geopotential height datasets on a 4-node Sun work- 
station network (consisting of SparcStation 10s and 
SparcStation 20s): a NCAR ECMWF Upper Air Ad- 
vanced Analyses dataset (14 geopotential levels, 2.5’ 
lat. x 2.5’ lon. x 12 hours resolution, from 1985-1994, 
2Gbyte), a CSIRO AMIP dataset (6 levels, 3.184’ lat. 
x F;,62r;O ion, x fi hmlra rpanlrrt.inn frnm 1970-1Q~fi - *&--A” ~“““*uY~v.~, ..“I.. a” I V-A”““, 
370Mbyte), and a UCLA AGCM dataset (6 levels, 4O 
lat. x 5’ lon. x 12 hours resolution, from 1980-1989, 
330Mbyte). 7304 instances of upward wave propa- 
gation events are extracted from the largest NCAR 
ECMWF Analyses dataset in 8610 seconds with 1 node 
and in 2430 seconds on 4 nodes. The speedup is not 
perfect mainly because of the non-even distribution of 
upward wave propagation events over time (see Figure 
3) and that of the computing resources on the hetero- 
geneous collection of computing nodes. 

+~r~er maepenaem upwara wave energy propagation 
events are extracted, trajectories of such events that 
persisted for more than 1 day are located. Figure 4 
shows the number of upward wave propagation trajec- 
tories between 500mb and 50mb levels from the CSIRO 
AMIP dataset at different latitudes, demonstrating 
that the frequency of upward wave propagation tra- 
jectories decreases as it approaches the equator. 
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Figure 3: Number of upward wave propagation trajec- 
tories between 500mb and 50mb levels extracted from 
the CSIRO AMIP dataset per year 

Figure 4: Number of upward wave propagation tra- 
jectories between 500mb and 50mb levels at different 
latitudes extracted from the CSIRO AMIP dataset 

Conclusions 
Conquest defines a geoscientific data model, and ap- 
plies distributed and parallel database query process- 
ing techniques to handle computationally expensive 
data mining queries on massive distributed geoscien- 
tific datasets. The usefulness of Conquest as a data 
mining system is demonstrated in a upward energy 
propagation study in which Gbytes of raw data are 
digested and summarized into less than 1 Mbyte of en- 
ergy propagation trajectory information (representing 
a size reduction of 4 orders of magnitude) which help 
scientists gain insight into the process of energy prop- 
agation and ozone hole formation. 

Query optimization in Conquest emphasizes paral- 
- ----” lelization and optimized data access. This is becasue 

we realized that the benefit of algebraic transforma- 
tion (Wolniewicz & Graefe 1993) is limited due to the 
application-specific nature of scientific operators. Fur- 
thermore, it is unclear what the effects of algebraic 
query expression transformations are on the accuracy 
of query results since many scientific operators are 
very sensitive to the accuracy and precision of its in- 
puts; small round-off errors introduced at one point 
in a query execution plan may snowball as data ilows 

through multiple operators and cause significant error 
in the result. 

OASIS (Mesrobian et al. 1996) is a complementary 
effort to Conquest at UCLA that aims to develop a flex- 
ible environment for scientific data analysis, knowledge 
discovery, visualization, and collaboration. It provides 
application developers, as well as end-users, the logi- 
cal abstraction that the environment is simply a set of 
objects. While the core OASIS services, implemented 
in Sunsoft’s CORBA-compliant NEO, provide users 
with transparent access to heterogeneous distributed 
objects without regards for their underlying storage 
and representation, they do not immediately support 
parallel processing of data retrieved from these ob- 
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Conquest as the OASIS distributed query service to 
exploit distributed object computing technologies to 
support complex geoscientific query processing. 
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