
i:, “’ I ,S~

‘3, ,/ I .,
:I, ,,,

Discovery of Relevant New Features
by Generating Non-Linear Decision Trees

Andreas Ittner
Dept. of Computer Science

Chemnitz University of Technology
D-09107 Chemnitz, GERMANY

andreas.ittner@informatik.tu-chemnitz.de

Michael Schlosser
Dept. of Electrical Engineering

Fachhochschule Koblenz
D-56075 Koblenz, GERMANY

schlosser@koblenz.fh-rpl.de

Abstract field of manufacturing new features.

Most decision tree algorithms using selective in-
duction focus on univariate, i.e. axis-parallel
tests at each internal node of a tree. Oblique de-
cision trees use multivariate linear tests at each
non-leaf node. One well-known limitation of se-
lective induction algorithms, however, is its inad-
equate description of hypotheses by task-supplied
original features. To overcome this limitation this
paper reports a novel approach to constructive
induction, called non-linear decision trees. The
crux of this method consists of the generation of
new features and the augmentation of the origi-
nal primitive features with these new ones. This
method can be considered as a powerful tool in
KDD, because the constructed new features re-
main understandable and permit an interpreta-
tion by experts. The resulted non-linear decision
trees are more accurate than their axis-parallel or
oblique counterparts. Experiments on several ar-
tificial and real-world data sets demonstrate this
property.

idea underpinning the discovery of relevant new fea-
tures by a non-linear decision tree method. The fourth
section (NDT) deals with a comparison of different
kinds of decision trees. Moreover, we introduce our
novel method for non-linear decision tree generation
with respect to feature construction. Results of using
this method to classify several real-world and one artifi-
cial data sets are presented in section 5 (Experiments).
Section 6 (Conclusions) summarizes the lessons learned
from these experiments.

The Problem
Good representations are crucial for solving difficult
problems in the fields of Artificial Intelligence (AI) as
well as in KDD. Feature construction and the extrac-
tion of constructed new features are essential steps to
achieve this goal. But what does feature construc-
tion mean? The following definition of it was stated
in (Matheus & Rendell 1989):

Introduction
One well-known limitation of selective induction algo-
rithms is its inadequate description of hypotheses by
task-supplied primitive features. To overcome this lim-
itation, constructive induction algorithms transform
the original feature space into a more adequate space
by creating new features and augmenting the primitive
features with the new ones. This method can be con-
sidered as a powerful tool in Knowledge Discovery and
Data Mining (KDD), if the new features “... may be
interpreted as useful or interesting knowledge” (Fayyad
et al. 1996).

Feature Construction: the application of a
set of constructive operators { 01, 02, on} to a
set of existing features {fr , fz, fm} resulting
in the construction of one or more new features
{f{, fi, f&} intended for use in describing the
target concept.

The construction of a new feature may be regarded
as a combination of existing features, depending on
kind of existing features.

This paper introduces an approach for discovery rel-
evant new features by generating non-linear decision
trees (NDT) (Itt ner 1995). This kind of decision trees
is based on the augmentation of the feature space. Sec-
tion 2 (The Problem) is dedicated to the problem of
feature construction and state of the art solutions. Sec-
tion 3 (Manufacturing New Features) elaborates the

The investigation of all combinations of features is
a means used to construct a subset of the H most im-
portant features from the h possible ones. The num-
ber of these combinations is (L). It is obvious that
this method is not applicable to practical problems if
the feature space is of high dimension. For that rea-
son combinations of features are limited to pairwise or
only few combinations and to simple arithmetical op-
erations, like addition, subtraction, multiplication and
division up to now.

108 KDD-96

This is the key

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

There are representative examples of systems that
perform and employ a variety of feature construction
techniques. For instance the system BACON (Langley
et a1.19$4) focuses on the discovery of empirical laws
that summarize numerical data. In order to achieve
this goal, BACON requires some information about the
form that plausible laws may take. The technique used
in ABACUS (Falkenhainer & Michalski 1990) depicts
quantitative discovery as a search through the space
of equations that could possibly describe the behavior
of the observed data. This search process mathemat-
ically combines variables representing terms to form
new terms. For extimple z and y might be combined
to form x + y. But also in the field of modeling, pro-
ducing new features plays an important role. If we
consider the problem of classifying the chessboard po-
sitions, for example, formed by randomly placing the
three pieces White king, White rook and Black king as
‘illegal’ or ‘legal’ (Michie et al. 1994). One important
step here is to augment the six features (rank and raw
of each piece) with fifteen new ones, generated by form-
ing all possible pairwise differences among the original
six. In this way it is possible to express in a decision-
tree language certain key sub-description, such as cru-
cial same-file and same-rank relations between White
rook and Black king.

Manufacturing New Features
In the field of classification there exist many examples
of feature construction. Especially in an exploratory
study, practitioners often combine features in an at-
tempt to increase the descriptive power of the result-
ing decision tree/rules (Michie et al. 1994). Data set
providers often think that particular combinations, like
the sum of two features z + y or ratios like e are po-
tentially more useful and important than eat ii feature
separately.

Background knowledge of a domain is often help-
ful in determining what combination of the primitive
features to use. In the well-known Iris data set (see
section Experiments), for example, the product of the
features FS=Petal Length and Fd=Petal Width gives a
single feature which has the dimension area, and might
be labeled as Petal Area (Michie et al. 1994). In this
case, the single feature Petal Area is a basis for a de-
cision rule that produces only four errors in the whole
data set. The notion “area”; as a the product of length
and width, is well-understood in geometry and can be
viewed as a new quality in describing the underlying
concept of data. Because ” . . . feature construction is
a difficult and poorly understood problem” (Matheus
& Rendell 1989) one solution is to have a system to
construct new features automatically. One approach,

for example, consists of the pairwise generation of the
new features from the primitive ones. After the feature
construction we can use a selective induction method,
for example a decision tree algorithm to evaluate these
new features. In the case of Iris data the decision tree,
based on the originally existing features, is shown in
Figure 1.

Figure 1: Decision tree of the Iris data set (based on
the originally existing primitive features)

After the construction of the pairwise products of
the given primitive features and the augmentation to
the primitive ones we obtain the following tree [Figure
21.

Figure 2: Decision tree of the Iris data set (based on
the primitive and new features)

This one is a decision tree with linear or non-linear
tests at each internal node. Figure 3 shows the linear
and non-linear separations of examples from the three
different classes (+,-,x) in the feature space (F%F4-
space).

In this case, the simple combination of the origi-
nal features is the source of power for the resulting
decision tree (confer the size of the trees and the ex-
pressive power of its internal tests in Figure 1 and 2).
Except that, we obtain new ultimately understandable

Decision-Tree &Z Rule Induction 109
”

W

+

+ ,:

++a
* 44 F3 c

Figure 3: Iris data (linear and non-linear separation)

features (F3F4 and FIF.2) that permit an interprets
tion by the data set provider. In the spirit of KDD
this means ” . . . to make patterns understandable to
humans in order to facilitate a better understanding of
the underlying data” (Fayyad et al. 1996).

The approach of constructive induction algorithms
is not limited to continuous-valued features. There are
also many methods for the domain of binary and nomi-
nal features. The algorithms FRINGE and GREEDY3
(Pagallo & Haussler 1989) create new Boolean features
only by using logical operators to construct new fea-
tures that are more adequate to describe hypotheses.
ID2-of-3 (Murphy & Pazzani 1991) creates M-of-N rep-
resentations as new Boolean features. X-of-N (Zheng
1995) can be considered as an extension of M-of-N, that
constructs new nominal features. The common main
advantage of all constructive induction algorithms lies
in the stronger expressive power of a concept found by
these algorithms. In the following section we describe
a method to discover relevant new features as combi-
nations of the continuous primitive ones.

Non-Linear Decision Trees
A decision tree algorithm is an approach of selective
induction. This section deals with different decision
tree paradigms.

Decision trees have been used for classification since
the 1980’s. Breiman’s work on CART (Breiman et al.
1984) and Quinlan’s work (Quinlan 1983)) (Quinlan
1986) on ID3 and C4.5 provided the foundations for
what has become a large field of research on one of the
central techniques of machine learning. Originally de-
cision trees were proposed for classification in domains
with symbolic-valued features (Quinlan 1986). Later
Quinlan extended them to numeric domains (Quinlan
1993), where the tests have the form z:i > t, where
xi is one feature and t is a constant, namely the cut-

point of this feature. Consequently, this binarization
can be viewed as a special case of feature construction
and an essential requirement for the following feature
selection.

This kind of decision trees may be called uniwariate
or axis-parallel, because the tests on each non-leaf node
of the tree are equivalent to axis-parallel hyperplanes in
the feature space [Figure 61. Another class of decision
trees tests a linear combination of the features at each
internal node (Breiman et al. 1984)) (Utgoff & Brodley
1991), (Murthy et al. 1993). This kind is called mul-
ta’variate linear or oblique decision tree, because these
tests are equivalent to hyperplanes at an oblique orien-
tation to the axes of the feature space [Figure 71. Note
that axis-parallel decision trees produce partitionings
of the feature space in form of hyper-rectangles that are
parallel to the feature axes, while oblique decision trees
produce polygonal partitionings of the feature space.
In contrast to these both techniques, our approach,
called non-linear multivariate decision tree, produces
partitionings in form of a curved hypersurface, namely
a hypersurface of the second degree [Figure 81.

The novel method introduced now is based on the
combination of primitive features and the augmenta-
tion of the feature space before tree generation. For
example, as a result of combination of the primitive
features fr = ~1 and f2 = 22 we see a new feature
f: = Ol(fl,fi) = 210x2 as a new dimension in the
feature space [Figure 43.

4

Figure 4: Augmentation of the Feature Space

Because the space of possible new features is expo-
nential, we constrain ourselves to a special kind of fea-
ture combination. The key idea is the construction of
all possible pairwise products and squares of n numer-
ical primitive features. That means that we use only
multiplication as a constructive operator. As a result

110 KDD-96

we obtain v features. That is the sum of n primi-
tive ones, n squared ones and w pairwise products
of primitive features.

The second applied constructive operator (addition)
in this case is a result of linear combinations of these
terms. This operator application to the linear terms,
products and squares is not explicitly determined by
the user. In contrast, the linear combinations’ result
automatically by a decision tree algorithm (see below).

The linear combination of the constructed terms
form an .equation of a hypersurface of the second de-
gree. For example, in the two-dimensional case, the
form of an equation of a curve of the second degree is:

ax: + 2b2122 + cxi + 2dq + 2ex2 + f = 0.

An ellipse, a circle, a hyperbola, a parabola, and a
pair of two lines are described by this equation. In the
m-dimensional case (m > 2) we see elliptoids, hyper-
boloids, paraboloids and so on.

Now we use a decision tree algorithm, in our case
OCl (Murthy et al. 1993), to construct an oblique de-
cision tree in the new created higher-dimensional fea-
ture space. This algorithm generates hyperplanes at
an oblique orientation as a test of a linear combination
of primitive and new created features at each inter-
nal node. In general these hyperplanes correspond to
non-linear hypersurfaces in the original feature space
of primitive features.

If we consider a two-dimensional feature space with
the original features ti and 22, for example, the num-
ber of dimensions of the new feature space is five.
We obtain two renamed features yi = xi, yz = 22
and three constructed ones, ys = 21x2, y4 = x: and
Y5 = xi, Now it is possible to generate an oblique
decision tree in this y-feature space. As a result we
obtain an oblique decision tree that is equivalent to a
non-linear decision tree in the original x-space after a
re-transformation of the features.

In the next section, we present empirical studies, us-
ing artificial and real-world data sets, that analyze the
ability of our approach to construct non-linear decision
trees that are more accurate than their axis-parallel or
oblique counterparts.

Experiments
We present results of experiments we performed creat-
ing NDT on four real-world and one artificial data sets.
The results are summarized in Tables l-3. We compare
the accuracies, the number of leaves and the depths
of the trees with axis-parallel (C4.5-like) and oblique
(OCl) decision trees. The best results are highlighted
in the following tables.

Table 1: Accuracy of the Trees (%)

II iris diab I heart I vehic I spiral 1

Table 2: Number of Leaves of the Trees
II iris I diab I heart I vehic I spiral 1

We used the OCl algorithm with different impu-
rity and goodness measures to construct an axis-
parallel tree (C4.5-like) in the original feature space
and oblique decision trees in the original and in the new
created higher-dimensional feature space, respectively.
The measures are the Twoing Rule (two), the Gini-
Index (gini), and the Gain Criterion (gain). They are
exhaustively described in (Murthy et al. 1994). All our
experiments used lo-fold cross-validation trials. Table
4 summarizes the time of computation for the tree gen-
eration. The increasing time of computation can be
considered as one weakness of our approach.

Data Sets
We used several well-known data sets for our exper-
iments. The data sets are Iris data (iris), Diabetes

Table 3: Depth of the Trees

iris diab heart vehic spiral

Decision-Tree 6r Rule Induction 111

Table 4: Time of Computation (sec.)

iris diab heart vehic spiral
OCl 110 2526 620 5891 382
NDT 192 6766 939 10742 373

Diagnosis (diab), Heart Disease (heart), and Vehicle
Silhouettes (vehic). The artificial data set is the Spiral
Data Set (spiral).

Spiral Data Set (spiral). This is an artificial data
set, which offers the opportunity to demonstrate the
ability of non-linear partitioning of feature space ex-
emplarily. Each of the 192 examples is described by
two features. Each one belongs to one of two cate-
gories. All examples of a class form a spiral in the 2D
feature space [Figure 51. As Figure 5 shows, the exam-
ples of the two categories of the artificial spiral data
set are quite hard to separate from each other. An
axis-parallel, i.e. univariate partitioning of the feature
space, is shown in Figure 6.

h
9

+ +
- - +

+ + + -.++ - +
- + - - -’ - + - +

+ -- +
+ -++ +++..++ -- + - -I + --- -_ + - +-

- + - ++ -- + - -- + + - +
RF* - . = + - x

- + - + 1 %+ -c - +
+ - ++ - +

+ - ++ --_ +..+++ +++ -- t - +
- + - .._-- + +

+ - ++
- I - t++++ - +

----I -
+ - + - - + t t + +

Figure 5: Spiral Data Set

Figure 7 gives an illustration of a multivariate lin-
ear partitioning of the feature space with the remark-
ably number of 38 ‘hyperplanes’. The oblique decision
tree was generated by the OCl algorithm. Figure 8
shows the non-linear partitioning of the feature space
with only 11 curves of the second order. As a special
kind of these curves we see two axis-parallel partition-
ing of the feature space. The corresponding decision
tree is a non-linear decision tree that tests a non-linear
combination of the original primitive features at each
internal node. These tests correspond to tests of a lin-
ear combination of the new created features, which can

Figure 6: Axis-Parallel Partitioning

be considered as the axes of a higher-dimensional new
feature space. .

Figure 7: Oblique Partitioning

Conclusions and Further Work
This paper has described a new approach for construct-
ing non-linear decision trees. The ability to produce
non-linear splits at each internal node broadens the
capabilities of decision tree algorithms and contributes
to the society of KDD methods. Our experiments pre-
sented here are a convincing demonstration of the use-
fulness of non-linear separations with respect’ to the
accuracy and the descriptive power of the underlying
concept of data. The simple combination of primi-
tive features to new ones gives the opportunity of an
oblique partitioning in the higher-dimensional feature
space. This oblique partitioning corresponds to a non-

112 KDD-96

Figure 8: Non-Linear Partitioning of the Space

linear partitioning of the primitive feature space. Our
approach fulfills a main goal of KDD to construct new
features (patterns), which are easy to understand and
to interpret by experts.

The empirical studies have demonstrated that non-
linear decision tree algorithms produce more accurate
trees than their axis-parallel or oblique counterparts.
We plan to extend our experiments with non-linear de-
cision trees to an inductive generation of new features
by gradually increasing of the complexity of these ones.
Acknowledgments . The authors thank Werner Dil-
ger, Rainer Staudte and Sarah Malloy for providing
comments. Thanks also to two anonymous reviewers
for helpful suggestions.

References

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone,
C. J. (1984). Classification and Regression Trees,
Wadsworth International Group.

Brodley, C. E., Utgoff, P. E. (1995). Multivariate
Decision Trees, In Machine Learning, 19, 45-77.

Falkenhainer, B. C., Michalski, R. S. (1990). Inte-
grating Quantitative and Qualitative Discovery in the
ABACUS System. In Y. Kodratoff, R. S. Michalski
(eds.), Machine Learning - An Artificial Intelligence
Approach, Vol. 3, Morgan Kaufmann.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth,
P. (1996). From Data Mining to Knowledge Discovery:
An Overview., In Fayyad, U. M., Piatetsky-Shapiro,
G., Smyth, P. & Uthurusamy R. (eds.), Advances in
Knowledge Discovery and Data Mining., AAAI/MIT
Press.

Ittner, A. (1995). Ermittlung volt funktionalen Attri-
butabhingigkeiten und deren Einflu$ auf maschinelle
Lernverfahren, Diplomarbeit, TU Chemnitz-Zwickau.

Langley, P., Bradshaw, G. L., Simon, H. A. (1984).
Rediscovering Chemistry with the BACON System, In
R. S. Michalski, J. G. Carbonell & T. M. Mitchell
(eds.), Machine Learning: An Artificial Intelligence
Approach, Morgan Kaufmann, San Mateo, CA.

Matheus, C. J., Rendell, L. A. (1989). Construc-
tive Induction on Decision Trees. In Proceedings of
the 11th International Joint Conference on Artificial
Intelligence (IJCAI-89)., Morgan Kaufmann.

Michie, D., Spiegelhalter, D. J., Taylor, C. C.
(eds.) (1994). M ac h ine Learning, Neural and Statisti-
cal Classification, Ellis Horwood.

Murphy, P. M., Pazzani, M. J. (1991). IDZof-3:
Constructive induction of M-of-N concepts for dis-
criminators in decision trees, In Proceedings of the
8th International Machine Learning Workshop, Mor-
gan Kaufmann.

Murthy, S., Kasif, S., Salzberg, S., Beigel, R. (1993).
OCl: Randomized induction of oblique decision trees,
In Proceedings of the 11th National Conference on Ar-
tificial Intelligence (AAAI-93), MIT-Press.

Murthy, S., Kasif, S., Salzberg, S. (1994). A System
for Induction of Oblique Decision Trees, In Journal of
Artificial Intelligence Research, Vol 2, Morgan Kauf-
mann.

Pagallo, G., Haussler, D. (1989). Two algorithms
that learn DNF by discovering relevant features, In
Proceedings of the 6th International Machine Learning
Workshop, Ithaca N.Y., Morgan Kaufmann.

Quinlan, J. R. (1983). Learning efficient classifi-
cation procedures and their application to chess end
games, In R. S. Michalski, J. G. Carbonell & T. M.
Mitchell (eds.), Machine Jeaming: An Artificial Intel-
Zigence Approach, Morgan Kaufmann, San Mateo, CA.

Quinlan, J. R. (1986). Induction of decision trees,
In Machine Learning 1(1):81-106.

Quinlan, J. R. (1993). (74.5: Programs for Machine
Learning, Morgan Kaufmann, San Mateo, CA.

Utgoff, P. E., Brodley, C. E. (1991). Linear Machine
Decision Trees, COINS Technical Report 91-10, Dept.
of Computer Science, University of Massachusetts.

Zheng, Z. (1995). Constructing Nominal X-of-N At-
tributes, In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, Morgan Kauf-
mann.

Decision-Tree 6r Rule Induction 113

