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Abstract 
No company so far achieved the ultimate goal of zero 
faults in manufacturing. Even high-quality products 
occasionally show problems that must be handled as 
warranty cases. In this paper, we report work done during 
the development of an early warning system for a large 
quality information database in the automotive industry. 
We present a multi-strategy approach to flexible 
prediction of upcoming quality problems. We used 
existing techniques and combined them in a novel way to 
solve a concrete application problem. The basic idea is to 
identify sub populations that, at an early point in time, 
behave like the whole population at a later time. Such sub 
populations act as early indicators for future 
developments. We present our method in the context of a 
concrete application and present experimental results. At 
the end of the paper, we outline how this method can be 
generalised and transferred to other KDD application 
problems. 

Introduction 

No company so far achieved the ultimate goal of zero 
faults in manufacturing. Even very high-quality products, 
like Mercedes-Benz vehicles, occasionally show problems 
that must be handled as warranty cases. At Mercedes- 
Benz, such cases are recorded in a large database, which 
contains information on all Mercedes vehicles. For each 
vehicle, information on its technical configuration and its 
repair history is stored. This information includes faults 
and their repairs, the mileage at the repair time, costs 
associated with the repair, and the area where the repair 
was performed, for example. Currently, this quality 
information database contains about 7 million vehicles; 
the net size of the database is about 25 Giga bytes. 

Domain experts access this database for various tasks 
including 
l observation of product quality in the field, 
l early detection of important faults and their causes, 
. prediction of warranty costs, 
l initiation of actions for product improvement. 
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Most database analyses are currently limited to 
standardised SQL queries and descriptive statistics. 
Nevertheless, users expect a lot of useful information 
hidden in these databases that is not accessible by 
conventional methods. Knowledge Discovery in 
Databases (KDD) (cf. Piatetsky-Shapiro & Frawley 1991; 
Frawley, Piatetsky-Shapiro, & Matheus 1992; Fayyad et 
al. 1996) has the potential to disclose this hidden 
information and also to improve the analysis capabilities 
by facilitating the tasks of the users. 

A successful application of KDD techniques in the 
quality information domain at Mercedes-Benz will have 
high impact on the business. Warranty costs belong to the 
best-kept secrets of a company. Typically, a lot of money 
and prestige are involved. As an indication of the 
magnitude of this problem area, consider publicized recall 
actions of car manufacturers. Such actions can easily cost 
dozens of millions of dollars, not counting the negative 
impact on the image of the company. 

The presented application domain has been tackled 
following the task model proposed by Reinartz & Wirth 
(1995) and Wirth & Reinartz (1995). In a thorough 
application analysis we first elicited the users’ 
requirements, expectations and prior knowledge. Various 
application goals were identified in this phase. One of 
these goals is the development of an early warning system 
for quality problems. In this paper, we present a particular 
multi-strategy approach to prediction that is very useful 
for an early warning system. This approach is very 
flexible, not tied to particular techniques, and can be 
generalised to other KDD problems such as focusing. 

Scientifically, this application domain serves to 
evaluate and improve KDD techniques. In particular, we 
develop and refile a methodology of ISDD to guide a user 
through the process. This methodological approach is task 
oriented and not driven by techniques. It is based on a 
systematic refinement of tasks that will be finally mapped 
to techniques. This task refinement provides us with a 
framework to set up trials with different techniques until 
the best combination of techniques is found. Thus, the 
iterative and interactive nature of the KDD process 
(Fayyad et al., 1996, Bra&man & Anand 1994) is 
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supported. Here, we focus on the application point of 
view. 

As argued in Wirth & Reinartz (1995), the main 
bottleneck for JXDD applications is not the lack of 
techniques. The challenge is to exploit and combine 
existing algorithms in the most profitable way in the 
context of real applications. Most successful KDD 
applications (e.g., SKICAT (Fayyad, Weir, & Djorgovski 
1993), OpportunityExplorer (Anand & Kahn 1993)) did 
not rely on sophisticated new techniques. The reason for 
their success was the intelligent combination and 
adaptation of known techniques w.r.t. the constraints of 
the application problem. Once developed, these methods 
(i.e., combinations of techniques) can be transferred to 
other similar application problems. The application 
reported in this paper follows the same spirit. We rely on 
existing (although slightly modified) techniques, which 
we combined in a novel way to solve a concrete 
application problem. The resulting method can now be 
transferred to similar KDD application problems. 

The paper is organised as follows. First, we describe 
the application problem in more detail. Then, we outline 
our solution approach. We first identified the tasks that 
need to be solved and refined these tasks until they could 
be mapped to KDD techniques. We describe our concrete 
realisation and show experimental results. Finally, we 
critically assess the results, sketch potential benefits of 
our approach to KDD in general, and point out future 
work. 

Application Problem 

Currently, Mercedes-Benz is developing an early warning 
system on top of the quality information database 
mentioned in the previous section. The early warning 
system should discover upcoming quality problems as 
soon as possible. The earlier quality problems are 
detected the earlier product improvement actions can be 
initiated to save future warranty costs. Furthermore, an 
early warning system can help to avoid expensive recall 
actions. If an upcoming quality problem with a line of 
cars is discovered early enough, there may be time to 
overcome this problem by preventive maintenance actions 
at regular maintenance intervals, for example. Expensive 
follow-up faults can be prevented and the customer does 
not realise that there could have been a problem in the 
future. 

The current system is based on conventional 
information technology and simple descriptive statistics. 
It is rigid, restricted in its capabilities, and consumes a lot 
of resources because it operates on the whole database. 
Using a KDD approach, we aim at making the system 
more flexible, less expensive, faster in terms of 
computing time, and capable to warn even earlier. 

The solution approach described in this paper was 
inspired by the following observation. The experts look at 
sub populations of the cars if they want to get a first idea 

about the rate of certain faults. For instance, people in 
certain countries seem to be more concerned with the 
paint of a car. If the experts want to check the quality of 
the paint they look at the cars in this country first. Any 
problem with the paint is likely to be observed there first. 
Taxis are another sub population which is watched closely 
because they drive many miles in a short period. 

Teic 1 
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Figure I Predicting fault rates using early indicator cars 

The question was, could this approach be generalised 
and automated. Do there exist sub populations of cars 
which, in certain aspects, behave like the whole 
population of cars at a later point in time? If yes, how can 
they be characterized by easily observable attributes? In 
the following, we call such sub populations early indicator 
cars (EICs). 

Figure 1 illustrates the idea of EICs. Assume we 
observe a certain aspect of the fault profile, for instance a 
fault rate, over the life time of cars. The lower line in the 
diagram shows the accumulated fault rate for a certain 
fault for cars from the same production period. Assume 
that we are now at time T,, and we want to predict the 
fault rate at time T,. If we had EICs then we could 
compute the fault rate for the EICs at time T,, and use this 
value as predicted value for the fault rate of the whole 
population at time T,. In this example, the EICs would 
indicate an increasing fault rate although the total fault 
rate still looks fine at time T,,. 

The discussion above suggests the following high-level 
procedure. First, select a production period which is used 
for learning. It needs to be a period in the past such that 
the values of the relevant attributes at time T, are already 
known. In the following, we will call this production 
period the learning production period. From this learning 
production period we derive a procedure for the 
identification of EICs which is independent from a 
particular production period. This identification procedure 
will then be applied to subsequent production periods. 
Each production period then has its own set of EICs 
which are used for prediction.’ 

1 From another point of view, the identification procedure for EICs could be 
viewed as a particular prediction model. 
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Figure 2: Main steps for detecting EICs 

In the context of an early warning system, EICs are an 
attractive concept because they promise the following 
benefits: 
l Significant changes in the fault profile will be detected 

earlier. Such changes include upcoming new quality 
problems, a change in the fault rate or average costs 
for certain faults. 

l Analyses can be performed on smaller sets of vehicles. 
Thus, resources are saved which can be used for 
different or more detailed analyses. Some analyses, for 
instance the application of sophisticated learning 
algorithms, may not even be possible on the whole 
population.2 

l The EICs can be used to predict various aspects of the 
fault profile, e.g., values, interesting events, and 
trends. Thus, prediction is much more flexible than 
with traditional statistical methods like time series 
analyses. 

While EICs alone will not be sufficient for a 
comprehensive early warning system, they will certainly 
form  a very powerful central part. 

Solution Approach 

In this section, we describe our approach to detection of 
EICs. We pursued a task-oriented approach. We first 
identified the tasks that needed to be solved, refined these 

2 Therefore, the EIC approach is closely linked to the focusing problem in 
KDD. 
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tasks and made them more precise until they could be 
mapped to KDD techniques. Different techniques could 
have been applied to solve the tasks. In the next sections, 
we describe one particular choice of techniques and report 
experimental results. 

Basic idea 
Our solution approach consists of three major steps. 
1. Characterize the fault profile for the whole population 
of cars at a certain time T,. 
2. Select EICs. 
3. Generate an identification procedure for EICs. 

In the first step, the fault profile of the whole 
population of cars at a certain time T, is characterized. A 
fault profile is a vague term  which could be characterized 
in various ways. In any case, it will be described in terms 
of fault relevant attributes. 

In the second step, EICs need to be selected. For this 
purpose, we compute the values for the fault attributes at 
an earlier time T,,. Those cars which fit the fault profile 
of the whole population at T, are considered to be EICs. 

The identification procedure for EICs must take into 
account that EICs need to be identified at production time 
or shortly after. Therefore, we cannot use attributes that 
relate directly to the fault profile. EICs need to be 
characterized by easily observable attributes, like type 
and configuration of a car or areas where it was sold. This 
requires the use of two separate sets of attributes. One set 
is related to the fault profile and the other set contains 
attributes that can be observed at production time. 
Figure 2 shows the procedure. 



Realisation 
In this section, we describe techniques and set-up of 
experiments we conducted to assess the applicability of 
the approach outlined in the previous sections. 

The main choice for the realisation concerned the fault 
profile. We decided to represent the fault profiles as a 
hierarchy of classes. Classes contain cars which are 
similar according to a set of attributes which domain 
experts judged to be relevant for the fault profile. 

The characterization of a fault profile can then be 
mapped to a (conceptual) clustering task (e.g., Gennari, 
Langley, & Fisher 1989). For several reasons, we selected 
the hierarchical conceptual clustering algorithm 
ECOBWEB (Reich 1994) for this clustering task. 
ECOBWEB can handle both numeric and symbolic 
attributes and provides some other features, like the 
hierarchy correction to avoid ordering effects, which 
proved to be useful. Since we chose a clustering approach 
for the first step, the second step must be defined 
accordingly. 

The second step is the selection of EICs. We compute 
values of the fault attributes for a selected earlier time T,, 
for all cars included in the first step. The resulting 
instances are then examined how similar they are to 
classes from the first step. If an instance is similar to an 
existing class, then we assume that this instance fits the 
fault profile at time T, and could thus serve as an early 
indicator car. If the instance is not similar to any existing 
class, then it cannot be an early indicator. 

This second step can be reduced to a test whether the 
instances of time T*, can be assigned to existing classes of 
the hierarchy, For this test, ECOBWEB was slightly 
modified. ECOBWEB is an incremental hill climbing 
system. Each instance is presented incrementally and 
ECOBWEB tries to incorporate this instance. In the 
simplest case, the instance can be added to an existing 
class. The description of the class will then be adapted but 
-the structure of the hierarchy remains unchanged. Other 
operators change the structure of the hierarchy by splitting 
classes, merging classes, or adding a new class. All of 
these operators are tentatively applied, their result is 
evaluated, and the best operator is permanently executed. 

We changed ECOBWEB such that the operators are 
evaluated but not executed. If one of the structure 
changing operators wins, then the instance does not fit 
into the existing hierarchy. In other words, it does not fit 
into the fault profile of time T,. If the structure preserving 
operator wins, then the instance fits and is considered to 
be an early indicator car. 

Using this test, we selected a sub population of cars that 
are considered as early indicator cars. If we were only 
interested in the present production period we could 
simply take this set for future prediction tasks. Since we 
are really interested in identifying early indicator cars for 
future production periods, we need to characterize the 
early indicator cars independent of the production period. 
This characterization could then be used to identify the set 
of EICs for each subsequent production period. 

Therefore, in the third step we try to discriminate EICs 
and NonEICs using attributes that can be easily observed 
at production time or shortly after. We selected attributes 
which described the configuration of the car (e.g., engine 
type, transmission type, special equipment), the sales 
area, and the average mileage, which can be easily 
calculated from the information collected at the first 
maintenance visit to the garage. 

This task can be mapped to a standard classification 
task with two classes, EIC and NonEIC.’ Both classes are 
described using the configuration attributes and the 
average mileage per day. The latter attribute is computed 
from the mileage that is observed at the first maintenance 
in the garage. The resulting instances were then assigned 
to two classes according to the result of the second step. 
Finally, we employed two standard rule learning 
programs, CN2 (Clark & Niblett 1988) and C4.5 (Quinlan 
1993), to learn descriptions for these two classes. 

These descriptions are independent of the fault profile 
and a particular production period. The identification 
procedure for EICs for a production period now is simply 
to select all cars from this period which fit the description. 

Experimental Results 
In this section, we present results of our experiments. 
Numbers in diagrams have been modified because the 
actual numbers are confidential. The interpretation of the 
diagrams remains valid. 

For our experiments, we chose a learning production 
period of three months in 1991. The times T, and T, were 
set to 12 and 6 months, respectively. Faults were 
restricted to faults in the injection system. In cooperation 
with domain experts we selected 8 attributes which are 
relevant for the fault profile. Among others, these 
attributes described average mileage between two faults, 
average time between two faults, total number of faults in 
the period, and costs per faults. For each car produced in 
the learning production period, values for these attributes 
were computed for life times T, and T,. There were 2628 
cars considered. 

First, ECOBWEB was used to cluster the resulting 
instances and to construct a class hierarchy based on the 
attribute values for T,. Then, attribute values at time T, 
were used for selection of EICs as described in the 
previous section. About one third of the cars (i.e., 862 
cars) were classified as EICs. 

Then, we selected 28 attributes that can be easily 
observed early in the life time of the car. We applied both 
CN2 and C4.5 with different parameter settings until the 
learning result seemed to be reasonable. It turned out that 
EICs and NonEICs were not easy to separate. In 
retrospect, this is not surprising since the vast majority of 
cars had no quality problems during the first 12 months. 
For a large portion of these cars their assignment to one of 
the two classes was almost random. 

3 Later, we will see that results became better after we introduced a third 
CIasS. 

,’ ‘, 

,‘,‘I 
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Figure 3: Evaluation results 
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. ., After this observation, we tried to bias the algornnms 
towards cars that actually had a quality problem. We 
introduced a third class containing the EICs which had at 
least one fault. Now, both CN2 and Cl.5 could better 
discriminate NonEICs from the other two classes. After 
some iterations with different parameter settings two rule 
sets were produced. 

The resulting rules could be used in two ways to extract 
EICs. Rules for EICs could be applied directly to identify 
EICs or rules for NonEICs could be applied to exclude 
Non-EICs. The latter alternative turned out to be better. 

This identification procedure was applied to cars from 
the learning production period and three subsequent 
production periods. This resulted in eight sets of EICs. 
Each set contained about one third of the cars produced 
during the respective period. The goal of the experiments 
was to predict different fault rates, average costs per car, 
and a hot list of faults. The values of the EICs six months 
after the production date were used to predict the 
corresponding twelve months values of the whole set. 

Figure 3 shows the results for the prediction of the fault 
rate (total number of faults divided by the number of 
produced cars) at the left and the average cost per car at 
the right, respectively. Other tests, for instance predicting 
fault rates for individual parts produced similar results. 

CN2-EICs overestimated fault rates but picked up 
trends accurately.” On costs they performed badly. The 
predictions of C4.5EICs were always pretty close to the 
actual values, both for fault rates and costs. In many cases 

In addition to predicting values, we also used EICs to 
predict hot lists of faults. It turned out that for most cases, 
ranking and relative frequency of individual faults were 
predicted accurately. In some cases, however, there were 
significant deviations from the predicted values. We 
suspect that these deviations are interesting in their own 
right. At least some of them may indicate unexpected 
developments that deserve attention by domain experts. 

In summary, the results exceeded our expectations. 
They show that EICs exist and can be identified 

4 In this application domain, trend prediction is sticient Specific 
quantitative values are not necessary. 

automatically. The feasibility of this approach has been 
provea. 

Conclusions 

In this paper, we presented a multi-strategy approach to 
flexible prediction and demonstrated its feasibility. Our 
experiments showed that the EIC approach can be used to 
predict future developments. It will now be further refined 
and incorporated in an early warning system for quality 
problems. 

The experiments are an example for a typical KDD 
process. After the identification of the prediction learning 
task we went through several steps of pre-processing, 
applied various data mining techniques to the pre- 
processed data, and evaluated and revised the results in a 
post-processing stage of the KDD process. 
Methodological considerations helped us to structure this 
process and to generalise the results. 

Applicability of the EIC approach 
Based on our experience with transferring the EIC 
approach’, we expect that its applicability and its benefits 
depend on the domain. Probably, EICs neither exist in all 
application domains nor can they address all aspects of an 
application problem. Nevertheless, if EICs exist, as in our 
quality information domain, they can be use for different 
purposes. 

EICs provide a flexible way of prediction. They are not 
fixed to prediction of values of just one attribute. They 
can predict different attributes or events, depending on the 
application domain. They can also predict different trends, 
which is very important for any decision support system. 

Furthermore, EICs are an intelligent, innovative 
approach to sampling. Analyses can be performed on 
EICs instead of the whole population. If the method is 
applied as described in this paper, then the time aspect has 

5 Ifwe generalise the approach described in this paper, it would be more 
appropriate to talk about early indicator instances instead of early indicator 
cars. Nevertheless, we use the acronym EIC throughout this paper. 
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to be considered. EICs are a sample for the whole 
population at a later point in time. However, the approach 
can easily be generalised such that the EICs are selected 
according to different criteria. For instance, in the quality 
information domain it is also interesting to consider 
regional effects. Identify a set of regions such that the cars 
sold in these regions behave like the whole population of 
cars. 

Finally, EICs can also be used for detecting deviations. 
If EICs are believed to be good predictors then any 
deviation in the prediction deserves attention of domain 
experts. 

Future work 
Although the experimental results with the chosen 
techniques were very good, there is much room for 
refinement of the EIC approach. For the experiments 
reported here some more or less arbitrary choices were 
made which need to be investigated more systematically. 
The task refinement process made these choices and 
parameters explicit and provides a framework for further 
experiments. Further experiments will address both 
domain specific and methodological refinements of the 
EIC approach. 

The domain specific refinements concern selection of 
attributes and data. For instance, the length of the 
production period was taken to be three months. Other 
values, perhaps taking seasonalities into account, may 
lead to better results. Also, times T, and T,, were 
arbitrarily set to twelve and six months, respectively. 
Again, other values may lead to better results. These 
choices might even depend on the type of fault. 
Furthermore, attributes describing the fault profile were 
highly aggregated. In subsequent experiments we will also 
investigate more fine-grained attributes. 

Methodological refinements address the usage of 
different techniques for the various tasks of the EIC 
approach and the extension to other application domains. 
For instance, in the quality information domain we are 
performing similar experiments with Kohonen networks 
(Kohonen, 1988) for the clustering sub task. Additionally, 
we are exploring completely different methods for the 
representation of a fault profile. At the end, we will have 
a variety of combinations of techniques which realise the 
EIC approach. We will then apply the EIC approach to 
other domains. We expect that the choice of the best 
realisation of the EIC approach depends on both the 
domain and the data. Our methodological framework 
allows us to explore the alternatives systematically and to 
select the most appropriate one. 
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