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Automated Discovery of Medical Expert System 
Rules from Clinical Databases based on Rough Sets 

Abstract 

Automated knowledge acquisition is an important re- 
search issue to solve the bottleneck problem in de- 
veloping expert systems. Although many inductive 
learning methods have been proposed for this purpose, 
most of the approaches focus only on inducing clas- 
sification rules. However, medical experts also learn 
other information important for diagnosis from clin- 
ical cases. In this paper, a rule induction method is 
introduced, which extracts not only classification rules 
but also other medical knowledge needed for diagno- 
sis. This system is evaluated on a clinical database of 
headache, whose experimental results show that our 
proposed method correctly induces diagnostic rules 
and estimates the statistical measures of rules. 

Introduct ion 
One of the most important problems in develop- 
ing expert systems is knowledge acquisition from ex- 
perts(Buchanan and Shortliffe 1984). In order to au- 
tomate this problem, many inductive learning meth- 
ods, such as induction of decision trees(Breiman, et al. 
1984; Quinlan 1993)) rule induction methods(Michalski 
1983; Michalski, et al. 1986; Quinlan 1993) and rough 
set theory(Pawlak 1991; Ziarko 1993), are introduced 
and applied to extract knowledge from databases, 
which shows that these methods are appropriate. 

However, most of the approaches focus only on in- 
ducing classification rules, although medical experts 
also learn other information important for medical di- 
agnostic procedures. Focusing on their learning proce- 
dures, Matsumura et al. propose a diagnostic model, 
which consists of three reasoning processes, and de- 
velop an expert system, called RHINOS( Rule-based 
Headache and facial pain INformation Organizing 
System) (Matsumura, et al. 1986). 

Since RHINOS diagnostic processes are found to be 
based on the concepts of set theory, it is expected that 
a set-theoretic approach can describe this diagnostic 
model and knowledge acquisition procedures. 

In order to characterize these procedures, we intro- 
duce the concepts of rough set theory, which clarifies 
set-theoretic characteristics of the classes over combi- 
natorial patterns of the attributes, precisely discussed 
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by (Pawlak 1991). Based on this theory, we develop 
a program, called PRIMEROSE-REX ( Probabilistic 
Rule Induction Method based on Rough Sets and Re- 
sampling methods for Expert systems), which extracts 
rules for an expert system from clinical databases, and 
applies resampling methods to the estimation certainty 
factors of derived ru1es.r 

This system is evaluated on the datasets of RHI- 
NOS domain. The results show that the proposed 
method induces RHINOS diagnostic rules correctly 
from databases and that resampling methods can es- 
timate the performance of these rules and certainty 
factors. 

The paper is organized as follows: in Section 2, we 
discuss RHINOS diagnostic model. Section 3 shows 
rough set theory and representation of RHINOS rules 
based on this theory. Section 4 presents an algorithm 
for induction of RHINOS diagnostic rules. Section 5 
gives experimental results. Section 6 and Section 7 
discusses the problems of our work and related work, 
respectively. Finally, Section 8 concludes this paper. 

RHINOS 
RHINOS is an expert system which diagnoses clinical 
cases on headache or facial pain from manifestations. 
In this system, a diagnostic model proposed by Mat- 
sumura(Matsumura, et al. 1986) consists of the follow- 
ing three kinds of reasoning processes: exclusive rea- 
soning, inclusive reasoning, and reasoning about com- 
plications. 

First, exclusive reasoning excludes a disease from 
candidates when a patient does not have a symptom 
which is necessary to diagnose. Secondly, inclusive rea- 
soning suspects a disease in the output of the exclusive 
process when a patient has symptoms specific to a dis- 
ease. Finally, reasoning about complications suspects 
complications of other diseases when some symptoms 
which cannot be explained by the diagnostic conclusion 
are obtained. 

‘This system is an extension of PRIMEROSE, which 
induces classification rules from databases, based on rough 
sets and resampling methods(Tsumoto and Tanaka 1995). 
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Each reasoning is rule-based, and all the rules needed 
for the diagnostic processes are acquired from medical 
experts in the following way. 

(1)Exclusive Rules The premise of an exclusive 
rule is equivalent to the necessity condition of a di- 
agnostic conclusion. From the discussion with medi- 
cal experts, we select the following six basic attributes 
which are minimally indispensable to defining the ne- 
cessity condition: 1. Age, 2. Pain location, 3. Nature 
of the pain, 4. Severity of the pain, 5. History since 
onset, 6. Existence of jolt headache. For example, the 
exclusive rule of common migraine is defined as: 
In order to suspect common migraine, 
the following symptoms are required: 
pain location: not eyes, 
nature :throbbing or persistent or radiating, 
history: paroxysmal or sudden and 
jolt headache: positive. 

One of the reason why we select the six attributes 
is to solve the interface problem of expert systems: if 
the whole attributes are considered, we also have to in- 
put the symptoms which are not needed for diagnosis. 
To make exclusive reasoning compact, the only min- 
imal requirements are chosen. It is notable that this 
kind of selection can be viewed as the ordering of given 
attributes, which can be induced from databases auto- 
matically. Therefore we intend td formulate induction 
of exclusive rules by using the whole given attributes. 
After the induction, the minimal requirements for de- 
scribing exclusive rules can be acquired. 

(2)Inclusive Rules The premises of inclusive rules 
are composed of a set, of manifestations specific to a 
disease to be included. If a patient satisfies one set 
of symptoms, we suspect this disease with some prob- 
ability. This rule is derived by asking the following 
items for each disease to the medical experts: 1. a set 
of manifestations by which we strongly suspect a dis- 
ease. 2. the probability that a patient has the disease 
with this set of manifestations:SI(Satisfactory Index) 
3. the ratio of the patients who satisfy the set to all 
the patients of this disease:CI(Covering Index) 4. If 
the total sum of the derived CI(tCI) is equal to 1.0 
then end. Otherwise, goto 5. 5. For the patients of 
this disease who do not satisfy all the collected set of 
manifestations, goto 1. Therefore a positive rule is de- 
scribed by a set of manifestations, its satisfactory in- 
dex (SI), which corresponds to accuracy measure, and 
its covering index (CI), which corresponds to total pos- 
itive rate. Note that SI and CI are given empirically 
by medical experts. 

For example, one of three positive rules for common 
migraine is given as follows. 
If history: paroxysmal, jolt headache: yes, 
nature: throbbing or persistent, 
prodrome : no, intermittent symptom: no, 

age 
Tazle 1: A Small Database 

nat prod nau Ml class 
1 50-59 occ per 0 0 1 m.c.h. 
2 40-49 who per 0 0 1 m.c.h. 
3 40-49 lat thr 1 1 0 migra 
4 40-40 who thr 1 1 0 migra 
5 40-49 who rad 0 0 1 m.c.h. 
6 50-59 who per 0 1 1 m.c.h. 
DEFINITIONS: lot: location, nat: nature, prod: 
prodrome, nau: nausea, Ml: tenderness of Ml, 
who: whole, occ: occular, lat: lateral, per: 
persistent, thr: throbbing, rad: radiating, 
m.c.h.: muscle contraction headache, 
migra: migraine, 1: Yes, 0: No. 

persistent time: more than 6 hours, 
and location: not eye, 
then common migraine is suspected with 
accuracy 0.9 (X=0.9) and this rule covers 
60 percent of the total cases (CI=O.6). 

(3)Disease Image This rule is used to detect com- 
plications of multiple diseases, acquired fromm all the 
possible manifestations of the disease. Using this rule, 
we search for the manifestations which cannot be ex- 
plained by the conclusions. Those symptoms suggest 
complications of other diseases. For example, the dis- 
ease image of common migraine is: 
The following symptoms can be explained by 
common migraine: pain location: any or 
depressing: not or jolt headache: yes or . . . 

Therefore, when a patient who suffers from common 
migraine is depressing, it is suspected that he or she 
may also have other disease. 

As shown above, three kinds of rules are straight- 
forward, and an inducing algorithm is expected to be 
implemented on computers easily. Thus, we introduce 
rough set theory in order to describe these algorithms 
as shown in the next section. 

Formalization of Rules 
Probabilistic Rules 

In order to describe three kinds of diagnostic rules, 
we first define probabilistic rules, using the follow- 
ing three notations of rough set theory(Pawlak 1991). 
To illustrate the main ideas, we use a small database 
shown in Table 1. 

First, a combination of attribute-value pairs, which 
is corresponding to a complex in AQ (Michalski 1983), 
is denoted by an equivalence relation Rf, which is de- 
fined as follows. 
Definition 1 (Equivalence Relation) Let U be a 
universe, and V be a set of values. A total function 
f from U to V is called an assignment function of an 
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attribute. Then, we introduce an equivalence relation 
Rf such that for any u,v E U, uRfv iff j(u) = j(v). 

For example, [age = 50 - 59]&[loc = occular] will be 
one equivalence relation, denoted by Rf = [age = 50 - 
59]&[Zoc = occular]. Secondly, a set of samples which 
satisfy Rf is denoted by [z&, corresponding to a 
star in AQ terminology. For example, when {2,3,4,5} 
is a set of samples which satisfy 

6 
age 

[~1;1[~~~=40--49~ is equal to {2,3,4,5]. 
= 40 - 491, 

Finally, thirdly, U, which stands for “Universe”, de- 
notes all training samples. 

According to these notations, probabilistic rules are 
defined as follows: 

Definition 2 (Probabilistic Rules) Let Rf be an 
equivalence relation specified by some assignment func- 
tion j, D denote a set whose elements belong to a class 
d, or positive examples in all training samples (the uni- 
verse), U. Finally, let IDI denote the cardinality of 
D. A probabilistic rule of D is defined as a quadru- 
ple, < Rf v d, (YJQ (D), IQ+(D) >, where Rf v d 
satisfies the following conditions: 3 

In the above definition, Q corresponds to the accuracy 
measure: if Q! of a rule is equal to 0.9, then the ac- 
curacy is also equal to 0.9. On the other hand, IG is 
a statistical measure of how proportion of D is cov- 
ered by this rule, that is, a coverage or a true positive 
rate: when K is equal to 0.5, half of the members of 
a class belong to the set whose members satisfy that 
equivalence relation. 

For example, let us consider a case of a proposi- 
tion [age = 40 - 491 + m.c.h. Since [~][,~~=40--491 
is equal to (2,3,4,5) and D is equal to {1,2,5,6}, 
qage=40--4q@‘) = 1~~,5)1/1~~,3,4,5)1 = 0.5 and 
qage=40--491(D) = I{23 5)1/l& 2,5,6)l = 0.5. Thus, 
if a patient, who complains a headache, is 40 to 49 
years old, then m.c.h. is suspected, whose accuracy 
and coverage are equal to 0.5. 

RHINOS Diagnostic Rules 

By the use of these notations, RHINOS diagnostic rules 
are described in the following way. 

21n this notation, “n” denotes the nth sample in a 
dataset (Table 1). 

31t is notable that this rule is a kind of probabilistic 
proposition with two statistical measures, which is an ex- 
tension of Ziarko’s variable precision model(VPRS) (Ziarko 
1993). 

(1) Exclusive rules: R v d s.t. R = &Ri = 
AVj [aj = vk], and FERN (D) = 1.0. 4 In the above exam- 

ple, the relation R for migraine is described as: [age = 
40 - 491 A ([location = lateral] V [Eocation = whole]) A 
[nature = throbbing] A ([history = paroxysmal] V 
[history = persistent]) A [jolt = yes] A [prod = 
yes] A [nau = yes] A [Ml = no] A [iId2 = no]. 

(2) Inclusive rules: R “Ai d s.t. R = viRi = 
v/if vk[O+ = Q], CIR~(D) > &, and KR~(D) > 6,. 

In the above example, the simplest relation R for 
migraine, is described as: [nature = throbbing] V 
[history = paroxysmal] V bolt = yes] V [Ml = yes]. 
However, induction of inclusive rules gives us two prob- 
lems. First, SI and CI are overfitted to the training 
samples. Secondly, the above rule is only one of many 
rules which are induced from the above training sam- 
ples. Therefore some of them should be selected from 
primary induced rules under some preference criterion. 
These problems will be discussed in the next section. 

(3) Disease Image: R *1;” d s.t. R = VRiV[ai = 
~j], and Q& (D) > 0 (K& (D) > 0). 

In the above example, the relation R for migraine is 
described as: 
[age = 40 - 491 V [location = lateral] V [location = 
whole] V [nature = throbbing] V [severity = strong] V 
[severity = weak] V [history = paroxysmal] V 
[nausea = yes] V bolt = yes] V [Ml = no] V jM2 = no]. 

As shown in the formal definition of these rules, a 
coverage /CR (13) play an important role in ClaSSifiCatiOn 
of diagnostic rules. 

Induction of Rules 
An induction algorithm of RHINOS rules consists of 
two procedures. One is an exhaustive search proce- 
dure to induce the exclusive rule and the disease image 
for each disease through all the attribute-value pairs, 
corresponding to selectors in AQ (Michalski 1983)) and 
the other is a postprocessing procedure to induce inclu- 
sive rules through the combinations of all the attribute- 
value pairs, which corresponds to complexes in AQ. 

Exhaustive Search 
Let D denote training samples of the target class d, or 
positive examples. This search procedure is defined as 
shown in Figure 1. In the above example in Table 1, 
let d be migraine and [age = 40 - 491 be selected as 
[ui = vj]. Since the intersection [~]l,~~=40--49~ n D(= 

4Strictly Speaking, this proposition should be written 
as: d + R. However, for comparison with other two rules, 
we choose this notation. 
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procedure Exhaustive Search; 
VEU- 

L : List; /* A list of elementary relations */ 
begin 

L := PO; /* PO: A list of elementary relations */ 
w;Fg/f # 0) do 

Select one pair [ai = vj] from L; 
if ([x][,~=~~I II D # 4) then do 

/* D: a set if positive examples */ 
begin 

&j := Rdj V [ai = vj]; 
/* Disease Image */ 

if (qajcvjl(D) > 6,) 
then Li, := Lo + {[ai = vj]); 
/* Candidates for Inclusive Rules */ 

if (K[,+=~~I(D) = 1.0) 
then Rer := R,, A [ai = q]; 
/* Exclusive Rule */ 

end 
L := L - [aj = vj]; 

end 
end {Exhaustive Search); 

Figure 1: An Algorithm for Exhaustive Search 

{3,4}) is not equal to 4, this pair is included in the 
disease image. However, since alage=4s-4gl(D) = 0.5, 
this pair is not included in the inclusive rule. Finally, 
since D c [z]lase.4c-4sl (= {2,3,4,5}), this pair is also 
included in the exclusive rule. 

Next, the other attribute-value pair for age, [age = 
50 - 591 is selected. However, this pair will be aban- 
doned since the intersection of [z]lage=50-5s~ and D is 
empty, or [4[age=50-59] n D = 4. 

When all the attribute-value pairs are examined, not 
only the exclusive rule and disease image shown in the 
above section, but also the candidates of inclusive rules 
are also derived. The latter ones are used as inputs of 
the second procedure. 

Postprocessing Procedure 
Because the definition of inclusive rules is a little weak, 
many inclusive rules can be obtained. In the above 
example, an equivalence relation [nau = l] satisfies 
D fl [x] naU=rl # 4, so it is also one of the inclusive 
rules o 1 “m .c.h.“, although SI of that rule is equal 
to l/3. In order to suppress induction of such rules, 
which have low classificatory power, only equivalence 
relations whose SI is larger than 0.5 are selected. For 
example, since the above relation [age = 40 - 491 is less 
than this precision, it is eliminated from the candidates 
of inclusive rules. Furthermore, PRIMEROSE-REX 
m inimizes the number of attributes not to include the 
attributes which do not gain the classificatory power, 
called dependent variables. This procedure can be de- 
scribed as shown in Figure 2. In the above example in 
Table 1, the coverage of an attribute-value pair [prod = 

‘, 

procedure Postprocesiing Procedure; 
var 

i : integer; M, Li : List; 
begin 

Lr := Li,; /* Candidates for Inclusive Rules */ 
i := 1; M  := {}; 
for i := 1 to n do 

/* n: Total number of attributes */ 
begin 

Select one pair R = A[ai = vj] from Li; 
Li := Li - {R}; 
if (w(D) > L) 

then do Si, := Si, + {R}; 
/* Include R as Inclusive Rule */ 

else M  := A4 + {R}; 
end 

L i+~ := (A list of the whole combination of 
the conjunction formulae in M); 

end 
end {Postprocessing Procedure }; 

Figure 2: An Algorithm for Postprocessing Procedure 

0] for “m .c.h” takes a maximum value. Furthermore, 
since the accuracy ~h,~~d=s (D) is equal to 1.0, it is 
included in inclusive rules o 1 “m .c.h”. The next maxi- 
mum one is [Ml = 11, whose coverage is equal to 1.0. 
Since this accuracy is also equal to 1.0, it is also in- 
cluded in inclusive rules. At this point, we have two in- 
clusive rules as follows: [prod = 0] a=l’Y=l’O “7n.c.h.” 
and [Ml = l] or=l’~=l’o “m .c.h.” Repeating these 
procedures, all the inclusive rules are acquired. 

Estimation of Statistical Measures 
The above definition of statistical measures shows that 
small training samples causes their overestimation. In 
the above example, both of the measures are equal 
to 1.0. This means that this rule correctly diagnoses 
and covers all the cases of the m igrane. However, in 
general, these meanings hold only in the world of the 
small training samples. In this sense, accuracy and 
coverage are biased. Thus, we should correct these 
biases by introducing other estimating methods, since 
the biases cannot be detected by the induced method. 

Note that this problem is similar to that of error 
rates of discriminant function in multivariate analy- 
sis (Efron 1982), the field in which resampling methods 
are reported to be useful for the estimation. 

Hence the resampling methods are applied to esti- 
mation of accuracy and coverage, as shown in the fol- 
lowing subsection. 

Cross-Validation and the Bootstrap 
Cross-validation method for error estimation is per- 
formed as following: first, all training samples C are 
split into V blocks: {Lr , La, a . . , Lv}. Secondly, repeat 
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for V times the procedure in which rules are induced 
from the training samples .C - L; (i = 1, . . . , V) and ex- 
amine the error rate erri of the rules using Ci as test 
samples. Finally, the whole error rate err is derived by 
averaging erri over i, that is, err = CF=, em-i/V (this 
method is called V-fold cross-validation). Therefore 
this method for estimation of coverage and accuracy 
can be used by replacing the calculation of err by that 
of coverage and accuracy, and by regarding test sam- 
ples as unobserved cases. 

On the other hand, the Bootstrap method is exe- 
cuted as follows: first, empirical probabilistic distribu- 
tion (Fn) is generated from the original training sam- 
ples (Efron 1982). Secondly, the Monte-Carlo method 
is applied and training samples are randomly taken 
by using Fn. Thirdly, rules are induced by using new 
training samples. Finally, these results are tested by 
the original training samples and statistical measures, 
such as error rate are calculated. These four steps are 
iterated for finite times. Empirically, it is shown that 
repeating these steps for 200 times is sufficient for es- 
timation (Efron 1982). 

Interestingly, Efron shows that estimators by 2-fold 
cross-validation are asymptotically equal to predictive 
estimators for completely new pattern of data, and 
that Bootstrap estimators are asymptotically equal to 
maximum likelihood estimators and are a little over- 
fitted to training samples (Efron 1982). Hence, the 
former estimators can be used as the lower bounds of 
both measures, and the latter as their upper bounds. 

Furthermore, in order to reduce the high variance 
of estimators by cross validation, we introduce re- 
peated cross validation method, which is firstly intro- 
duced by Walker (Walker and Olshen 1992). In this 
method, cross validation methods are executed repeat- 
edly (safely, 100 times)(Tsumoto and Tanaka 1995), 
and estimates are averaged over all the trials. In sum- 
mary, since our strategy is to avoid the overestima- 
tion and the high variabilities, combination of repeated 
a-fold cross-validation and the Bootstrap method is 
adopted in this paper. 

Experimental Results 
We apply PRIMEROSE-REX to the following three 
medical domains: headache(RHINOS domain), whose 
training samples consist of 1477 samples, 10 classes, 
and 20 attributes, cerebulovasular diseases, whose 
training samples consist of 620 samples, 15 classes, and 
25 attributes, and meningitis, whose training samples 
consists of 213 samples, 3 classes, and 27 attributes. 
In these experiments, 6, and S, are set to 0.75 and 
0.5, respectively. The experiments are performed by 
the following four procedures. First, these samples are 
randomly split into half (new training samples) and 
half (new test samples). For example, 1477 samples are 
split into 738 training samples and 739 training sam- 
ples. Secondly, PRIMEROSE-REX, AQ15 and CART 
are applied to the new training samples. Thirdly, 

Table 2: Experimental Results (Headache) 
Method ER-A IR-A DI-A 
PIE-REX 95.0% 88.3% 93.2% 
Experts 98.0% 95.0% 97.4% 
CART - 85.8% 
AQ15 - 86.2% - 
R-CV 72.9% 78.7% 83.8% 
BS 98.4% 91.6% 95.6% 
DEFINITIONS: PR-REX: PRIMEROSE-REX, 
ER-A: Exclusive Rule Accuracy, 
IR-A: Inclusive Rule Accuracy, 
DI-A: Disease Image Accuracy 

Table 3: Experimental Results (Cerebulovasculuar 
Diseases) 

Method ER-A IR-A DI-A 
PR-REX 91.0% 84.3% 94.3% 
Experts 97.5% 92.9% 93.6% 
CART - 79.7% - 
AQ15 - 78.9% - 
R-CV 72.9% 78.7% 83.8% 
BS 93.4% 92.5% 95.9% 

the repeated cross validation method and the boot- 
strap method are applied to the new training sam- 
ples in order to estimate the accuracy and coverage 
of PRIMEROSE-REX. Finally, the induced results are 
tested by the new test samples. These procedures are 
repeated for 100 times and all the estimators are aver- 
aged over 100 trials. 

Experimental results are shown in Table 2 to 4. Ex- 
clusive rule accuracy(ER-A) means how many train- 
ing samples that do not belong to a class are ex- 
cluded correctly from the candidates. Inclusive rule 
accuracy(IR-A) is equivalent to the averaged classifi- 
cation accuracy. Finally, disease image accuracy(DI- 
A) shows how many symptoms, which cannot be ex- 
plained by diagnostic conclusions, are detected by the 
disease image. The first row is the results obtained 
by using PRIMROSE-REX, and the second one is the 
results derived from medical experts. And, for com- 
parison, we compare the classification accuracy of in- 
clusive rules with that of CART and A&-15, which 
is shown in the third and fourth row. Finally, in the 
fifth and sixth row, we present the results of estimation 
by repeated cross-validation method (R-CV) and the 
bootstrap method (BS). These results can be summa- 
rized to the following three points. First, the induced 
rules perform a little worse than those of medical ex- 
perts. Secondly, our method performs a little better 
than classical empirical learning methods, CART and 
AQ15. Finally, thirdly, R-CV estimator and BS es- 
timator can be regarded as the lower boundary and 
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Table 4: Experimental Results (Meningitis) 
Method ER-A IR-A DI-A 
PR-REX 88.9% 82.5% 92.6% 
Experts 95.4% 93.2% 96.7% 
CART - 81.4% - 
AQ15 - 82.5% - 
R-CV 64.3% 61.3% 73.8% 
BS 89.5% 93.2% 98.2% 

the upper boundary of each rule accuracy. Hence the 
interval of these two estimators can be used as the es- 
timators of accuracy and coverage of each rule. 

Discussion 
Exclusive Rule 
As discussed in Section 3, we intend to formulate in- 
duction of exclusive rules by using the whole given at- 
tributes, although the original exclusive rules are de- 
scribed by the six basic questions. Therefore induced 
exclusive rules have the maximum number of attributes 
whose conjunction R also satisfies ICR(D) = 1.0. If 
this maximum combination includes the six basic at- 
tributes as a subset, then this selection of basic at- 
tributes is one of good choices of attributes, although 
redundant. Otherwise, the given six attributes may 
be redundant or the induced results may be insuffi- 
cient. For the above example shown in Table 1, the 
maximum combination of attributes is {age, location, 
nature, history, jolt, prod, nau, Ml, M2 }. 5 Since this 
set does not include an attribute “severity”, the six 
given attributes or the induced results are insufficient 
in this small database. In this case, however, the sixth 
attributes are acquired by medical experts through a 
large number of experienced cases. Thus, the induced 
attributes should be revised by using additional sam- 
ples in the future. 

On the contrary, in the database on headache, the 
maximum combination is 13 attributes, derived as fol- 
lows: Age, Pain location, Nature of the pain, Sever- 
ity of the pain, History since onset, Existence of jolt 
headache, Tendency of depression, and Tenderness of 
Ml to M6, which is a superset of the six basic at- 
tributes. Thus, this selection can be a good choice. 

In this way, the induction of maximum combination 
can be also used as a “rough” check of induced results 
or our diagnosing model on exclusive rules, which can 
be formulated in the following way. 6 

Let A and E denote a set of the induced attributes 
for exclusive rules and a set of attributes acquired from 

‘Severity cannot be a member, since [sewer = weak] V 
[sewer = strong] is included in both exclusive rules. 

‘This discussion assumes that the whole attributes are 
sufficient to classify the present and the future cases into 
given classes. 

domain experts. Thus, the following four relations can 
be considered. First, if A c E, then A is insufficient or 
E is redundant. Second, if A = E, then both sets are 
sufficient to represent a diagnosing model in an applied 
domain. Third, if A > E, then A is redundant or E is 
insufficient. Finally, fourth, if intersection of A and E 
is not empty (An E # b), then either or both sets are 
insufficient. 

Reader may say that the above relations are weak 
and indeterminate. However, the above indefinite 
parts should be constrained by information on domain 
knowledge. For example, let us consider the case when 
A C E. When E is validated by experts, A is in- 
sufficient in the first relation. However, in general, 
E can be viewed as A obtained by large samples, and 
A > E should hold, which shows that a given database 
is problematic. Moreover, the constraint on exclusive 
rules, KR(D) = 1.0, suggests that there exist a class 
which does not appear in the database, because the al- 
ready given classes cannot support &R(D) = 1.0, that 
is, [+ n D # D will hold in the future. 

On the other hand, when E is not well given by ex- 
perts and A is induced from sufficiently large samples, 
E will be redundant, which means that the proposed 
model for E does not fit to this database or this do- 
main. 

This kind of knowledge is important, because we 
sometimes need to know whether samples are enough 
to induce knowledge and whether an applied inducing 
model is useful to analyze databases. 

Thus, the above four relations give a simple exami- 
nation to check the characteristics of samples and the 
applicability of a given diagnosing model. It is our 
future work to develop more precise checking method- 
ology for automated knowledge acquisition. 

Related Work 
Discovery of Association Rules 
Mannila et al.(Mannila, et al. 1994) report a new 
algorithm for discovery of association rules, which is 
one class of regularities, introduced by Agrawal et 
al.(Agrawal, et al. 1993). Their method is very similar 
to our method with respect to the use of set-theoretical 
operations. 

(1) Association Rules: The concept of association 
rules is similar to our induced rules. Actually, associa- 
tion rules can be described in the rough set framework. 

That is, we say that an association rule over T (train- 
ing samples) satisfies W =+ B with respect to y and CT, 
if 

I [XIW n [xl13 I 2 an, (1) 
and 

(2) 

where n, y, and rs denotes the size of training sam- 
ples, a confidence threshold, and a support threshold, 
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respectively. Also, W and B denote an equivalence re- 
lation and a class, respectively. Furthermore, we also 
say that W is covering, if 

Ibl~l 2 gn. (3) 

It is notable that the left side of the above formulae 
(6) and (8) correspond to the formula (3) as to K, cov- 
erage, and the left side of the formula (7) corresponds 
to (2) as to a, accuracy. The only difference is that we 
classify rules, corresponding to association rules, into 
three categories: exclusive rules, inclusive rules, and 
disease image. 

The reason why we classify these rules is that this 
classification reflects the diagnostic model of medical 
experts, which makes the computational speed of di- 
agnostic reasoning higher. 

(2) Mannila’s Algorithm: Mannila introduces an 
algorithm to find association rules based on Agrawal’s 
algorithm (Mannila, et al. 1994). The main points 
of their algorithm are the following two procedures: 
database pass and candidate generation. Database 
pass produces a set of attributes L, as the collection 
of all covering sets of size s in C,. Then, the can- 
didate generation calculates Cs+i, which denotes the 
collection of all the sets of attributes of size s, from L,. 
Then, again, the database pass procedure is repeated 
to produce Ls+l. The effectiveness of this algorithm 
is guaranteed by the fact that all subsets of a covering 
set are covering. 

The main difference between Mannila’s algorithm 
and PRIMEROSE-REX is that Mannila uses the check 
algorithm for covering to obtain association rules, 
whereas we use both accuracy and coverage to com- 
pute and classify rules. 

In the discovery of association rules, all the combina- 
tions of attribute-value pairs in C, have the property 
of covering. On the other hand, our algorithm does 
not focus on the above property of covering. It selects 
an attribute-value pair which has both high accuracy 
and high coverage. That is, PRIMEROSE-REX does 
not search for regularities which satisfy covering, but 
search for regularities important for classification. 

Thus, interestingly, when many attribute-value pairs 
have the covering property, or covers many training 
samples, Mannila’s algorithm will be slow, although 
PRIMEROSE-REX algorithm will be fast in this case. 
When few pairs cover many training samples, Man- 
nila’s algorithm will be fast, and our system will not 
be slower. 
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