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Abstract field of manufacturing new features. 

Most decision tree algorithms using selective in- 
duction focus on univariate, i.e. axis-parallel 
tests at each internal node of a tree. Oblique de- 
cision trees use multivariate linear tests at each 
non-leaf node. One well-known limitation of se- 
lective induction algorithms, however, is its inad- 
equate description of hypotheses by task-supplied 
original features. To overcome this limitation this 
paper reports a novel approach to constructive 
induction, called non-linear decision trees. The 
crux of this method consists of the generation of 
new features and the augmentation of the origi- 
nal primitive features with these new ones. This 
method can be considered as a powerful tool in 
KDD, because the constructed new features re- 
main understandable and permit an interpreta- 
tion by experts. The resulted non-linear decision 
trees are more accurate than their axis-parallel or 
oblique counterparts. Experiments on several ar- 
tificial and real-world data sets demonstrate this 
property. 

idea underpinning the discovery of relevant new fea- 
tures by a non-linear decision tree method. The fourth 
section (NDT) deals with a comparison of different 
kinds of decision trees. Moreover, we introduce our 
novel method for non-linear decision tree generation 
with respect to feature construction. Results of using 
this method to classify several real-world and one artifi- 
cial data sets are presented in section 5 (Experiments). 
Section 6 (Conclusions) summarizes the lessons learned 
from these experiments. 

The Problem 
Good representations are crucial for solving difficult 
problems in the fields of Artificial Intelligence (AI) as 
well as in KDD. Feature construction and the extrac- 
tion of constructed new features are essential steps to 
achieve this goal. But what does feature construc- 
tion mean? The following definition of it was stated 
in (Matheus & Rendell 1989): 

Introduction 
One well-known limitation of selective induction algo- 
rithms is its inadequate description of hypotheses by 
task-supplied primitive features. To overcome this lim- 
itation, constructive induction algorithms transform 
the original feature space into a more adequate space 
by creating new features and augmenting the primitive 
features with the new ones. This method can be con- 
sidered as a powerful tool in Knowledge Discovery and 
Data Mining (KDD), if the new features “... may be 
interpreted as useful or interesting knowledge” (Fayyad 
et al. 1996). 

Feature Construction: the application of a 
set of constructive operators { 01, 02, . . . . on} to a 
set of existing features {fr , fz, . . . . fm} resulting 
in the construction of one or more new features 
{f{, fi, . . . . f&} intended for use in describing the 
target concept. 

The construction of a new feature may be regarded 
as a combination of existing features, depending on 
kind of existing features. 

This paper introduces an approach for discovery rel- 
evant new features by generating non-linear decision 
trees (NDT) (Itt ner 1995). This kind of decision trees 
is based on the augmentation of the feature space. Sec- 
tion 2 (The Problem) is dedicated to the problem of 
feature construction and state of the art solutions. Sec- 
tion 3 (Manufacturing New Features) elaborates the 

The investigation of all combinations of features is 
a means used to construct a subset of the H most im- 
portant features from the h possible ones. The num- 
ber of these combinations is (L). It is obvious that 
this method is not applicable to practical problems if 
the feature space is of high dimension. For that rea- 
son combinations of features are limited to pairwise or 
only few combinations and to simple arithmetical op- 
erations, like addition, subtraction, multiplication and 
division up to now. 
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There are representative examples of systems that 
perform and employ a variety of feature construction 
techniques. For instance the system BACON (Langley 
et a1.19$4) focuses on the discovery of empirical laws 
that summarize numerical data. In order to achieve 
this goal, BACON requires some information about the 
form that plausible laws may take. The technique used 
in ABACUS (Falkenhainer & Michalski 1990) depicts 
quantitative discovery as a search through the space 
of equations that could possibly describe the behavior 
of the observed data. This search process mathemat- 
ically combines variables representing terms to form 
new terms. For extimple z and y might be combined 
to form x + y. But also in the field of modeling, pro- 
ducing new features plays an important role. If we 
consider the problem of classifying the chessboard po- 
sitions, for example, formed by randomly placing the 
three pieces White king, White rook and Black king as 
‘illegal’ or ‘legal’ (Michie et al. 1994). One important 
step here is to augment the six features (rank and raw 
of each piece) with fifteen new ones, generated by form- 
ing all possible pairwise differences among the original 
six. In this way it is possible to express in a decision- 
tree language certain key sub-description, such as cru- 
cial same-file and same-rank relations between White 
rook and Black king. 

Manufacturing New Features 
In the field of classification there exist many examples 
of feature construction. Especially in an exploratory 
study, practitioners often combine features in an at- 
tempt to increase the descriptive power of the result- 
ing decision tree/rules (Michie et al. 1994). Data set 
providers often think that particular combinations, like 
the sum of two features z + y or ratios like e are po- 
tentially more useful and important than eat ii feature 
separately. 

Background knowledge of a domain is often help- 
ful in determining what combination of the primitive 
features to use. In the well-known Iris data set (see 
section Experiments), for example, the product of the 
features FS=Petal Length and Fd=Petal Width gives a 
single feature which has the dimension area, and might 
be labeled as Petal Area (Michie et al. 1994). In this 
case, the single feature Petal Area is a basis for a de- 
cision rule that produces only four errors in the whole 
data set. The notion “area”; as a the product of length 
and width, is well-understood in geometry and can be 
viewed as a new quality in describing the underlying 
concept of data. Because ” . . . feature construction is 
a difficult and poorly understood problem” (Matheus 
& Rendell 1989) one solution is to have a system to 
construct new features automatically. One approach, 

for example, consists of the pairwise generation of the 
new features from the primitive ones. After the feature 
construction we can use a selective induction method, 
for example a decision tree algorithm to evaluate these 
new features. In the case of Iris data the decision tree, 
based on the originally existing features, is shown in 
Figure 1. 

Figure 1: Decision tree of the Iris data set (based on 
the originally existing primitive features) 

After the construction of the pairwise products of 
the given primitive features and the augmentation to 
the primitive ones we obtain the following tree [Figure 
21. 

Figure 2: Decision tree of the Iris data set (based on 
the primitive and new features) 

This one is a decision tree with linear or non-linear 
tests at each internal node. Figure 3 shows the linear 
and non-linear separations of examples from the three 
different classes (+,-,x) in the feature space (F%F4- 
space). 

In this case, the simple combination of the origi- 
nal features is the source of power for the resulting 
decision tree (confer the size of the trees and the ex- 
pressive power of its internal tests in Figure 1 and 2). 
Except that, we obtain new ultimately understandable 
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Figure 3: Iris data (linear and non-linear separation) 

features (F3F4 and FIF.2) that permit an interprets 
tion by the data set provider. In the spirit of KDD 
this means ” . . . to make patterns understandable to 
humans in order to facilitate a better understanding of 
the underlying data” (Fayyad et al. 1996). 

The approach of constructive induction algorithms 
is not limited to continuous-valued features. There are 
also many methods for the domain of binary and nomi- 
nal features. The algorithms FRINGE and GREEDY3 
(Pagallo & Haussler 1989) create new Boolean features 
only by using logical operators to construct new fea- 
tures that are more adequate to describe hypotheses. 
ID2-of-3 (Murphy & Pazzani 1991) creates M-of-N rep- 
resentations as new Boolean features. X-of-N (Zheng 
1995) can be considered as an extension of M-of-N, that 
constructs new nominal features. The common main 
advantage of all constructive induction algorithms lies 
in the stronger expressive power of a concept found by 
these algorithms. In the following section we describe 
a method to discover relevant new features as combi- 
nations of the continuous primitive ones. 

Non-Linear Decision Trees 
A decision tree algorithm is an approach of selective 
induction. This section deals with different decision 
tree paradigms. 

Decision trees have been used for classification since 
the 1980’s. Breiman’s work on CART (Breiman et al. 
1984) and Quinlan’s work (Quinlan 1983)) (Quinlan 
1986) on ID3 and C4.5 provided the foundations for 
what has become a large field of research on one of the 
central techniques of machine learning. Originally de- 
cision trees were proposed for classification in domains 
with symbolic-valued features (Quinlan 1986). Later 
Quinlan extended them to numeric domains (Quinlan 
1993), where the tests have the form z:i > t, where 
xi is one feature and t is a constant, namely the cut- 

point of this feature. Consequently, this binarization 
can be viewed as a special case of feature construction 
and an essential requirement for the following feature 
selection. 

This kind of decision trees may be called uniwariate 
or axis-parallel, because the tests on each non-leaf node 
of the tree are equivalent to axis-parallel hyperplanes in 
the feature space [Figure 61. Another class of decision 
trees tests a linear combination of the features at each 
internal node (Breiman et al. 1984)) (Utgoff & Brodley 
1991), (Murthy et al. 1993). This kind is called mul- 
ta’variate linear or oblique decision tree, because these 
tests are equivalent to hyperplanes at an oblique orien- 
tation to the axes of the feature space [Figure 71. Note 
that axis-parallel decision trees produce partitionings 
of the feature space in form of hyper-rectangles that are 
parallel to the feature axes, while oblique decision trees 
produce polygonal partitionings of the feature space. 
In contrast to these both techniques, our approach, 
called non-linear multivariate decision tree, produces 
partitionings in form of a curved hypersurface, namely 
a hypersurface of the second degree [Figure 81. 

The novel method introduced now is based on the 
combination of primitive features and the augmenta- 
tion of the feature space before tree generation. For 
example, as a result of combination of the primitive 
features fr = ~1 and f2 = 22 we see a new feature 
f: = Ol(fl,fi) = 210x2 as a new dimension in the 
feature space [Figure 43. 

4 

Figure 4: Augmentation of the Feature Space 

Because the space of possible new features is expo- 
nential, we constrain ourselves to a special kind of fea- 
ture combination. The key idea is the construction of 
all possible pairwise products and squares of n numer- 
ical primitive features. That means that we use only 
multiplication as a constructive operator. As a result 
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we obtain v features. That is the sum of n primi- 
tive ones, n squared ones and w pairwise products 
of primitive features. 

The second applied constructive operator (addition) 
in this case is a result of linear combinations of these 
terms. This operator application to the linear terms, 
products and squares is not explicitly determined by 
the user. In contrast, the linear combinations’ result 
automatically by a decision tree algorithm (see below). 

The linear combination of the constructed terms 
form an .equation of a hypersurface of the second de- 
gree. For example, in the two-dimensional case, the 
form of an equation of a curve of the second degree is: 

ax: + 2b2122 + cxi + 2dq + 2ex2 + f = 0. 

An ellipse, a circle, a hyperbola, a parabola, and a 
pair of two lines are described by this equation. In the 
m-dimensional case (m > 2) we see elliptoids, hyper- 
boloids, paraboloids and so on. 

Now we use a decision tree algorithm, in our case 
OCl (Murthy et al. 1993), to construct an oblique de- 
cision tree in the new created higher-dimensional fea- 
ture space. This algorithm generates hyperplanes at 
an oblique orientation as a test of a linear combination 
of primitive and new created features at each inter- 
nal node. In general these hyperplanes correspond to 
non-linear hypersurfaces in the original feature space 
of primitive features. 

If we consider a two-dimensional feature space with 
the original features ti and 22, for example, the num- 
ber of dimensions of the new feature space is five. 
We obtain two renamed features yi = xi, yz = 22 
and three constructed ones, ys = 21x2, y4 = x: and 
Y5 = xi, Now it is possible to generate an oblique 
decision tree in this y-feature space. As a result we 
obtain an oblique decision tree that is equivalent to a 
non-linear decision tree in the original x-space after a 
re-transformation of the features. 

In the next section, we present empirical studies, us- 
ing artificial and real-world data sets, that analyze the 
ability of our approach to construct non-linear decision 
trees that are more accurate than their axis-parallel or 
oblique counterparts. 

Experiments 
We present results of experiments we performed creat- 
ing NDT on four real-world and one artificial data sets. 
The results are summarized in Tables l-3. We compare 
the accuracies, the number of leaves and the depths 
of the trees with axis-parallel (C4.5-like) and oblique 
(OCl) decision trees. The best results are highlighted 
in the following tables. 

Table 1: Accuracy of the Trees (%) 

II iris diab I heart I vehic I spiral 1 

Table 2: Number of Leaves of the Trees 
II iris I diab I heart I vehic I spiral 1 

We used the OCl algorithm with different impu- 
rity and goodness measures to construct an axis- 
parallel tree (C4.5-like) in the original feature space 
and oblique decision trees in the original and in the new 
created higher-dimensional feature space, respectively. 
The measures are the Twoing Rule (two), the Gini- 
Index (gini), and the Gain Criterion (gain). They are 
exhaustively described in (Murthy et al. 1994). All our 
experiments used lo-fold cross-validation trials. Table 
4 summarizes the time of computation for the tree gen- 
eration. The increasing time of computation can be 
considered as one weakness of our approach. 

Data Sets 
We used several well-known data sets for our exper- 
iments. The data sets are Iris data (iris), Diabetes 

Table 3: Depth of the Trees 

iris diab heart vehic spiral 
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Table 4: Time of Computation (sec.) 

iris diab heart vehic spiral 
OCl 110 2526 620 5891 382 
NDT 192 6766 939 10742 373 

Diagnosis (diab), Heart Disease (heart), and Vehicle 
Silhouettes (vehic). The artificial data set is the Spiral 
Data Set (spiral). 

Spiral Data Set (spiral). This is an artificial data 
set, which offers the opportunity to demonstrate the 
ability of non-linear partitioning of feature space ex- 
emplarily. Each of the 192 examples is described by 
two features. Each one belongs to one of two cate- 
gories. All examples of a class form a spiral in the 2D 
feature space [Figure 51. As Figure 5 shows, the exam- 
ples of the two categories of the artificial spiral data 
set are quite hard to separate from each other. An 
axis-parallel, i.e. univariate partitioning of the feature 
space, is shown in Figure 6. 

h 
9 

+ + 
- - + 

+ + + -.++ - + 
- + - - -’ - + - + 

+ -- + 
+ -++ +++..++ -- + - -I + --- -_ + - +- 
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- + - + 1 %+ -c - + 
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+ - ++ --_ +..+++ +++ -- t - + 
- + - .._-- + + 

+ - ++ 
- I - t++++ - + 

----I - 
+ - + - - + t t + + 

Figure 5: Spiral Data Set 

Figure 7 gives an illustration of a multivariate lin- 
ear partitioning of the feature space with the remark- 
ably number of 38 ‘hyperplanes’. The oblique decision 
tree was generated by the OCl algorithm. Figure 8 
shows the non-linear partitioning of the feature space 
with only 11 curves of the second order. As a special 
kind of these curves we see two axis-parallel partition- 
ing of the feature space. The corresponding decision 
tree is a non-linear decision tree that tests a non-linear 
combination of the original primitive features at each 
internal node. These tests correspond to tests of a lin- 
ear combination of the new created features, which can 

Figure 6: Axis-Parallel Partitioning 

be considered as the axes of a higher-dimensional new 
feature space. . 

Figure 7: Oblique Partitioning 

Conclusions and Further Work 
This paper has described a new approach for construct- 
ing non-linear decision trees. The ability to produce 
non-linear splits at each internal node broadens the 
capabilities of decision tree algorithms and contributes 
to the society of KDD methods. Our experiments pre- 
sented here are a convincing demonstration of the use- 
fulness of non-linear separations with respect’ to the 
accuracy and the descriptive power of the underlying 
concept of data. The simple combination of primi- 
tive features to new ones gives the opportunity of an 
oblique partitioning in the higher-dimensional feature 
space. This oblique partitioning corresponds to a non- 
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Figure 8: Non-Linear Partitioning of the Space 

linear partitioning of the primitive feature space. Our 
approach fulfills a main goal of KDD to construct new 
features (patterns), which are easy to understand and 
to interpret by experts. 

The empirical studies have demonstrated that non- 
linear decision tree algorithms produce more accurate 
trees than their axis-parallel or oblique counterparts. 
We plan to extend our experiments with non-linear de- 
cision trees to an inductive generation of new features 
by gradually increasing of the complexity of these ones. 
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