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Abstract 

The recent emergence of data mining as a 
major application of machine learning has led 
to increased interest in fast rule induction al- 
gorithms. These are able to efficiently pro- 
cess large numbers of examples, under the con- 
straint of still achieving good accuracy. If e 
is the number of examples, many rule learn- 
ers have O(e4) asymptotic time complexity in 
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pirically observed to sometimes require O(e3). 
Recent advances have brought this bound down 
to O(elog2 e), while maintaining accuracy at 
the level of C4.5RULES’s. In this paper we 
present CWS, a new algorithm with guaranteed 
O(e) complexity, and verify that it outperforms 
C4.5RULES and CN2 in time, accuracy and out- 
put size on two large datasets. For example, on 
NASA’s space shuttle database, running time is 
reduced from over a month (for C4.5RULES) to 
a few hours, with a slight gain in accuracy. CWS 
is based on interleaving the induction of all the 
rules and evaluating performance globally instead 
of locally (i.e., it uses a “conquering without sep- 
arating* strategy as opposed to a “separate and 
conquer,, one). Its bias is appropriate to domains 
where the underlying concept is simple and the 
data is plentiful but noisy. 

Introduction and Previous Work 
Very large datasets pose special problems for machine 
learning algorithms. A recent large-scale study found 
that most algorithms cannot handle such datasets 
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(Michie, Spiegelhalter, & Taylor 1994). However, in 
many areas-including astronomy, molecular biology, 
finance, retail, health care, etc.-large databases are 
now the norm, and discovering patterns in them is a 
potentially very productive enterprise, in which inter- 
est is rapidly growing (Fayyad & Uthurusamy 1995). 
Designing learning algorithms appropriate for such 
problems has thus become an important research prob- 
lem. 

In these “data mining” applications, the main con- 
sideration is typically not to maximize accuracy, but 
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to extract useful knowledge from a database. The 
learner’s output should still represent the database’s 
contents with reasonable fidelity, but it is also impor- 
tant that it be comprehensible to users without ma- 
chine learning expertise. “If . . . then . ..” rules are 
perhaps the most easily understood of all representa- 
tions currently in use, and they are the focus of this 
paper. 

A major problem in data mining is that the data 
is often very noisy. Besides making the extraction of 
accurate rules more difficult, this can have a disas- 
trous effect on the running time of rule learners. In 
C4.5RULES (Q um an ’ 1 1993)) a system that induces 
rules via decision trees, noise can cause running time 
to become cubic in e, the number of examples (Cohen 
1995). When there are no numeric attributes, C4.5, the 
component that induces decision trees, has complexity 
O(ea2), where a is the number of attributes (Utgoff 
1989)) but its running time in noisy domains is dwarfed 
by that of the conversion-to-rules phase (Cohen 1995). 
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they are typically much larger and less comprehensi- 
ble than the corresponding rule sets. Noise also has a 
large negative impact on windowing, a technique often 
used to speed up C4.5/C4.5RULES for large datasets 
(Catlett 1991). 

In algorithms that use reduced error pruning as 
the simplification technique (Brunk & Pazzani 1991)) 
the presence of noise causes running time to become 
O(e4 loge) (Cohen 1993). Fiirnkranz and Widmer 
(1994) have proposed incremental reduced error prun- 
ZRO /IREP). an alsorithm that nruneq each ru!e im- ~ !~~.~~ ,, ~-- --9---.----- =- -___L 
mediately after it is grown, instead of waiting until 
the whole rule set has been induced. Assuming the fi- 
nal rule set is of constant size, IREP reduces running 
time to O(e log2 e), but its accuracy is often lower than 
C4.5RULES’s (Cohen 1995). Cohen introduced a num- 
ber of modifications to IREP, and verified empirically 
that RIPPERk, the resulting algorithm, is competitive 
with C4.5RULES in accuracy, while retaining an aver- 
age running time similar to IREP’s (Cohen 1995). 

Catlett (Catlett 1991) has done much work in mak- 
ing decision tree learners scale to large datasets. A pre- 
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liminary empirical study of his peepholing technique 
shows that it greatly reduces C4.5’~ running time with- 
out significantly affecting its accuracy.l To the best of 
our knowledge, peepholing has not been evaluated on 
any large real-world datasets, and has not been applied 
to rule learners. 

A number of algorithms achieve running time lin- 
ear in e by forgoing the greedy search method used by 
the learners above, in favor of exhaustive or pruned 
near-exhaustive search (e.g., (Weiss, Galen, & Tade- 
palli 1987; Smyth, Goodman, & Higgins 1990; Segal 
P. zu,:-.: Anne\\ l.r ^___^._^_ Al.:- ^^ .__^^ -..--:-- A:-- (YI Lrbiil”1U l.TJ-a,,. I1”wczYe3z) blllS C~llSCJ rurllll‘lg blIIK 
to become exponential in a, leading to a very high 
cost per example, and making application of those al- 
gorithms to large databases difficult. Holte’s 1R al- 
gorithm (Holte 1993) outputs a single tree node, and 
is linear in a and O(eloge), but its accuracy is often 
much lower than C4.5’~. 

Ideally, we would like to have an algorithm capable 
of inducing accurate rules in time linear in e, without 
becoming too expensive in other factors. This paper 
describes such an algorithm and its empirical evalua 
tion. The algorithm is presented in the next section, 
which also derives its worst-case time complexity. A 
comprehensive empirical evaluation of the algorithm is 
then reported and discussed. 

The CWS Algorithm 
Most rule induction algorithms employ a “separate and 
conquer” method, inducing each rule to its full length 
before going on to the next one. They also evaluate 
each rule by itself, without regard to the effect of other 
rules. This is a potentially inefficient approach: rules 
may be grown further than they need to be, only to 
be pruned back afterwards, when the whole rule set 
has already been induced. An alternative is to inter- 
leave the construction of all rules, evaluating each rule 
in the context of the current rule set. This can be 
termed a “conquering without separating” approach, 
by contrast with the earlier method, and has been im- 
plemented in the CWS algorithm. 

In CWS, each example is a vector of attrebute-value 
pairs, together with a specification of the class to which 
it belongs; attributes can be either nominal (symbolic) 
or numem. Each rule consists of a conjunction of an- 
tecedents (the body) and a predicted class (the head). 
Each antecedent is a condition on a single attribute. 
Conditions on nominal attributes are equality tests of 
the form ai = vij, where ai is the attribute and vij 
is one of its legal values. Conditions on numeric at- 
tributes are inequalities of the form ai > vij or ai < vii. 
Each rule in CWS is also associated with a vector of 
class probabilities computed from the examples it cov- 

‘Due to the small number of data points (3) reported 
for the single real-world domain used, it is difficult to de- 
termine the exact form of the resulting time growth (linear, 
log-linear, etc.). 

Table 1: The CWS algorithm. 

Procedure CWS 

Let RS = 0. 
Repeat 

Add one active rule with empty body to RS. 
For each active rule R in RS, 

For each possible antecedent AV, 
Let R’ = R with AV conjoined to its body. 
o..--..A- -l--- ---LA --J ---J -I--- I-- n, U"lqJUb~ CIsLs;S yruvs. anu yrau. class 1or n. 
Let RS’ = RS with R replaced by R’. 
If Acc(RS’) > Acc(RS) then let RS = RS’. 

If RS is unchanged then deactivate R. 
Until all rules are inactive. 
Return RS. 

ers; the predicted class is the one with the highest prob- 
ability. For class C,, P,.(Ci) is estimated by n,i/n,, 
where n, is the total number of examples covered by 
rule T, and n,i is the number of examples of the ith 
class among them. When a test example is covered by 
more than one rule, the class probability vectors of all 
the rules covering it are summed, and the class with the 
highest sum is chosen as the winner. This is similar to 
the approach followed in CN2 (Clark & Boswell 1991)) 
with the difference that probabilities are used instead 
of frequencies. In a system like CN2, this could give 
undue weight to rules covering very few examples (the 
“small disjuncts” (Holte, Acker, & Porter 1989)), but 
we have verified empirically that in CWS this problem 
is largely avoided. Examples not covered by any rules 
are assigned to the class with the most examples in the 
training set. 

CWS is outlined in pseudo-code in Table 1. Initially 
the rule set is empty, and all examples are assigned 
to the majority class. In each cycle a new rule with 
empty body is tentatively added to the set, and each 
of the rules already there is specialized by one addi- 
tional antecedent. Thus induction of the second rule 
starts immediately after the first one is begun, etc., 
and induction of all rules proceeds in step. At the end 
of each cycle, if a rule has not been specialized, it is 
deactivated, meaning that no further specialization of 
it will be attempted. If the rule with empty body is 
deactivated, it is also deleted from the rule set. A rule 
with empty body predicts the default class, but this 
is irrelevant, because a rule only starts to take part 
in the classification of examples once it has at least 
one antecedent, and it will then predict the class that 
most training examples satisfying that antecedent be- 
long to. A rule’s predicted class may change as more 
antecedents are added to it. Acc(RS) is the accuracy 
of the rule set RS on the training set (i.e., the frac- 
tion of examples that RS classifies correctly). Most 
rule induction algorithms evaluate only the accuracy 
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(or entropy, etc.) of the changed rule on the examples 
that it still covers. This ignores the effect of any other 
rules that cover those examples, and also the effect of 
uncovering some examples by specializing the rule, and 
leads to a tendency for overspecialization that has to 
be countered by pruning. CWS avoids this through 
its global evaluation procedure and interleaved rule in- 
duction. 

Let e be the number of examples, a the number 
of attributes, ZI the average number of values per at- 
tribute, c the number of classes, and T the number of 
rules produced. The basic step of the algorithm in- 
volves adding an antecedent to a rule and recomput- 
ing Acc(RS’). This requires matching all rules with 
all training examples, and for each example summing 
the class probabilities of the rules covering it, imply- 
ing a time cost of O[re(a + c)]. Since there are O(av) 
possible antecedents, the cost of the inner loop (“For 
each AV”, see Table 1) is O[avre(a + c)], However, 
this cost can be much reduced by avoiding the exten- 
sive redundancy present in the repeated computation 
of Acc(RS’). The key to this optimization is to avoid 
rematching all the rules that remain unchanged when 
attempting to specialize a given rule, and to match the 
unchanged antecedents of this rule with each example 
only once. Recomputing Acc(RS’) when a new an- 
tecedent AV is attempted now involves only checking 
whether each example already covered by the rule also 
satisfies that antecedent, at a cost of O(e), and updat- 
ing its class probabilities if it does, at a cost of O(ec). 
The latter term dominates, and the cost of recomput- 
ing the accuracy is thus reduced to O(ec), leading to a 
cost of O(eavc) for the “For each AV” loop. 

In more detail, the optimized procedure is as fol- 
lows. Let Cprobs(R) d enote the vector of class prob- 
abilities for rule R, and Cscores(E) denote the sum 
of the class probability vectors for all rules covering 
example E. Cscores(E) is maintained for each exam- 
ple throughout. Let R be the rule whose specialization 
is going to be attempted. Before the “For each AV” 
loop begins, R is matched to all examples and those 
which satisfy it are selected, and, for each such ex- 
ample E, Cprobs(R) is subtracted from Cscores( E). 
Cscores(E) now reflects the net effect of all other rules 
on the example. Each possible antecedent AV is now 
conjoined to the rule in turn, leading to a changed rule 
R’ (or R’(AV), to highlight that it is a function of AV). 
New class probabilities for R’ are computed by fmd- 
ing which examples E’ among the previously-selected 
ones satisfy AV. These probabilities are now added 
to Cscores(E’) for the still-covered examples E’. Ex- 
amples that were uncovered by the specialization al- 
ready have the correct values of Cscores(E), since the 
original rule’s Cprobs(R) were subtracted from them 
beforehand, All that remains is to find the new win- 
ning class for each example E. If the example was 
previously misclassified and is now correctly classified, 
there is a change of +1/e in the accuracy of the rule 

Table 2: The optimized CWS algorithm. 

Procedure CWS 
- 

Let RS = 0. 
Let Cscores(E) = 0 for all E, C. 
Repeat 

Add one active rule R, with empty body to RS. 
Let Cprobs(R,) = 0 for all C. 
For each active rule R in RS, 

For each example E covered by R, 
Subtract Cprobs(R) from Cscores(E). 

For each possible antecedent AV, 
Let AAcc(AV) = 0. 
Let R’ = R with AV conjoined to it. 
Compute Cprobs(R’) and its pred. class. 
For each example E’ covered by R’ 

Add Cprobs( R’) to Cscores( E’). 
For each example E covered by R 

Assign E to class with max. Cscore(E). 
Compute AAccE(AV) (-l/e, 0 or +1/e). 
Add AAccE(AV) to AAcc(AV). 

Pick AV with max. AAcc(AV). 
If AAcc(AV) > 0 then R = R’(AV), 

eise deactivate iz. 
For each ex. E covered by R (R = R’ or not) 

Add Cprobs(R) to Cscores(E). 
Until all rules are inactive. 
Return RS. 

set. If it was previously correctly classified, the change 
is -l/e. Otherwise there is no change. Summing this 
for all the examples yields the global change in ac- 
curacy. As successive antecedents are attempted, the 
best antecedent and maximum global change in accu- 
racy are remembered. At the end of the loop the best 
antecedent is permanently added to the rule, if the cor- 
responding change in accuracy is positive. This simply 
involves repeating the procedure above, this time with 
permanent effects. If no antecedent produces a positive 
change in accuracy, the rule’s original class probabili- 
ties Cprobs(R) are simply re-added to the Cscores(E) 
of all the examples that it covers, leaving everything 
as before. This procedure is shown in pseudo-code in 
Table 2. Note that the optimized version produces ex- 
actly the same output as the non-optimized one; con- 
ceptually, the much simpler Table 1 is an exact descrip- 
tion of the CWS algorithm. 

The total asymptotic time complexity of the algo- 
rithm is obtained by multiplying O(eavc) by the maxi- 
mum number of times that the double outer loop (“Re- 
peat . . . For each R in RS . . .“) can run. Let s be 
the output size, measured as the total number of an- 
tecedents effectively added to the rule set. Then the 
double outer loop runs at most O(s), since each com- 
putation within it (the “For each AV” loop) adds at 
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most one antecedent. Thus the total asymptotic time 
complexity of CWS is O(eavcs). 

The factor s is also present in the complexity of 
other rule induction algorithms (CN2, IREP, RIP- 
PERE, etc.), where it can typically grow to O(eu). It 
can become a significant problem if the dataset is noisy. 
However, in CWS it cannot grow beyond O(e), because 
each computation within the double outer loop (“Re- 
peat . . . For . . . “) either produces an improvement in 
accuracy or is the last one for that rule, and in a dataset 
with e examples at most e improvements in accuracy 
CAJIa nnn&hla TAP~llW o nhr\,.lrl he ;nAananrlc.nt A.FP nn.4 CuIb y”UUI”Ic.. ~U.Au&J, u Ull”UlU “C I‘IULI~~llUlrll” “I c, cu,lU 
this is the assumption made in (Fiirnkranz & Widmer 
1994) and (Cohen 1995), and verified below for CWS. 

CWS incorporates three methods for handling nu- 
meric values, selectable by the user. The default 
method discretizes each attribute into equal-sized in- 
tervals, and has no effect on the asymptotic time com- 
plexity of the algorithm. Discretization can also be 
performed using a method similar to Catlett’s (Catlett 
1991)) repeatedly choosing the partition that mini- 
mizes entropy until one of several termination con- 
ditions is met. This causes learning time to become 
O(eloge), but may improve accuracy in some situ& 
tions. Finally, numeric attributes can be handled di- 
rectly by testing a condition of each type (ui > vij 
and ui < vii) at each value vii. This does not change 
the asymptotic time compiexity, but may cause v to 
become very large. Each of the last two methods may 
improve accuracy in some situations, at the cost of 
additional running time. However, uniform discretiza- 
tion is surprisingly robust (see (Dougherty, Kohavi, & 
Sahami 1995))) and can result in higher accuracy by 
helping to avoid overfitting. 

Missing values are treated by letting them match 
any condition on the respective attribute, during both 
learning and classification. 

Empirical Evaluation 
This section describes an empirical study comparing 
CWS with C4.5RULES and CN2 along three variables: 
running time, accuracy, and comprehensibility of the 
output. All running times were obtained on a Sun 670 
computer. Output size was taken as a rough measure 
of comprehensibility, counting one unit for each an- 
tecedent and consequent in each rule (including the de- 
fault rule, with 0 antecedents and 1 consequent). This 
measure is imperfect for two reasons. First, for each 
system the meaning of a rule is not necessarily trans- 
parent: in CWS and CN2 overlapping rules are prob- 
abilistically combined to yield a class prediction, and 

n” CnrTrcIo ---I- . . ..I-.- ^-L^-^I^-C LJ- :- z--1:- iii vk.ilnm~1~m tmcu rut: s itubtm2utmc sjlut: 15: uuyuc- 

itly conjoined with the negation of the antecedents of 
all preceding rules of different classes. Second, output 
simplicity is not the only factor in comprehensibility, 
which is ultimately subjective. However, it is an ac- 
ceptable and frequently used approximation, especially 
when the systems being compared have similar output, 

le+O7 
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No. examples 

Figure 1: Learning times for the concept ubc V def. 

as here (see (Catlett 1991) for further discussion). 
A preliminary study was conducted using the 

Boolean concept abc V de f as the learning target, with 
each disjunct having a probability of appearing in the 
data of 0.25, with 13 irrelevant attributes, and with 
20% class noise (i.e., each class label has a probability 
of 0.2 of being flipped). Figure 1 shows the evolution 
of learning time with the number of examples for CWS 
and C4.5RULES, on a log-iog scaie. Recaii that on this 
type of scale the slope of a straight line corresponds to 
the exponent of the function being plotted. Canonical 
functions approximating each curve are also shown, as 
well as e log e, the running time observed by Cohen 
(Cohen 1995) for RIPPERk and IREP.’ CWS’s run- 
ning time grows linearly with the number of examples, 
as expected, while C4.5RULES’s is O(e2 loge). CWS is 
also much faster than IREP and RIPPERlc (note that, 
even though the log-log plot shown does not make this 
evident, the difference between e and elog2 e is much 
larger than e). 

CWS is also more accurate than C4.5RULES for 
each number of examples, converging to within 0.6% 
of the Bayes optimum (80%) for only 500 examples, 
and reaching it with 2500, while C4.5RULES never 
rises above 75%. CWS’s output size stabilizes at 9, 
while C4.5RULES’s increases from 17 for 100 exam- 
ples to over 2300 for 10000. Without noise, both sy5 

terns learn the concept easily. Thus these results indi- 
cate that CWS is more robust with respect to noise, at 
least in this simple domain. CN2’s behavior is similar 
to C4.5RULES’s in time and accuracy, but it produces 
larger rule sets. 

The relationship between the theoretical bound of 
O(eavcsj and CWS’s actual average running time was 
investigated by running the system on 28 datasets from 
the UC1 repository3 (Murphy & Aha 1995). Figure 2 

‘The constants a, b and c were chosen so as to make the 
respective curves fit conveniently in the graph. 

3Audiology, annealing, breast cancer (Ljubljana), credit 

Decision-Tree Q Rule Induction 99 



. 

0.11 
loooo looooo 1PA-K id-h7 1rrllQ .-l-Y . ..I". A","" 

eaves 

Figure 2: Relationship of empirical and theoretical 
learning times. 

plots CPU time against the product euvcs. Linear re- 
gression yields the line time = 1.1 x lo5 eaves + 5.1, 
with a correlation of 0.93 (R2 = 0.87). Thus eaves ex- 
plains almost all the observed variation in CPU time, 
confirming the prediction of a linear bound.4 

Experiments were also conducted on NASA’s space 
shuttle database. This database contains 43500 train- 
ing examples from one shuttle flight, and 14500 testing 
examples from a different flight. Each example is de- 
scribed by nine numeric attributes obtained from sen- 
sor readings, and there are seven possible classes, cor- 
responding to states of the shuttle’s radiators (Catlett 
1991). The goal is to predict these states with very 
high accuracy (99-99.9%), using rules that can be 
taught to a human operator. The data is known to be 
relatively noise-free; since our interest is in induction 
algorithms for large noisy databases, 20% class noise 
.x,n~ nrlr-lwl ffi the tvn;n;nrr s4.st-s fnlln.xr;nm n n~~awl..~~ I”cA.3 UUUbU U” U.Ib UlUllllllcj uuvu I”llV.1111~ (1, yl”L.wAuzr; 

similar to Catlett’s (each class has a 20% probability 
of being changed to a random class, including itself). 

The evolution of learning time with the number of 
training examples for CWS and C4.5RULES is shown 
in Figure 3 on a log-log scale, with approximate asymp- 
totes also shown, as before. CWS’s curve is ap- 
proximately log-linear, with the logarithmic factor at- 
tributable to the direct treatment of numeric values 
that was employed. (Uniform discretization resulted 
in linear time, but did not yield the requisite very high 
accuracies.) C4.5RULES’s curve is roughly cubic. Ex- 

screening (Australian), chess endgames (kr-vs-kp), Pima 
diabetes, echocardiogram, glass, heart disease (Cleveland), 
hepatitis, horse colic, hypothyroid, iris, labor negotiations, 
lung cancer, liver disease, lymphography, mushroom, post- 
operative, promoters, primary tumor, solar flare, sonar, 
soybean (small), splice junctions, voting records, wine, and 
zoology. 

This paper introduced CWS, a rule induction algo- 
rithm that employs a “conquering without separating” 
strategy instead of the more common “separate-and- 
conquer” one. CWS interleaves the induction of all 
rules and evaluates proposed induction steps globally. 
Its asymptotic time complexity is linear in the num- 
ber of examples. Empirical study shows that it can 
be used to advantage when the underlying concept is 
simple and the data is plentiful but noisy. 

Directions for future work include exploring ways of 
boosting CWS’s accuracy (or, conversely, broadening 
the set of concepts it can learn effectively) without af- 
fecting its asymptotic time complexity, and applying it 
to larger databases and problems in different areas. 

4Also, there is no correlation between the number of 
examples e and the output size .s (R2 = 0.0004). 

5For e > 8000 the program crashed due to lack of mem- 
ory. This may be due to other jobs running concurrently. 
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Figure 3: Learning times for the shuttle database. 

trapolating from it, C4.5RULES’s learning time for the 
full database would be well over a month, while CWS 
takes 11 hours. 

Learning curves are shown in Figure 4. CWS’s ac- 
curacy is higher than C4.5RULES’s for most points, 
and generally increases with the number of examples, 
showing that there is gain in using the larger samples, 
up to the full dataset. Figure 5 shows theevolutidn of 
output size. CWS’s is low and almost constant, while 
C4.5RULES’s grows to more than 500 by e = 32000. 
Up to 8000 examples, CN2’s running time is similar 
to C4.5RULES’s, but its output size grows to over 
1700, and its accuracy never rises above 94%.5 In sum- 
mary, in this domain CWS outperforms C4.5RULES 
and CN2 in running time, accuracy and output size. 

Compared to the noise-free case, the degradation in 
CWS’s accuracy is less than 0.2% after e = 100, the 
rule set size is similar, and learning time is only de- 
urnrl~rl hv a rnnetanf fartnr lnf 9 fswr nncennt nn 9-r- b Awy.,u “J u “V..Y”UUY lY”““I \“A u I”.. yu’uu”“, “11 uv- 

erage). Thus CWS is again verified to be quite robust 
with respect to noise. 

Conclusions and Future Work 
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Figure 4: Learning curves for the shuttle database. 

1 , 
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Figure 5: Output size growth for the shuttle database. 

Acknowledgments 
This work was partly supported by a JNICT/PRAXIS 
XXI scholarship. The author is grateful to Dennis Ki- 
bler for many helpful comments and suggestions, and 
to all those who provided the datasets used in the em- 
pirical study. 

References 
Brunk, C., and Pazzani, M. J. 1991. An investiga, 
tion of noise-tolerant relational concept learning al- 
gorithms. In Proceedings of the Eighth International 
Workshop on Machine Learning, 389-393. Evanston, 

IL: Morgan Kaufmann. 
Catlett, J. 1991. Megaznductzon: Machine Learning 
on Very Large Databases. Ph.D. Dissertation, Basser 
Department of Computer Science, University of Syd- 
ney, Sydney, Australia. 
Clark, P., and Boswell, R. 1991. Rule induction 
with CN2: Some recent improvements. In Proceedings 
of the Sixth European Working Session on Learning, 
151-163. Porto, Portugal: Springer-Verlag. 

Cohen, W. W. 1993. Efficient pruning methods for 
separate-and-conquer rule learning systems. In Pro- 
ceedings of the Thirteenth International Joint Confer- 
ence on Artificial Intelligence, 988-994. Chambery, 
France: Morgan Kaufmann. 
Cohen, W. W. 1995. Fast effective rule induction. 
In Proceedings of the Twelfth International Confer- 
ence on Machine Learning, 115-123. Tahoe City, CA: 
Morgan Kaufmann. 
Dougherty, J.; Kohavi, R.; and Sahami, M. 1995. 
Supervised and unsupervised discretization of contin- 
uous features. In Proceedings of the Twelfth Inter- 
national Conference on Machine Learning, 194-202. 
Tahoe City, CA: Morgan Kaufmann. 
Fayyad, U. M., and Uthurusamy, R., eds. 1995. 
Proceedings of the First International Conference on 
Knowledge Discovery and Data Mining, Montreal, 
Canada: AAAI Press. 
Fiirnkranz, J., and Widmer, G. 1994. Incremental 
reduced error pruning. In Proceedings of the Eleventh 
International Conference on Machine Learning, 70- 
77. New Brunswick, NJ: Morgan Kaufmann. 
Holte, R. C.; Acker, L. E.; and Porter, B. W. 1989. 
Concept learning and the problem of small disjuncts. 
In Proceedings of the Eleventh International Joint 
Conference on Artificial Intelligence, 813-818. De- 
troit, MI: Morgan Kaufmann. 
Holte, R. C. 1993. Very simple classification rules per- 
form well on most commonly used datasets. Machine 
Learning 11:63-91. 
Michie, D.; Spiegelhalter, D. J.; and Taylor, C. C., 
eds. 1994. Machine Learning, Neural and Statistical 
Classification. New York: Ellis Horwood. 
Murphy, P. M., and Aha, D. W. 1995. UC1 
repository of machine learning databases. Machine- 
readable data repository, Department of Information 
and Computer Science, University of California at 
Irvine, Irvine, CA. 
Quinlan, J. R. 1993. Cd.5: Programs for Machine 
Learning. San Mateo, CA: Morgan Kaufmann. 
Segal, R., and Etzioni, 0. 1994. Learning deci- 
sion lists using homogeneous rules. In Proceedings 
of the Twelfth National Conference on Artificial In- 
telligence, 619-625. Seattle, WA: AAAI Press. 
Smyth, P.; Goodman, R. M.; and Higgins, C. 1990. 
A hybrid rule-based/Bayesian classifier. In Proceed- 
ings of the Nznth European Conference on Artificial 
Intelligence, 610-615. Stockholm, Sweden: Pitman. 
Utgoff, P. E. 1989. Incremental induction of decision 
trees. Machine Learnzng 4:161-186. 
Weiss, S. M.; Galen, R. M.; and Tadepalli, P. V. 1987. 
Optimizing the predictive value of diagnostic decision 
rules. In Proceedings of the Sixth National Confer- 
ence on Artificial Intelligence, 521-526. Seattle, WA: 
AAAI Press. 

Decision-Tree 6-c Rule Induction 101 


