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Abstract 

Belief networks are a powerful tool for knowledge dis- 
covery that provide concise, understandable proba- 
bilistic models of data. There are methods grounded 
in probability theory to incrementally update the rela- 
tionships described by the belief network when new in- 
formation is seen, to perform complex inferences over 
any set of variables in the data, to incorporate domain 
expertise and prior knowledge into the model, and to 
automatically learn the model from data. This paper 
concentrates on part of the belief network induction 
problem, that of learning the quantitative structure 
(the conditional probabilities), given the qualitative 
structure. In particular, the current practice of rote 
learning the probabilities in belief networks can be 
significantly improved upon. We advance the idea of 
applying any learning algorithm to the task of condi- 
tional probability learning in belief networks, discuss 
potential benefits, and show results of applying neu- 
ral networks and other algorithms to a medium sized 
car insurance belief network. The results demonstrate 
from 10 to 100% improvements in model error rates 
over the current approaches. 

Introduction 
Belief networks have been accepted as a tool for knowl- 
edge discovery in databases for several years now, and 
have been a growing focus of machine learning re- 
search for the past decade. Several uses have been 
demonstrated in the literature in domains as distinct 
as document retrieval, medical diagnosis, and telecom- 
munications (D’Ambrosio 1994; Ezawa & Norton 1995; 
Park, Han, & Choi 1995). A common need across all 
of these application domains is for robust, flexible and 
powerful methods for the automatic induction of be- 
lief networks. Along with the obvious savings in time 
and effort, well-constructed automated techniques of- 
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lysts develop deeper insight into the processes hidden 
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in the data by making it easier to experiment with new 
ideas. 

The main goal of this paper is to influence the cur- 
rent pattern of thought on the effective induction of 
belief network probabilities. This paper advocates the 
application of standard machine learning techniques 
to this problem together with, or in place of, the rote 
learning techniques that are most common today. We 
do not address the task of learning the structure of the 
network. 

The conditional probability table (CPT) of a node 
(variable) in a belief network stores the probabilistic 
relation between that variable and its parents as a ta- 
ble of conditional probabilities. There is one CPT per 
node in the network. Inducing the CPTs is a learning 

,--AI -I,.. 2-...l.--L..- LY ~~~~ Al-- problem. Each is a ~iocensraccy ‘unzque Iunc6ion Irom 6ne 
parent variables to the child, and thus should be open 
to a wide range of learning techniques. The current ap- 
proach in most all cases is to learn the conditional prob- 
ability tables with a simple statistical counting method 
(“bookkeeping”) that can be likened to the rote learn- 
ing done by chess and checkers programs back in the 
60’s (Samuel 1963). The bookkeeping approach is se- 
ductive because it is the easiest method to implement, 
is very understandable, and leads to Dirichlet distribu- 
tions. Dirichlets have nice theoretical properties that 
can lead to effective measurements of accuracy dur- 
ing inference (Musick 1993). However, the power and 
flexibility of being able to apply any machine learning 
technique to CPT learning has advantages that can not 
be ignored. The following is a brief argument for ilzcor- 
porating machine learning techniques into the statisti- 
cally oriented techniques that are currently in force. 
The rest of the paper backs these arguments up with 
results of an implementation of these concepts. 

l Unsupervised Generalization: Generalization is 
the heart of the ability to learn and discover new 
knowledge. It, can be argued that most machine 
learning algorithms generiize by assuming the ex- 
istence of certain dependencies in the data and gen- 
eralizing based on those. On the other hand, most 
statistical techniques (certainly bookkeeping) tend 
to assume independence in the data (unless specifi- 
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tally stated with a distribution or a correlation ma- 
trix), and so do not generalize unless instructed to. 
The successes in both fields make it clear that each 
approach has its place in modeling data. 

Sparse Data: Sparse training data is an unavoid- 
able condition in CPT learning. The size of a 
CPT is the number of unique parent instantiations 
(columns) times the number of child values (rows.. 
see Table l), and in a practical application can be 
immense. The situation is aggravated by the fact 
that the training data will not be evenly distributed 
throughout a table. What often happens is that a 
small fraction of the columns in a table will together 
have a very high probability, and thus take in the 
bulk of the data. The set of low probability columns 
rarely see relevant data. The implication is that to 
“cover” a table with training data, the number of 
samples already likely to be needed must be multi- 
plied by the inverse of the probability of the lowest 
probability parent instantiation. Bookkeeping fur- 
ther compounds the problem by requiring a signif- 
icant amount of data supplied to each column in 
a CPT in order to produce viable estimates. Ma- 
chine learning algorithms generalize across the data 
and often produce excellent results under sparse data 
conditions. 

Flexibility: Each CPT is a different learning prob- 
lem, with unique characteristics. We can take ad- 
vantage of the uniqueness by applying the algorithm 
that best fits the learning task. For tables where 
a linear relationship is expected between child and 
parent variables, apply linear regression. When the 
CPT is moderate sized and well covered by data, ap- 
ply bookkeeping. When the data is sparse or the re- 
lation between child and parents is unknown, apply 
neural nets or decision trees. This ability to tailor 
the choice of algorithm to match problem charac- 
teristics can make a substantial difference in overall 
performance. 

Problem Reduction: In terms of the complexity 
of the learning task, the bookkeeping algorithm has 
a much more difficult job than other approaches. For 
example, if all variables have 5 values, and node X, 
has four parents, then the CPT for Xi has 3125 cells 
or 625 columns for bookkeeping to learn. A effective 
neural network applied to the same problem (with a 
construction similar to what we use in Sections 2.2 
and 3) need only learn 76 parameters. 

The paper continues in Section 2 with a descrip- 
tion of the algorithms that have been implemented 
and applied to the CPT learning problem. Section 3 
explains the experimental methodology, and discusses 
the results of the implementation including compar- 
isons between bookkeeping and other learning alterna- 
tives. Section 4 wraps up with a brief conclusion. 

Figure 1: A Smoker Belief Net 
Thu is a behef net showmg a simphstic relatmn between smokmg, 

bronchitis and having parents that smoke 

Methods Used for Learning CPTs 
This section describes the bookkeeping (BOOK), neu- 
ral network (NN), and combination (COMB) algo- 
rithms that we have applied to the CPT learning phase 
of inducing a belief network from training data. We as- 
sume that the structure of the belief network is given. 
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the interested reader can find in-depth descriptions of 
how these methods and others can be constructed and 
applied to CPT learning in (Musick 1994). 

Bookkeeping 
Bookkeeping is a simple matter of counting the training 
samples that are relevant to each cell in the CPT. As- 
suming uninformative priors and sampling without re- 
placement, the application of standard statistical infer- 
ence methodology (maximum likelyhood estimation) 
leads to the fact that the counts of relevant samples 
are actually the parameters that describe a beta dis- 
tribution for each cell1 of the CPT. A beta distribu- 
tion ,8(a, b) is similar in shape to a normal that is a bit 
skewed, and has a mean of &. 

Table 1 contains the CPTs for the belief network in 
Figure 1, and depicts what happens on a bookkeep- 
ing update. .The CPTs on the left are the original 
tables with a uniform prior, the CPTs on the right 
show what happens after updating for one example of 
Parents smoke = 0, Smoker = 1 and Disease = bron- 
chitis. Each bullet shows where the sample “hits” in 
each particular table. When the sample hits a cell in 
the table, the a parameter is incremented, and the rest 
of the cells in that column have their b parameter in- 
cremented. Consider the PT(D/S) table, in particular 
the probability that a patient has bronchitis given that 
he smokes (this cell was “hit” by the sample). This 
probability starts at a prior of l/3, and after the sam- 
ple increases to l/2, while the probability of Disease 

‘Or more generally, a Dirichlet for each column of the 
table. 
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Table 1: Updating the CPTs 
This shows the update process from the origmal CPTs on the left to the new CPTs on the right, after a sample of P = 0, S = 1, D = b 
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Figure 2: Applying Neural Nets to Dog Out 
The behef network on the right is for the Dog Out problem, with 

variables FO = Family Out, BP = dog has Bowel Problems, LO 

= outside Lights Out, DO = the Dog IS Outsrde, and HB = you 

can Hear the dog Barking The neural network on the left shows 

the structure of the networks m the belief network CPTs, and also 
happens to be the srze of a network apphed to the same problem 
The goal is to predrct whether or not the dog is outsrde, based on 
whether the outsrde hghts are on, If the dog IS barkmg, and so on 

= halitosis starts at l/3 and drops to l/4. Thus for 
bookkeeping each complete sample is relevant to an 
entire column in every CPT. Note also that bookkeep- 
ing makes a strong independence assumption; a sample 
relevant to one column in a CPT is independent of any 
other column in that CPT. 

The job of the neural network is to produce a den- 
sity function for each column of the CPT, without any 
predetermined requirements on the family of functions 
that could be discovered. Figure 2 is a graphical ex- 
ample of applying neural networks to learn three of the 
tables in the Dog Out problem (Charniak 1991). Let 

T, be the CPT for node Xi, and nij be a unique parent 
instantiation for the node. The general process for 
learning a CPT with NN is for each Ti: 

1. 

2. 

3. 

4. 

5. 

6. 

Retrieve from the database the instances that are 
relevant, t,o T;. 

Construct a neural network NNT$ and initialize it. 
Train NNT, on the samples, where the value of the 
variable Xi serves as the classification of each datum. 

Apply input combination ?~il to the neural network 
and read off the distribution for the CPT column 
Pr(Xi III,) from the output units. 

Normalize the output and write the values into the 
CPT for the belief network. 

Repeat steps 4 and 5 for all input combinations riz 
through ‘lri,,, . 

The network used for the results described below 
is a 3-layer feed forward network constructed to learn 
density functions, and incorporates ideas of momentum 
and adaptive parameters. A network can be built for 
any combination of input/output variables, including 
nodes with binary, discrete, continuous, and nominal 
values. Details of the construction and mapping into 
CPT learning can be found in (Musick 1994). Note 
that while bookkeeping provides a distribution for each 
cell in the CPT, neural networks in general will only 
provide a point probability. 

It should be made clear that this paper is not trying 
to promote this particular neural network construction 
as the best for the problem of CPT learning. In fact, we 
do not make that ciaim for any of the aigorithms pro- 
posed here. Our claim is that effective CPT learning 
requires the ability to apply a wide range of learning 
techniques; this construction is used to demonstrate 
that point. 
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I3 1Licost ?5 Pmpcost 
Figure 3: car I~SUIWIK~ Database 
This is the model of an insurance database, It includes bmary, nommal, discrete and contmuous variables. 

COMB 
COMB is probably the most interesting approach 
tested. COMB combines both BOOK and NN learn- 
ing approaches wzthzn one CPT. The combination is 
done by choosing to learn data-rich columns with 
BOOK and the data-poor columns with NN. Specifi- 
cally, columns with 20 samples or less are learned with 
NN, columns with more are learned with BOOK. Re- 
sults are combined on a column by column basis in- 
stead of cell by cell since any one sample is relevant to 
exactly one column. The improvement in the overall 
model error rate with COMB is impressive. 

Results and Comparisons 
This section describes the results of an implementation 
of the above ideas. 

Experimental Methodology 
The belief network used in this paper is a realistic, 
moderately sized car insurance network (Russell et ~1. 
1995) with 27 binary, discrete, nominal, and continu- 
ous nodes, 52 arcs and over 1400 conditional probabil- 
ities. The goal is to help predict how much financial 
*;nlr ;n in.-.,~~rd hnm wa~;n,,a nnl;c,r hnlrlmc a;von rlsts IIUL, I” lllbUlll.U LlVlll “cull”UV y”“bJ II”IUbLV b”“” uwvu 
about age, socio-economic class, and so on. Keep in 
mind that in high volume industries like insurance or 
finance, a 1% improvement in risk assessment could be 
quite valuable. 

We need an objective measure of model error rates as 
a basis from which to compare the different approaches. 

To enable this, the training data has been generated in 
a very particular way. Figure 3 is taken to be “The” 
belief network Bs that represents the actual process 
occurring in the real world. This network is then used 
to generate a large database (typically on the order of 
one hundred thousand samples) which is used as the 
data seen by BOOK, NN, and COMB. The induced 
belief network BD has the same structure as Bs, but 
the CPTs are constructed using a random sample from 
the large database. The learned belief net BD is then 
compared to “The” belief net Bs for model evaluation. 

Two methods are used to score the models, the mean 
error, and the wezghted error. The mean error is the 
square root of the mean squared error between the pre- 
dicted probability and the correct probability from all 
cells in all of the CPTs. The weighted error is the 
same thing, but with each error weighted by the prob- 
ability of that related event occurring. Note that one 
implication of the mean error scoring system is that a 
data-rich column counts the same as a data-poor col- 
umn. The mean error metric makes sense in domains 
where the data-poor columns of the CPT are valuable 
but scarse data points (for example, drug testing in the 
medical domain; where the cost of each samnle might 
be a human life). The weighted error metric is more 
useful when the cost of an error is the same for high 
and low probability columns. 

Finally, all of the results that follow stem from run- 
ning this process 10 times: generate a random sample 
of the given size, pass the sample to three separate pro- 
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Figure 4: c ar Insurance Database, Mean Error Metric 
The results of applying NN, BOOK and COMB to the car msurance 
~,-I..--~~ ., oaw%oase as me  sampie Size iS 1hcreaSed to i68fi sampies T’hls graph 

uses the mean error metric BOOK 3s the topmost curve, COMB the 

bottommost 

cesses BOOK, NN and COMB, learn the CPTs, then 
generate the error measurements. 

Experiments 
Figures 4 and 5 show the learning performance as the 
total number of samples is varied from 50 to 1000. The 
learning curves in Figure 4 were built using the mean 
error metric, the curves in Figure 5 using the weighted 
error metric. 

The most obvious basic trend is that no matter 
which error metric is used, for low numbers of samples 
NN significantly outperforms BOOK. In fact, based on 
other tests we have run (more than five different be- 
lief nets, and different learning algorithms including 
decision trees) it is fair to say that when the data is 
sparse relative to the size of the overall learning task, 
the more traditional machine learning algorithms like 
neural nets and decision trees significantly outperform 
unnti- YVVIL. 

The second noticeable aspect of these figures is that 
there seems to be very different stories being told by 
the two error metrics. The mean error metric shows 
NN doubling the performance of BOOK all the way 
out to 1000 samples and more, while the weighted error 
metric shows BOOK beginning to outperform NN at 
about 350 samples. The explanation of this is that the 
low-probability columns (data-poor columns) in all the 
CPTs far outnumber the medium and high probability 
columns. BOOK is expected to perform very well for 
CPT cells and columns for which there is alot of data, 
and it is exactiy these coiumns that the weighted error 

Error x W3 

The results of applying NN, BOOK and COMB to the car insurance 
database as the sample size IS Increased to 1000 samples This graph 
uses the welghted error metric. The BOOK curve starts high and 

ends m  the middle 
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! 
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Figure 6: E m m  As A Function Of Samples Per Column 
The results of applying NN and BOOK to the car insurance database 
on 100 samples. 
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metric is weighting more heavily. 
The most interesting feature is that the new 

algorithm, COMB, consistently outperforms both 
NN and BOOK. COMB uses NN to learn low- 
probability columns, and BOOK to learn high proba- 
bility columns. Even with the weighted error metric on 
the largest sample (1000 instances), the contribution 
from NN on the data-poor columns in COMB leads to 
more than a 10% improvement over the BOOK error 
rate. 

In order to get a better feeling for where and how the 
improvements are taking place, we clustered columns 
in the CPTs according to the relative sparseness of the 
training data. Based on this, Figure 6 should be inter- 
preted as follows: The X axis represents the columns 
in the CPTs that have seen 5 10 samples, 10 to 20 
samples, and so on, up to the last point on the axis 
which represents all of the rest of the columns, all of 
which are data-rich. The Y axis is the mean error over 
those clusters. The general expectation is for high er- 
ror on the data-poor columns to the left, and low error 
on the data-rich columns to the right. The error metric 
used for this graph is mean error. 

What we see from this graph is that for the CPT 
columns with relatively little data (less than 50 sam- 
ples per column), NN outperforms BOOK at all points 
along the curve. 

Conclusion 

We tested have several other belief networks and learn- 
ing algorithms in addition to what is described here, 
and the results can all be boiled down to the same 
general conclusions. The nature of the CPT learn- 
ing problem is that even in the face of massive data 
sets, data will be sparse for large CPTs. Bookkeeping 
requires large amounts of data in order to be effec- 
tive. Machine learning oriented algorithms tend to be 
more accurate under sparse data conditions. Finally, 
the ability to freely tailor any learning algorithm to 
match the unique characteristics of each CPT has the 
potential to dramatically improve the predictive per- 
formance of any belief network model. 
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