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Abstract 

The ivionte Cario method is recognized as a usefui t00i 

in learning and probabilistic inference methods com- 
mon to many dataminmg problems. Generalized Hid- 
den Markov Models and Bayes nets are especially pop- 
ular applications. However, the presence of multiple 
modes in many relevant integrands and summands of- 
ten renders the method slow and cumbersome. Recent 
mean field alternatives designed to speed things up 
have been inspired by experience gleaned from physics 
The current work adopts an approach very similar to 
this in spirit, but focusses instead upon dynamic pro- 
gramming notions as a basis for producing system- 
atic Monte Carlo improvements. The idea is to ap- 
proximate a given model by a dynamic programming- 
style decomposition, which then forms a scaffold upon 
which to build successively more accurate Monte Carlo 
approximations. Dynamic programming ideas alone 
fail to account for non-local structure, while standard 
Monte Carlo methods essentially ignore all structure 
However, suitably-crafted hybrids can successfully ex- 
ploit the strengths of each method, resulting in algo- 
rithms that combine speed with accuracy. The ap- 
proach relies on the presence of significant “local” in- 
formation in the problem at hand. This turns out to 
be a plausible assumption for many important appli- 
ratinmc Rvamnl~ ralrnlatinnr -a,.~ nrnrm+nA ?~nrl the ~dWY.YALY. YAu'A'yAu ..US"UIUY.VIIY _I yLu"'~'v'u, c9I‘U "Ilr 

overall strengths and weaknesses of the approach are 
discussed. 

Introduction 
The Monte Carlo method has been used for a number 
of years to estimate complex multidimensional inte- 
grals for systems containing many degrees of freedom 
[5]. It has been particularly successful when applied 
to systems in which each variable interacts with other 
variables with a constant interaction strengh that re- 
mains the same, or similar, throughout the system. 
However, when significant inhomogeneities appear in 
the interaction strengths over different parts of the sys- 
tem, Monte Carlo methods become much less efficient. 
The problem is basically a manifestation of the multi- 
ple modes that appear in the integrand m this regime, 
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which makes it difficult for the Monte Carlo procedure 
tn inmn hr&xmm fho warinnr mnrlm YV J--‘-y w”“,.VV*I “AI” IIYIAYUU AIIVUY”. 

One well-known example of this distinction is sup- 
plied by the notorious Ising model [9]. Although the 
Ising model was originally developed as an abstraction 
to model physical systems, it turns out to be essentially 
equivalent to Hidden Markov Models and several other 
architectures useful in machine learning [2, 3, 8, 191. 
It is therefore an excellent testing ground for describ- 
ing and testing new Monte Carlo sampling ideas. A 
standard Ising model consists of a collection of binary 
elements with constant energetic interactions between 
all its elements. It can be simulated with reasonable 
efficiency by a Monte Carlo sampling procedure. How- 
ever, as soon as the interaction strengths become het- 
erogeneous (a common situation in the machine learn- 
ing context), corresponding to a physical system known 
as an Ising spin glass, Monte Carlo simulations exhibit 
huge equilibration problems. In fact, understanding 
the extreme case of zero temperature for an Ising spin 
glass, which amounts to finding the minimum energy 
states, has been proven to be an NP-Complete prob- 
lem. 

The situation becomes even worse when various 
recentiy deveioped improvements, such as clustering 
methods, are considered [6]. These methods, based 
upon the simultaneous re-arrangement of blocks of 
variables, are often thought of as the introduction of 
auxiliary variables to the problem [2, 31. They have 
been outstandingly successful at improving equilibra- 
tion times for regular Ising models, but they break 
down completely in the spin glass case. Modifications 
that attempt to address the disorder present in spin 
glasses have been developed, but the results are some- 
what disappointing [17]. 

-,---l----L ^--- ^---^^^ L I A l;“lllpltxllellm~y qJpruau1 IJO Monte car:0 meth- 
ods that has existed in the physics literature for many 
years is the use of “transfer matrices” [9]. Transfer ma- 
trices can be used when the system under investigation 
consists only of local interactions in a small number di- 
mensions. In this case the integrands or summands of 
interest can be calculated exactly by recursively build- 
ing up the model under consideration a few units at a 
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time. Recursive approaches such as this are extremely 
powerful when only local interactions are involved, be- 
cause thev are immune to equilibration problems, re- -d-L- 1--d _1_- 
gardless of whether disorder is present. Of course, NP- 
Completeness does not vanish as a difficulty. It man- 
ifests itself in the need for an exponentially growing 
memory requirement in at least one dimension. How- 
ever, for many problems such as the investigation of 
graphical models in data mining, this is not always a 
severe drawback, as the problems are often organized 
roughly as causal chains. Hidden Markov Models, for 
example, are arranged as linear chains. The difficulty 
is that for many interesting and useful models there 
may be a small number of “non-local” interactions be- 
tween units quite distant in the chain. in this case a 
transfer matrix approach obviously cannot be used. 

The Monte Carlo method described in this paper is 
designed to combine the best features of Monte Carlo 
and transfer matrix methods, and to apply them to 
problems where neither approach is successful on its 
own. The method is a variant of the Hastings gener- 
alization [4] of the classic Metropolis method [5]. It 
applies to models with discrete variables, in which a 
substantial number of interactions are local, but with 
a smaller number of non-local interactions present. 

Review of Metropolis Monte Carlo 
In this section standard Monte Carlo methods such 
as the Metropolis method will be reviewed, with an 
emphasis on the crucial points at which computational 
overhead due to heterogeneity enters the picture. Some 
of the ideas will be presented in a slightly non-standard 
way, which will help to motivate the modifications and 
alternatives that follow in the next section. 

Suppose we have a system described by a cost func- 
tion E(C) (or energy function, or Hamiltonian func- 
tion), associated with each of an enormous number of 
configurations C. These functions can be related by 
the Hammersly-Clifford theorem to an enormous class 
of probability distributions useful in the learning con- 
text, so they good starting point for a general Monte 
Carlo discussion. For concreteness, consider the cal- 
culcation of the “average energy” over the entire set of 
configurations, defined by 

-c E >= c EcempEc/Z 
C 

where p is a positive fixed parameter, and 
z=\‘,-PEc: 

I, 
c 

is a normalization constant. The average energy oc- 
curs frequently in the study of statistical mechanics, 
where p is interpreted as the inverse temperature. It is 
also extensively used in image processing applications, 
where p denotes the amount of noise in an image. 

The question we want to answer is: how can < E > 
be estimated without considering each and every con- 
figuration C? One simple way to do this is to evenly 

sample the space of configurations N times, and to 
estimate < E > by 

(3) 

The main problem with this approach can be seen by 
rewriting < E > in the following form: 

< E >= c EN(E)emPE/Z 
E 

(4) 

where N(E) is the number of states of energy E. The 
trade-off between the functions N(E) and e-DE lies at 
the heart of statistical mechanics. Consider for exam- 
ple their product II, which represents the probabiiity 
of obtaining energy E, 

II(E) = N(E)evPE/Z (5) 
Since the product is extremely peaked, all the impor- 
tant contributions to < E > will come from a small 
band of the energy spectrum. Unfortunately, the even 
sampling of configuration space will select a great num- 
ber of states with high energy (since there are a large 
number of these!), which will subsequently make very 
little contribution because of their small exponential 
----: -LL1- _ I- -2. ̂- walgllLlrlg Ii3Cb”I. 

The essence of the importance sampling idea is to 
generate states in proportion to the probability dis- 
tribution e- PEc/Z, hereafter referred to as the Boltz- 
mann distribution. The average energy is then esti- 
mated from 

N 

<E>=l/NzE, 03) 

In this way most of the generated states can be made 
to fall within the range of important energies, and they 
will all make meaningful contributions to the sum. 

Let’s see in a little more detail how this works in the 
Metropolis method, a widely used method for generat- 
ing the Boltzmann distribution. We generate a chain 
of states, begining with state Ci , by randomly making 
some change to Ci to create a new configuration C’s, 
This new configuration is accepted or rejected accord- 
ing to the transition probability distribution 

W(Cl- > C2) = T(Cl- > Cz)A(CG-- > C2) (7) 
where T(Ci- > Cs) is the probability of selecting state 
Cz given Ci, and 

A(&- > -92) = mzn(l,P(G)/P(Cd) (8) 
is the probability of accepting the choice C’s in the 
Markov chain. T(Ci- > Cz) can be almost any distri- 
bution, provided only that it is symmetric with respect 
to the choice of Ci and Cs. 

Under mild conditions, it can be proved that the 
states of this Markov chain will be asymptotically dis- 
tributed with Boltzmann weight. Satisfied now that 
the chain of states Ci , Cs , Cs . . . . is producing states in 



proportion to the Boltzmann distribution, we ask our- 
selves the following question: “What is the probability 
PE, given energy El, of going to a new energy level E2 
by a Metropolis move. 7” Suppose that the Metropolis 
move only allows one variable in the whole state to be 
changed. Well, we have 

PE(EI- > E2) = TE(EI-- > Ez)A(C1-- > C2) (9) 
where TE (El - > Ez) is the probability of selecting 
a state of energy Ez given a state of energy El, and 
where 

TE(.&- >Ez)mN(E) (10) 

since by randomly choosing a new state in the configu- 
ration space, there will be slightly more chance of ob- 
taining a higher energy state than a lower energy state 
(there are more of them available). Hence the proce- 
dure samples energy E near the peak of the product 
distribution II(E): there is more chance of choosing 
a higher energy than lower energy by random selec- 
tion, which is compensated for by smaller Boltzmann 
weight. The process of randomly selecting a new state 
‘<near” an old one in state space is really a de facto way 
of sampling the density of states N(E) around the en- 
ergy E. By choosing a nearby state, we make sure that 
+hn nllr\~m4 ~mnt-~s-. nC 27 +h-+ to .-..r.~l.w.cvl . ..~rn..;nm o-~11 kJ,IC all”WCju Lcl.,l~.z “I u uLlalJ 183 rsnyL”rr;u 1~?111a1110 5111a11 

for trial new states, so that we remain near the peak of 
II(E) when the Boltzmann weight is factored in, and 
so that the whole procedure is reasonably efficient. 

Why is the above interpretation of the Metropolis 
procedure illuminating? Because it tells us precisely 
what motivates the first step in a Metropolis algorithm 
of generating new configurations by making relatively 
small changes to old configurations: namely, in the 
absence of any other information, it is the only way 
we know of to sample the configuration space in pro- 
portion to the density of states N(E) in a controlled 
(usually small) energy znterval around the old energy 
E. This observation is crucial to understanding how 
Monte Carlo methods break down when applied to dis- 
ordered systems. For a homogeneous system, for exam- 
ple, the configuration space can be searched ergodically 
by making small changes to a series of configurations. 
One will eventually wander over a large region of the 
configuration space. However, when disorder is intro- 
duced, this is no longer the case: by considering only 
small changes to successive configurations, we can eas- 
ily end up being stuck in areas of configuration space 
separated by entropic barriers (i.e. large configuration 
changes) from other areas. 

The interpretion also suggests what must be done 
in order to to generate a more efficient Monte Carlo 
m-ocedure: find other wavs of searching configllration r--__-.--d. -‘--.- -- 
space while retaining condition in italics above. 

New method - Theory 
Consider to begin with the concrete example of a sim- 
ple l-dimensional Ising model of discrete units S, con- 
nected by nearest-neighbor interactions, together with 

a dilute concentration of long-range interactions. De- 
note this cost function by 

H = Ho+H,z (11) 

<iJ> >z3< 

where Ho decribes the nearest-neighbor interactions 
(the summation < ij >), and H,l the long-range inter- 
actions (the summation > ij <. When the interaction 
strengths Jt3 in this model vary along the 1D chain, 
the energy surface defined by HO is in general a highly 
complex one, displaying many local minima, and gives 
rise to severe ergodicity problems when a Monte Carlo 
procedure is applied. For small system sizes, the dif- 
ficulty can be cirmcumvented by using a computer to 
generate the exact partition function 2 recursively, al- 
though this approach can no longer be used when long- 
range interactions are introduced. However, when the 
number of long-range interactions introduced is quite 
dilute, it can be expected that their main effect will 
be to alter the HO energy landscape in a limited way. 
It follows that a Monte Carlo procedure which makes 
maximum explicit use of the information contained in 
HO (as the transfer matrix does) will be extremely use- 
ful narticnlarlv if it iq nhb tn wmnle ?T- ~ffirimdlv ---, I--"-~ -_I__ ~ .* -I -- --." ".. "-A-y-' AA" """""""'J 

across a large portion of the state space. It is just such 
an algorithm that is described here. 

The first step towards this goal is to construct the 
exact density of states for the local cost function HO. 
This can be achieved by adding one discrete variable 
at a time to build up a large system recursively. Given 
a model containing L - 1 variables, the appropriate 
recursion is 

&[-NEl[4 = NOW - W - Wlbl 
+ N,[L - l][E - A’(s’)][s’] (13) 

where s and s’ denote the possible values of the last 
variable in the system (assumed to have two values in 
this case), and E labels the various possible energy 
levels. The procedure is illustrated in Figure 1. 

The idea of building up the density of states recur- 
sively by computer is due to Bhanot and Creutz [14]. 
Related recursions have been used by many authors. 
However, the uniquely attractive feature of the Bhanot 
and Creutz formalism is the fact that it can be gener- 
alized to perform the following task. By retaining in 
memory every step No[L][E][s] of the build-up process, 
states of any given energy E can be straightforwardly 
reconstructed by simply back-tracking through the ar- 
ray No[L][E][s], starting at the desired energy level E. 
This observation has been applied to the analysis of 
short-range spin glasses [12] and protein models [13]. 
Tc :, ,. L-,-.,A,.. ..“,C..l ,..*CII-LFln .I?,.- CL,. A --,.- d.:..n,-. A- IL LS a “‘“0JA-j uxxuI ~ALtr“lZll”II L”I Irut: uvdqJu”t;Ly DULL- 
ple reason that it allows states of identical energy Ho, 
but radically different structure, to be generated easily 
in a way that is directly controlled by the exact density 
of states. A small set of possible reconstructions is dis- 
played in Figure 2. Note the similarity of the method 
to the classic technique of dynamic programming [ll]. 
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STATE-COUNTING FOR A SIMPLE SPIN MODEL 

s=, s = -1 I I I 

t=2 Ntt=2l[kl[sl 

J,2=l I : NC21101[11 = N~ll~il~ll+N~11~-11~-1l 
/ ‘I 

/ 
/ 1 

N[t=l I[W[sl 

Figure 1: On the left are the first 3 elements of a 1D chain with binary variables (up or down), with the associated 
density of states on the right, showing the basic recursion for the first 3 steps. 

Wl[W Density of states 

El 

H 

I r.s 

Figure 2: Recursive reconstruction of states with well- 
controlled energies from density of states array 

The array N$][E][s], and its associated back- 
tracking procedure, can now be used to embed the fol- 
lowing unusual form of Monte Carlo method for the I . . -.. tull Hamiitonian II. Given a state c?,, choose a new 
state C, according to the transition matrix 

T; = NO(~) 
ck.z,z*l NO(Ek 1 

ifk = i,z f 1 (14) 

= 0; otherwise (15) 
This sampling is straightforward to implement by com- 

puter using the information contained in NO. Now ap- 
ply a generalized Metropolis-like acceptance criterion, 
with acceptance probability 

T3”zPJ A,, = min(1, -) 
T;P~ 

(16) 
p, = e-P(Ha+H,Lr) (17) 

This type of generalized Metropolis procedure was first 
introduced by Hastings [4], and has also been used in 
physics computations based on renormalization ideas 
pq. The key i&z in (-jLT imn1mncmtatinn icl ?jg$jJ of “~Ay.v”~v’~vLa”““‘~ L” 
choosing the local density of states as the Hastings 
transition function. Because this function is built up 
recursively, while retaining a large amount of struc- 
tural information about the configuration space of the 
system at each stage, this in turn allows large config- 
urational rearrangements to be attempted with a high 
chance of success. 

In order to guarantee asymptotic convergence to the 
Boltzmann distribution, it is advisable that the algo- 
rithm possess the property of detailed balance. It is 
easy to see that detailed balance is satisfied by this 
procedure: the overaii transition probability -W:j sat- 

(18) 

Any choice of selection probability of course satisfies 
detailed balance under this generalised Metropolis pro- 
cedure. The original Metropolis method is recovered 
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by using a symmetric selection matrix. What is the ad- 
vantage of using the asymmetric selection matrix Tt; 
instead of the symmetric Metropolis form? It is the 
fact that a single step of the sampling procedure is now 
capable of generating a new state which is completely 
different than the current state, and yet has identical 
local energy HO. The algorithm is therefore totally 
impervious to the “landscape complexity” of the lo- 
cal Hamiltonian HO, and is able to traverse the state 
space of HO across many local minima with high effi- 
ciency. It is only the medications that are introduced 
by the non-local portion of the Hamiltonian H,l that 
can lead to trouble in the form of inefficient sampling 
of the state space. The method thus provides a mech- 
anism for generating highly efficient non-local moves 
in the state space. An obvious caveat is of course that 
the local portion of the Hamiltonian must reflect some 
reasonable fraction of the structure of the overall full 
HamiitOr?i~. 

The method has been introduced here in a man- 
ner familiar from statistical physics, in which the den- 
sity of states is separated from an exponential Boltz- 
mann factor. However, the general idea is by no 
means restricted to the situation of an integrand or 
summand separable in this way. A perfectly feasible 
alternative would be to generate the entire product 
WE)ew(-PE) recursively, and to use this function 
as the Hastings transition function. The overriding 
point is simply the ability to distinguish between a lo- 
cal portion of the Monte Carlo summand that can be 
built up recursively, and a separate non-local portion 
that can be dealt with as a Monte Carlo correction. 

New Method - Simulations 
We have investigated the properties of this new al- 
gorithm by introducing modifications to the simplest 
type of Markov model, namely a 1D Ising model. Local 
1D Ising models containing 1000 spins were prepared, 
with random nearest-neighbor interactions. Non-local 
interactions were then inserted randomly between any 
two spins in the system, creating models in which on 
average 20% of the interactions were non-iocai. Note 
that 2D and 3D Ising models correspond to very par- 
ticular choices for non-local interactions, so the formal- 
ism is actually quite general in scope. The model is a 
prototype of the most natural kind of generalized Hid- 
den Markov Model. For example, it can be applied to 
model and predict 3-dimensional protein folding [13], 
in which non-local interactions are known to play an 
important role. Hidden Markov Models have been ap- 
plied in the past to perform protein sequence alignment 
using local information only. 

Monte Carlo sinmiations were run using the 

Metropolis algorithm, and various window sizes for the 
hybrid procedure discussed here. The window size rep- 
resents the size of 1D subsystem to which the density 
of states procedure was applied. In order to measure 
the convergence properties of the various algorithms, 

the autocorrelation function of the energy and magne- 
tization was then measured. The results are shown in 
Figure 3. This is a standard method of characteris- 
ing equilibration times. Notice the dramatic improve- 
ment in equilibration times displayed in this figure as 
the “window size” W is increased from 1 (the regu- 
lar Metropolis method) up to the limit of the system 
size. The procedure is clearly able to capture the struc- 
ture of the local 1D energy function easily, and is only 
slowed down by the relatively small number of non- 
local interactions. Overall, an improvement of at least 
2 orders of magnitude is supplied by the method. 

Autocorrelation of Magnetization with beta 0.4 
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Figure 3: Results for 1D spin model with 20% non-local 
interactions. Shown are the magnetization autocorre- 
lation functions for simulations using different window 
sizes (see text), including the Metropolis case and a 
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We have also experimented with model Ising systems 
containing 10% non-local interactions, with similar re- 
sults. In addition, equilibration times are known to de- 
pend strongly on the temperature at which the system 
is simulated. At high enough tempatures, all simula- 
tions are straightforward - it is only at low temperature 
that these issues become problematic. We find similar 
behaviour in the autocorrelation function over a range 
of temperatures, confirming the value of the approach 
as a general method. 

Conclusions 
What are the limitations and drawbacks of this ap- 
proach to Monte Carlo simulation? To begin with, it 
requires the use of discrete variables. Secondly, the 
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problem tackled must have a reasonable amount of 
linear structure in its graphical representation. How- 
ever, this condition is already substantially looser than 
the restriction to purely local interactions required by 
many approaches to learning in graphical models In 
fact, the basic recursive computational apparatus used 
as the underpinning of the hybrid Monte Carlo pre- 
sented here is analagous to exact recursive EM proce- 
dures used in HMM learning, and to exact inference 
methods used by Bayesian nets [l, 131. The unique 
feature of the current work is their use as a scaffold 
on which to build a general Monte Carlo procedure for 
more complex models as well. 

One particular advantage of the method is that it 
enables extensive use of the Hastings Monte Carlo ap- 
proach without being restricted to a choice of new con- 
fionratinna frnm lmixrariato Aiatrih~~tinnc T-TiQtnrirallv ~~~ULcw’“‘~” LL”SLL UL1~“Lm~~~“U UAUV&IUU”I”II”. ‘I’UY”“V~“J 

this has been the main limitation hampering the lib- 
eral use of the Hastings approach. This aspect is in fact 
the key to the development of genuinely efficient Monte 
Carlo methods for complex interacting systems. It is 
not enough in general to generate new configurations 
by making substantial changes to just one variable, no 
matter how clever the change. Rather, large configura- 
tional changes in several variables simultaneously are 
required, while at the same time avoiding large alter- 
ations to the energy of the states involved. The method 
outlined here is a step towards the realization of this 
goal for certain classes of graphical models. 
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