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Abstract 

In this paper we present a method for discovering ap- 
proximately common motifs (also known as active mo- 
tifs) in multiple RNA secondary structures. The sec- 
ondary structures can be represented as ordered trees 
(i.e., the order among siblings matters). Motifs in 
these trees are connected subgraphs that can differ in 
both substitutions and deletions/insertions. The pro- 
posed method consists of two steps: (1) find candidate 
motifs in a small sample of the secondary structures; 
(2) search all of the secondary structures to determine 
how frequently these motifs occur (within the allowed 
approximation) in the secondary structures. To re- 
duce the running time, we develop two optimization 
heuristics based on sampling and pattern matching 
techniques. Experimental results obtained by running 
these algorithms on both generated data and RNA sec- 
ondary structures show the good performance of the 
algorithms. To demonstrate the utility of our algo- 
rithms, we discuss their applications to conducting the 
phylogenetic study of RNA sequences obtained from 
GenBank. 

Introduction 
Data mining is fun and useful (Agrawal 1994). Most of 
the research has been concentrating on record-oriented 
applications (Piatetsky-Shapiro & Frawiey i99i; Sil- 
berschatz, Stonebraker, & Ullman 1991; Han, Cai, & 
Cercone 1993). Here we study a different type of data 
mining, namely, discovering structural patterns in sci- 
entific data. We focus on finding approximately com- 
mon motifs (also known as active motifs) in multiple 
RNA secondary structures. This problem is important 
in computational biology (Le et al. 1989). For ex- 
ample, in predicting secondary structures for a given 
mRNA, one may first find a set of ‘optimal’ and ‘sub- 
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optimal’ structures using existing algorithms (Zuker 
1989). Then to determine which one among these 
structures is closest to the one occurring naturallv. one o ---..---.--~, _-_ 
may search for active motifs in the structures (Le et al. 
1989). The motifs appearing in many predicted struc- 
tures are more likely to be present in the real struc- 
ture. Finding active motifs in secondary structures of 
different RNA molecules is useful as well. Often, the 
information obtained from such motifs, in conjunction 
with results obtained from sequence alignments, helps 
to conduct the phylogenetic study of the structure for 
a class of sequences (Shapiro & Zhang 1990). 

To find the motifs in RNA secondary structures by 
a computer, we need a suitable representation for the 
structures. This paper adopts the tree representation 
previously proposed in (Shapiro & Zhang 1990). We 
define both the helical stems and loops to be nodes in 
a tree. Figure 1 illustrates a RNA secondary structure 
and its tree representation. The structure is decom- 
posed into five terms: stem, hairpin, bulge, internal 
loop and multi-branch loop. In the tree, H represents 
hairpin nodes, I represents internal loops, B represents 
bulge loops, M represents multi-branch loops, R repre- 
sents helical stem regions (shown m connecting arcs) 
and N is a special node used to make sure the tree is 
connected l’h, trzaa :, rrma~.-Lmrl tr\ hn c.m ,.wLmml e-0 . lUZj “I~~ IU ~“IIUIU~ilrjU U” us au. “LU~‘.zU “US 

where the ordering is imposed based upon the 5’ to 3’ 
nature of the molecule. This representation allows one 
to encode detailed information of RNA by associating 
each node with a property list. Common properties 
may include sizes of loop components, sequence infor- 
mation and energy. 

We consider a motif in a tree T to be a connected 
subgraph of T, viz., a subtree U of T with certain nodes 
being cut at no cost. (Cutting at a node n in U means 
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though our techniques should generalize to any scien- 
tific domains where data are naturally represented as 
trees. 

Our Approach 
Terminology 
We say a tree T contains a motif M within distance d 
(or M approximately occurs in T within distance d) if 
there exists a subtree U of T such that the minimum 
distance between M and U is less than or equal to 
d, allowing zero or more cuttings at nodes from U. 
Let S be a set of trees. The occurrence number of a 
motif M is the number of trees in S that contain M 
within the allowed distance. Formally, the occurrence 
number of a motif M with res 

b! 
ect to distance d and 

set S, denoted occurrence-noS(M), is k if there are 
k trees in S that contain M within distance d. For 
example, consider Fig. 2 again. Let S contain the 
three trees in Fiq. 2(a). Then occuwence-noz(Ml) 
= occurrence-nos(Mz) = 3; occuwence-noi = 
occurrence-noi (Md) = 3. Given a set S of trees, our 
algorithm finds all the motifs M where M is within 
the allowed distance Dist of at least Occur trees in S 
and IMI 2 Size, where IMI represents the size, i.e., 
the number of nodes, of the motif M. (Dist, Occur 
and Size are user-specified parameters.) 

Discovery Algorithm 
Our algorithm consists of two phases: (1) find promis- 
ing motifs among a randomly chosen sample A of the 
trees in S; and (2) calculate the occurrence numbers 
of the promising motifs in all of S to determine which 
promising motifs satisfy the specified requirements. 

Phase (1) consists of two sub-phases. In sub-phase 
A, we consider all 
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from the tree pairs as follows. Suppose the nodes in 
a tree T are numbered according to some order (e.g., 
a preorder numbering). Let t[z’J represent the node of 
T whose position in the left-to-right preorder traversal 
of T is i; T[i] represents the subtree rooted at t[i]. 
We find, for each pair of sample trees Tl and Tz, the 
largest approximately common motifs, within distance 
Dist, between Tl [d and TZ D] for all 1 5 i < ITI I, 
1 < j < lT21. (The asymptotic time complexity of the 
algorithm is O(Dist2nrn2(min{hr, Zr))(min{hz, Zz))), 
where ni, i = 1,2, is the number of nodes in tree Ti , hi 
is the height of Ti and li is the number of leaves in Ti.) 
Let C contain the found motifs M with IMI 2 Size; 
these constitute candidate motifs. For each candidate 
motif M, the tree pairs from which M is discovered are 
recorded. 

In sub-phase B, we store the candidate motifs into a 
prefix tree PRET (similar to Kosaraju’s (1989) suffix 

tree for trees). Each candidate motif M is decomposed 
into a collection of paths, called p-strings. Each p 
string contains a sequence of nodes starting at the root 
of M and ending at a leaf of M. For example, Fig. 
3(a) shows four candidate motifs; Fig. 3(b) shows the 
aatxintra nf nnc~ nf the mntifa r ““*“am” “I VIII “I vu.4 ~~~““I~“. 
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Figure 3: (a) Four candidate motifs Ml, Mz, MS and 
M4. (b) MI’S p&rings. (c) Illustration of the PRET, 
constructed by inserting the p-strings of the motifs in 
(a) into the PRET; each node in the PRET is labeled 
by its preorder number. 

The edges of the PRET are labeled with characters 
such that the concatenation of the edge labels on the 
path from the root to a leaf of the PRET is a pstring of 
some candidate motif. We insert the p-strings of candi- 
date motifs into the PRET as into a trie except that if 
a series of nodes have only one child, we collapse these 
nodes to a single node whose parent edge is associated 
with a string instead of a single character. Figure 3(c) 
shows an example PRET (the nodes with the labels 7 
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and 8 show the result of a collapsing). For each node v 
in the PRET, let string(v) be the string on the edge la- 
bels from the root to v. We associate v with two fields: 
motif(v) and count(v). The field motz’f(v) tells which 
candidate motifs contain string(v) (string(v) may be 
a p-string or a prefix of some pstring in the candidate 
motifs). The field count(v) shows the number of sam- 
ple trees that contain string(v) within the allowed dis- 
tance. This field is calculated by traversing the PRET 
in a bottom-up fashion (e.g., by a postorder traversal) 
and counting the values in the field motif(v) during 
the traversa1.l The PRET can be constructed asymp- 
totically in O(iv’j time and space where iv’ is the total 
length of all pstrings contained in the candidate motifs 
in C (Kosaraju 1989). After constructing the PRET, 
we traverse the PRET in a top-down fashion (e.g., by a 
preorder traversal), pruning unlikely candidate motifs 
using the optimization heuristics described in the next 
subsection. The result is a set of “promising” motifs. 

In phase (2), we calculate the occurrence numbers of 
the promising motifs with respect to the entire set S. 
Determining which are the most likely is a statistical 
exercise. We use simple random sampling without re- 
alnremmf fPnrhran 10771 t.n a&rt. aamnle trees fremA r‘.“““,‘“.“’ \‘-.,“‘.“” &“, , , 1- 1vA-w1 ‘-*A-r-y 

the set S. Consider a candidate motif M. Let N (n, 
respectively) denote the number of trees in the set S 
(the sample d, respectively) that contain M within 
the allowed distance. ISI denotes the set size and IdI 
denotes the sample size; F = N/IS] and f = n/IdI. If 
it is assumed that f is normally distributed, then we 
obtain the following. 

Fact: With probability = 99%, F is in the interval n A 
(FL, Fu) where 

The symbol t is the value of the normal deviate corre- 
sponding to the desired confidence probability. When 
the probability = 99%, t 
values of ISI, IdI 

= 2.58 (Cochran 1977). The 
are given; f, n can be obtained from 

phase (1) of the discovery algorithm. Thus, if the es- . +:-..+- f r-- ., iv\ j t-a..,.., c.,, CL, ,..,a:A,c, -,+:c cllllrtc”r (“U A 1” , \ “(;l;~Udl~ 1”I cut: c.cululuabt; lll”bll 
M, then with probability 2 99%, M won’t satisfy the 
specified requirements. We therefore eliminate it from 
consideration. 

When checking whether a promising motif M occurs 
in a tree T E S within the allowed distance Did, we 
add variable length don’t cares (VLDCs) to M as the 

*The tree pairs from which a candidate motif is dis- 
covered are recorded. For each string(v), we add up the 
numbers of distinct trees from which the candidate motifs 
in the field motif(v) are discovered and assign the sum to 
cl.,. E-IA “,..“.rf..\ Ullci llci,U Ir”W‘O~“,. 

new root and leaves to form a VLDC pattern V and 
then compare V with T using the pattern matching al- 
gorithm developed in (Zhang, Shasha, & Wang 1994). 
(A VLDC can be matched, at no cost, with a path or 
portion of a path in T. The algorithm calculates the 
minimum distance between V and T after implicitly 
computing an optimal substitution for the VLDCs in 
V, allowing zero or more cuttings at nodes from T.) 

Besides statistical filtering, we incorporate a second 
optimization heuristic to eliminate the redundant cal- 
culation of occurrence numbers (an expensive dynamic 
programming calculation that must be repeated for ev- -- I_^ 
ery tree in 8). -we say iM; is a stib-pattern of M2 11 tar 
every p-string of MI, represented as string(u) in the 
PRET, there exists a p-string of M2, represented as 
string(v) in the PRET, such that v is a descendant 
of u in the PRET. Observe that occurrence-noi 
2 occz1Trence-noi for all 0 5 k < Did. Thus if 
M2 is in the final output set, then we need not bother 
matching MI against trees in S, since it will be too. If 
Ml is not in the final output set, M2 won’t be either, 
since its occurrence number will be even lower. 

By traversing the PRET in a top-down pre- 
--J-. L -^-_^I-- 1 ___^ :--1:~lCl.. :- -^--^-^ L- ALL_ --_ “IUtx LrtLYersm) we II‘qJlll;llq ,,lc”rp”rabe c,,t: yre- 
ceding optimization heuristics. Let u, v be two 
nodes in the PRET where v is an descendant 
of 26. Observe that occurrence-noi(string(u)) > 
occurrence-noi(string(v)) for all 0 5 k 5 Dist. 
Furthermore, for any p-string P of a motif M, 
occurrence-noi (P) > occur-rence-noi (M) for all 0 5 
k 5 Did. Thus in visiting a node u, we check the 
field count(u) and use our sampling formula described 
above to estimate string(u)‘s occurrence number. Sup- 
pose it is estimated that the occurrence number of 
string(u) is below OCC~P! we eliminate all the mo- 
tifs containing string(u) from further consideration. 
Furthermore, we prune all motifs containing string(v) 
where v is a descendant of u in the PRET. After 
traversing the PRET, we only calculate the occurrence 
numbers of the unpruned motifs with respect to the 
entire set S. 

Experimental Results 
Data and Parameters 
We carried out a series of experiments to evaluate 
the effectiveness and speed (measured by eiapsed CPU 
time) of our approach. The programs were written in 
C and run on a SUN SPARC workstation under the 
SUN operating system version 4.1.2. The data was a 
set of randomly generated 80 trees. To make the exper- 
iments manageable, the size of the trees was fixed at 
15. Each node label of the generated trees was drawn 
randomly from the range A to Z. To gain a better 
understanding of the performance of our algorithms, 
we also tested the algorithms on real RNA secondary 
structures. Eighty secondary structures (trees) were 
,,la.tJ raneLm1.r F;r\m thn rlntnhne, in tha Nc.t;nnnl U~LGlrY.zU IalLu”II‘IJ ll”lll “II= UQ”aV-v *Aa Y&&b I.U”A”IIcuI 
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Cancer Institute. The sizes of the secondary structures 
ranged from 10 to 15. 

The experimental parameters and their base val- 
ues were as follows: SetSize = 80, SizeRatio = 
SO%, Size = 5 (i.e., the minimum size of an in- 
teresting motif is 5), Dist = 1 and Occur = 70. 
The sample size was obtained by multiplying SetSize 
by SizeRatio. Twenty samples were chosen ran- 
domly; each time one sample was used in running the 
set and the average was plotted.2 The metric used 
to evaluate the effectiveness of our algorithms was 
HitRatio = (NumDiscovered/TotalNum) x 100% 
where NumDiscovered is the number of interesting 
motifs discovered by our techniques. HitRatio stands 
for the percentage of the interesting motifs obtained 
from the exhaustive search method. By exhaustive 
search, we mean selecting as candidates all motifs in 
the set that satisfy the size constraint. One would like 
this percentage to be as high as possible. 

Performance Analysis 
Figure 4 compares the effectiveness of our optimized 
approach (the discovery algorithm with the optimiza- 
tions) with a non-optimized approach for varying sam- 
ple sizes. Figure 5 compares their running times with 
AL-C ..i? LL.. .--1. ̂ ._^ +:..a ^^^_ -1. --d.L-Tl TC ̂ ^_ L- ^^^_ cllab “I Irue tx‘liZU5bl”C SC:iLTCII UK:cII”U. lC tiitll “t: *cc‘, 
that very few qualifying motifs were missed by the 
two proposed optimization heuristics (Fig. 4). Both 
heuristics sped up the discovery algorithm by a factor 
of 10. Moreover, our optimized approach was 10,000 
times faster than the brute force method (Fig. 5). 

g 60.0- 
p X--XNon-opthnized 
53 D--El Optimiid 40.0 - 

20.0 - 

0.0 
10.0 60.0 50.0 70.0 90.0 

size Rstlo (9b) 

Figure 4: Performance of the pruning techniques for 
varying sample sizes. 

‘The results obtained from the generated and real data, 
for both the base values and other parameter values, were 
rather consistent. Hence, we only present here the results 
for the RNA molecules with the base values. 
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6.0 1 -I 

I 

Hi%uteiom 
M--KNon-oplimii 

5.0 Q--0QJtiimiZWl 

1.0 
t 1 

““1o,.,,._J.o 
size Rib(%) . 

Figure 5: Comparison of the running times between 
the brute force method, our optimized approach and 
the approach without optimizations. 

Phylogenetic Study 
In this experiment, we were interested in seeing 
whether active motifs help with the phylogenetic study, 
TM.. “,.l,.,c.wl +L..*, 4k-:1:,,. ..c -lJN A -^,-...^- “̂ - cm,.-. “VC DGlCLwzU UllLOG LCLIIIIII~;D “I I1I1Cl~i-I DcqualLc;J ll”l,l 

GenBank (Burks et al. 1991) pertaining to the po 
liovirus, human rhinovirus and coxsackievirus. Po- 
liovirus contained two sequences: polio3 sabin strain 
and pol3mut; human rhinovirus contained two se- 
quences: rhino 2 and rhino 14; and coxsackievirus 
also contained two sequences: ~0x5 and cvb305pr. 
We folded the 5’ non-coding region of these mRNA 
sequences and transformed the resulting suboptimal 
structures into trees using the algorithm developed in 
(Shapiro & Zhang 1990). This resulted in 6 files, where 
each file contained 3,000 trees and the trees had be- 
tween 70 and 180 nodes. 

Using the proposed method, we found 100 most ac- 
tive tree-structured motifs (i.e., those with the largest 
occurrence numbers) for each sequence. It was ob- 
served that rhino 2 had very few active motifs ap- 
pearing in its family uniquely, whereas the other 5 se- 
quences had many such motifs. To avoid biased results, 
we took away rhino 2. Then we found the intersections 
of every two sequences’ motifs. Figure 6 summarizes 
the results. The figure shows that one can get more 
intersections from sequences of the same family. This 
rranlt. incliraba t.hat P~~CIP~PPQ in m&f ~nrr~annn& tn L”Y..AY aI*-*“U.,“Y YIlVY “IVYYYlYY 1.4 AI&“YII Y”~L..“y”~..” “V 

closeness in family. Consequently, one may use the 
motifs as a way to predict ancestry. 
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