
Learning from biased data using 

A.J. Feelders 
Data Distilleries Ltd. 

Kruislaan 419 
1098 VA Amsterdam 

The Netherlands 
email: ad@ddi.nl 

mixture models 

Abstract 

Data bases sometimes contain a non-random sample 
from the population of interest. This complicates the 
use of extracted knowledge for predictive purposes. 
We consider a specific type of biased data that is 
of considerable practical interest, namely non-random 
partially classified data. This type of data typically 
results when some screening mechanism determines 
whether the correct class of a particular case is known. 
In credit scoring the problem of learning from such a 
biased sample is called “reject inference”, since the 
class label (e.g. good or bad loan) of rejected loan 
applications is unknown. We show that maximum 
likelihood estimation of so called mixture models is 
appropriate for this type of data, and discuss an ex- 
periment performed on simulated data using mixtures 
of normal components. The benefits of this approach 
are shown by making a comparison with the results of 
sample-based discriminant analysis. Some directions 
are given how to extend the analysis to allow for non- 
normal components and missing attribute values in 
order to make it suitable for “real-life” biased data. 

Introduction 
It frequently occurs that company data bases used for 
data mining contain a non-random sample from the 
population of interest. This situation complicates gen- 
eralization of the patterns found in the data base, es- 
pecially when the knowledge extracted is intended for 
predictive purposes. 

We discuss a special case of such a “biased” data 
base, that is of considerable practical interest. We con- 
sider data bases of partially classified data, where the 
“mechanism” that determines whether the class label 
of a particular case is known, is non-random. Further- 
more, we assume that the objective of the data mining 
excercise is to learn a classification rule that is able to 
predict the class label of an unseen case that is taken 
at random from the population of interest. 

The situation described above typically occurs 
when some kind of “screening mechanism” determines 
whether the correct class of a particular case is known. 
For example, a bank decides on the basis of a combi- 
nation of attributes, whether a loan application is ac- 
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cepted or rejected. Only when the loan is accepted will 
th 
or P 

bank eventually be able to label the loan as “good” 
bad”, depending on the payment behaviour of the, 

client For the loan applications that are rejected, the 
correct class label cannot be determined with certainty. 
When the bank wants to use the data base to learn 
to tell the difference between good and bad applica- 
tions, a problem arises. If only the classified cases are 
used, bias is introduced, since the classified cases are 
a non-random sample from the population of interest. 
A rule thus learned will only generalize reliably to the 
group of applicants that pass the screening mechanism 
(Feelders, le Loux, & Zand 1995). Furthermore, one is 
not able to determine in this way whether one has been 
incorrectly rejecting a particular group of applicants. 
In the credit-scoring literature, this problem is known 
as the reject inference problem. For convenience we 
continue to use this term, although the problem is ob- 
viously more general than credit-scoring alone. Similar 
cases of screening may for example occur in application 
areas such as marketing, insurance, and medicine. 

In the next section, we formulate and classify the 
reject inference problem as a problem of learning with 
missing data. It turns out that likelihood-based ap- 
proaches are appropriate for this class of missing-data 
problems. After that we derive the appropriate like- 
lihood based on a mixture model formulation of the 
problem. We present a case study, using simulated, 
data, to show the potential benefits of the approach. 
Finally, we draw a number of conclusions and indicate 
how mixture modeling may be applied to reject infer- 
ence in more realistic situations. 

Reject inference as a missing data 
problem 

Reject inference may be formulated as a missing data 
problem, where the attributes X are completely ob- 
served, and the class label Y is missing for some of 
the observations. Following the classification used in 
(Little & Rubin 1987)’ we distinguish between the fol- 
lowing situations, according to whether the probability 
of Y being missing 
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1. is independent of X and Y, 
2. depends on X but not on Y, 
3. depends on Y, and possibly X as well. 

If case 1 applies, both sampling-based and likelihood- 
based inference may be used without the results be- 
ing biased. For sampling-based, one could just per- 
form the analysis on the classified observations, and 
ignore the unclassified ones. In the credit-scoring ex- 
ample, case 1 would apply when loan applications are 
accepted at random, e.g. by simply accepting all appli- 
cations up to a certain number. This way of “buying 
experience” has been used to a certain extent by credit 
institutions, although there are obvious economic fac- 
tors that constrain the use of this method (Hsia 1978). 
One may of course also consider using the standard 
selection mechanism, but accepting rejects with a pre- 
determined probability. This bias could then be cor- 
rected easily by weighting the observations according 
to their probability of ending up in the sample. 

Case 2 applies, when the observed values of Y are a 
random sample of the sampled values within subclasses 
defined by the values of X (Little & Rubin 1987). 
This is the case for the reject inference problem, since 
applications with particular predefined combinations 
of attributes are accepted and the other applications 
are rejected. Under these conditions, the missing-data 
mechanism is ignorable for likelihood-based inference, 
but not for sampling-based inference. 

Finally, if case three applies the missing-data mech- 
anism is nonignorable. 

From the foregoing we conclude that likelihood- 
based inference is a viable approach to the reject in- 
ference problem, and start the analysis by formulating 
the appropriate likelihood, using mixture models. 

Mixture distributions 
Mixture distributions (Everitt & Hand 1981; Titter- 
ington, Smith, & Makov 1985; McLachlan & Basford 
1988) are distributions which can be expressed as su- 
perpositions of a number of component distributions. 
Henceforth we assume that the number of components 
equals the relevant number of classes, so each compo- 
nent models a class-conditional distribution. 

As an example, one might express the income density 
function in the form 

f( income) = fl (income; L)nb + f2( income; g)rg 

where ?rb and z.=, are, respectively, the probabilities that 
a loan application is bad or good (called the mixing 
‘proportions), and fr and $J are the income density 
functions for bad and good applications. Thus the 
density function of income has been expressed as a su- 
perposition of two conditional density functions. This 
idea is easily generalized to the multivariate case, e.g. 
when the joint density of income and age is expressed 
as a mixture of the joint densities of these features for 

bad and good loans respectively. In general, a finite 
mixture can be written as 

i=l 

where c is the number of components, ?~i the mixing 
proportions and & the component parameter vectors. 
Usually, one assumes that it is unknown from which 
component observations are drawn, and one wants to 
estimate the mixing proportions and the parameters Bi 
of the component distributions. 

Suppose there are available attribute vectors xj ob- 
served on m entities of unknown class, and sampled 
from a mixture C of Cl,. . . , C, in unknown propor- 
tionsnl,... ,7rlTc. Then the relevant parameters can be 
estimated using maximum likelihood, taking the fol- 
lowing likelihood function 

where q = (?r’, 0’)’ denotes the vector of all unknown 
parameters. 

Likelihood L1 is appropriate when all observations 
are of unknown class. When we also include n clas- 
sified observations, the likelihood has to be adjusted 
accordingly. With respect to the classified entities one 
distinguishes between two sampling schemes, separate 
sampling and mixture sampling. In case of separate 
sampling, random samples of size ni are drawn from 
each class separately. Consequently, the relative fre- 
quencies ni/n of the classes do not give any informa- 
tion about the mixing proportions. In case of mixture 
sampling, the classified entities are obtained by sam- 
pling from mixture C, and the resulting relative fre- 
quencies of the different classes do provide information 
on the mixing proportions. For reasons that become 
clear shortly, we proceed with formulating the likeli- 
hood under the assumption that the classified entities 
have been obtained by mixture sampling. 

m+n 
b(9) = Ll(JE‘) JJ 

1 
2 ZijTifi(Xj; 0;) 

j=m+l i=l 1 

where Zij equals 1 if observation j has class-label i, and 
zero otherwise. 

For computational convenience one often considers 
the loglikelihood LB = log L2 

Lo = 210g &fi(xj;eij 
{ 1 

+ 
j=l i=l 

m+n c 

C C Gj lOg(di(Xj; &>> 
j=m+li=l 

Let us recall that likelihood LZ was formulated under 
the assumption that both the classified and unclassified 
cases are random samples from the relevant mixture C. 
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This does unfortunately not apply to the situation 
considered here, since the selection of classified and un- 
classified observations has been performed in a system- 
atic way; an observation is not classified if it is located 
in some subregion of the attribute space. If one as- 
sumes however that the total sample of size m + n is a 
random sample from mixture C, then it can be shown 
(see (McLachlan 1992), section 2.8) that the relevant 
likelihood, apart from a combinatorial additive term, 
reduces to L2. This means that one can estimate the 
parameters of the class-conditional (component) distri- 
butions using likelihood L2, even when the separation 
between classified and unclassified observations is non- 
random. 

A maximum likelihood estimate of !# can be ob- 
tained using the EM algorithm. The general strategy 
is based on optimizing the complete-data loglikelihood 

m+n c 
LC = C CZijlog(Tifi(xj;ei)) 

j=l kl 

In the first E-step, one uses some initial estimate 
q(O), to calculate the expectation of the complete-data 
loglikelihood. This is done by calculating the posterior 
probabilities 

Xifi(Xj) 
rij = CT==, 7Qfi(Xj) 

of group membership for the unclassified cases, and 
entering these as values of Z+j in the complete-data 
lo likelihood. In the M-step, the algorithm chooses 
!l? k, that maximizes the complete-data loglikelihood f 
that was formed in the last E-step. The E and M 
steps are alternated repeatedly until convergence. It 
has been shown that, under very weak conditions, this 
algorithm will yield a local maximum of likelihood La 
of the incomplete-data specification. For a more de- 
tailed and rigorous account of the application of EM 
to this problem, the reader is referred to (McLachlan 
1992), pages 39-43. 

Example of reject inference using 
mixture models 

In this section we give an example of the possibility of 
performing reject inference using mixture models. To 
this end we generate a synthetic data set of loan ap- 
plications, and a decision rule to determine whether a 
loan application is accepted or rejected. For the sake 
of simplicity we assume that only two normally dis- 
tributed attributes are recorded for each loan applica 
tion. The 1000 bad loans are drawn from the following 
distribution 

/‘b = xl, = 
584.6 -39.7 

-39.7 3.6 

The 1000 good loans are drawn from 

c, = 720.8 44.5 
/-$I = 44.5 9.2 

Table 1: True vs. Predicted class of loans: quadratic 
discriminant 

Reject Accept Total 
Bad 966 34 1000 
Good 240 760 1000 
Total 1206 794 2000 

Table 2: True class vs. Accept/Reject 

The parameter estimates resulting from the particular 
sample drawn are +b = ii, = 0.5, 

fib = 

and for the covariance matrices 

kb = 
( 

2;;:‘: -3;:; ) kg = ( 7;“;:; 4;:; ) 

Since within each class, the attributes are nor- 
mally distributed, with unequal covariance matrices, a 
quadratic discriminant function is optimal. Quadratic 
discriminant analysis was performed on the complete 
sample. The in-sample prediction performance of the 
resulting function is summarized in table 1. Overall, 
95.5% of the observations is classified correctly. This 
classification result can be obtained if the correct class 
of all loan applications is known, which is not the case 
since part of the loan applications is rejected. 

For each application the following score is calculated 

S = 0.16~~ -22 

If S > 10, the loan is accepted, otherwise it is rejected. 
This score function represents the acceptance policy of 
the bank, which may have been determined by loan 
officers or by analysis of historical data. On the par- 
ticular sample drawn, this yields the results as shown 
in table 2. The fraction of accepted loans that turns 
out to be bad is quite low, 34/794 M 4.3%. On the 
other hand, quite a number of the rejected loans are 
in fact good loans, 240/1206 z 20%. The predictive 
accuracy of the quadratic discriminant function (esti- 
mated on the complete sample) on the rejected loans 
is summarized in table 3. The overall accuracy of the 
quadratic discriminant function on the rejected loans 
is approximately 95.4%. 

Next, we removed the class label of the rejected loans 
for the analysis that follows. This corresponds to the 
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In case of random classification, the classified obser- 
vations can be used to choose reasonable initial esti- 
mates for the mixing proportions, mean vectors and 
covariance matrices. This procedure is not the most 
sensible here since the classified observations are not a 
random sample from mixture C. Therefore, the intial 
estimates were determined as follows. The size of the 
total sample of loan applications equals m + n. There 
are n accepted applications and m rejected applica- 
tions. The class label of the rejected applications is 
missing. 

Predicted 
True Bad Good Total 
Bad 957 9 966 
Good 46 194 240 
T!-dsl 1 nm ~““~ A”“” 203 &I”V i9.m 

Table 3: True vs. Predicted class of rejected loans: 
quadratic discriminant 

situation that the bank faces in practice. It is interest- 
ing to obtain an estimate of how many loans are incor- 
rectly rejected, and perhaps more importantly, which 
of the rejected loans are in fact very likely to be good 
risks. We try to answer these questions in the subse- 
rnl~nt annlvnis. l..w--” “---J ---. 

Application of EM algorithm 
In order to estimate the class-conditional densities of 
good and bad loans, using the partially classified data, 
we use a program for fitting a mixture of normal distri- 
butions with arbitrary covariance matrices. The num- 
ber of classified cases from each group must be larger 
than the number of attributes p, in order to avoid the 
occurrence of singularities in the likelihood. 

The program used has been taken from (McLachlan 
& Basford 1988): pages 218-224. The program uses 
EM to find maximum likelihood estimates for the com- 
ponent parameters and the mixing proportions. Under 
the normality assumption, the likelihood estimates of 
wi, pi, and & satisfy 

and 
.. - pi - 

and finally 

Where, because of the normality assumption the pos- 
terior probability 723 that x3 belongs to Ci is obtained 
by substituting 

(2T)-p/21&l-1’2 exp{-l/2(x3 - /.&)‘Cil(Xj - /&)} 

for fi(xj) into equation 1. These equations are solved 
by substituting the initial estimates into the right-hand 
sides of the equations to obtain new estimates, which 
are substituted into the right-hand sides, and so on, 
until convergence. 

Furthermore, the accepted loans can be subdivided 
in bad (b) and good (9) loans (n = b + 9). Then the 
initial estimates for the mixing proportions are chosen 
as follows 

??p) = (b + m)/(n + m), 7ijp) = g/(n + m) 

The initial estimates of fib,&, & and 2, are alSO cal- 
culated from b + m and g respectively. The rationale 
is that one simply assumes that all rejects are in fact 
bad loans (which is the reason they were rejected in 
the first place). 

Thus we get the following initial estimates for the 
mixing proportions 

*to) _ 1206+34 =O@J 
=b - 2000 ’ ’ 

g = 0.38 

-p) = 
b 

Finally, for the group means we get 

After 15 iterations the algorithm converged, yielding 
the following parameter estimates. For the mixing pro- 
portions 

-  - - -  

a$ = 0.507, 3 
^ . ^ C  

= 0.493 

For the covariance matrices 

The estimates for the group means are 

To test the sensitivity of the solution to the initial esti- 
mates; we nerformed the same analvsis with initial es- &- -~--~~~~- -- 
timates determined on the classified observations only. 
In that case, the initial estimates for the mixing pro- 
portions are way of, 

?Fb A(o) = 34/794 = 0.043, $‘I = 760/794 = 0.957 

The initial estimates for the means and covariance of 
good loans are near the true value, but for the bad 
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Table 4: True vs. Predicted class of rejected loans: 
mixture model 

Predicted 
The Bad &0(-j Tot& 
Bad 966 0 966 
Good 1 169 71 1 240 
Total 1 1135 71 1 1206 

Table 5: True vs. Predicted class of rejected loans: 
linear case 

loans they are strongly biased because of the selection 
effect. For the covariance matrices we have 

Finally, for the group means we get 

jp = A(o) = kl 

After 21 iterations the algorithm converged to the same 
solution as obtained in the previous analysis. 

Most relevant is how well the resulting discriminant 
rule classifies the rejects. This is summarized in ta 
ble 4. The proportion of correct classifications of re- 
jects is about 95.2%, which is only slightly worse than 
the performance of the quadratic discriminant function 
trained on the complete sample. Perhaps more impor- 
tantly, 189 of the 196 cases predicted to be good loans 
are in fact good loans, which is approximately 96.4%. 

Comparison to sample-based approaches 
To illustrate the severe bias that sample based ap- 
proaches may suffer from, we have performed linear 
and quadratic discriminant analysis on the accepted 
loans, as if it were a random sample from the popula- 
tion of loan applicants. The results for the linear case 
are summarized in table 5, for the quadratic case in 
table 6. In both cases, the class priors (mixing propor- 
tions) were taken to be the same as the initial estimates 
in the EM algorithm. 

For the linear case, the overall percentage of correct 
classifications is about 86%. Of the 240 good loans, 
only 71 are predicted to be good. For the quadratic 
case, the overall result is about 69.8% correct classi- 
fications. Out of 966 bad rejects, 285 (& 30%) are 
predicted to be good ioans. 

Good 79 161 240 
Total 760 446 1206 

Table 6: True vs. Predicted class of rejected loans: 
quadratic case 

Discussion 
The example discussed has admittedly been con- 
structed to show the possible benefits of the mixture 
modeling approach to biased data, or more specifically 
non-random partially classified data. More realistic 
case studies should be performed to test the practical 
usefulness of this approach. 

One may for example consider situations where the 
attributes are not real valued, but categorical. In * 
that case mixtures of bernouilli or multinomial compo- 
nents may be used. Problems with mixed real, binary 
and categorical attributes can be analysed using joint 
densities with mixed components of the three types 
(Ghahramani & Jordan 1994; Lawrence & Krzanowski 
1996). 

One may also consider situations where the class- 
conditional densities are themselves mixtures. Prelim- 
inary data analysis may reveal that a class-conditional 
density should be modeled as a mixture of component 
densities rather than a single density. This is for ex- 
ample done in (McLachlan & Gordon 1989) for an ap- 
plication in medicine. A semi-parametric approach is 
taken in (Hastie & Tibshirani 1996), where a method 
aped zicnrithm fnr rlincriminrant a.na.lvcis hv ngrm-d ~-ix- o’--“--- ---_ --------_-_--- 1 --I-J --- IJ 

tures is described. The algorithm can be adjusted quite 
easily to allow for missing class labels. 

Finally, one may also consider situations where miss- 
ing values occur in the attributes, and not just in the 
class label. This situation is analysed in (Little & Ru- 
bin 1987) and (Ghahramani & Jordan 1994). 

Although each of these extensions will obviously 
complicate the analysis to a certain extent, they can 
all be handled within the mixture modeling framework 
using EM to obtain maximum likelihood estimates of 
the relevant parameters. 

Conclusion 
The mixture modeling approach is well suited to anal- 
yse non-random partially classified data, and avoids 
the bias that sample-based approaches have. This ap- 
proach may be applied to any partially classified data 
set, where some kind of “screening” mechanism deter- 
mines which observation is classified and which not. 
Furthermore the mixture modeling framework using 
EM is flexible enough to allow for non-normal data, 
class-conditional densities that are mixtures, and miss- 
ing attribute vaiues. This fiexilliiity indicates that it 
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is also applicable to real-world messy data sets. Per- 
formance of realistic case studies, and development of 
suitable software to perform these studies, must sub- 
stantiate this claim in the future. 
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