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Abstract 

Metapatterns (also known as metaqueries) have been 
proposed as a new approach to integrated data mining, 
and applied to several real-world applications success- 
fully. However, designing the right metapatterns for 
a given application still remains a difficulty task. In 
this paper, we present a metapattern generator that 
can automatically generate metapatterns from new 
databases. By integrating this generator with the ex- 
isting metapattern-based discovery loop, our system 
has now become both interactive and automatic. It 
can suggest new metapatterns for humans to choose 
and test, or pursue these metapatterns on its own. 
This ability not only makes the process of data mining 
more efficient and productive, but also provide a new 
method for unsupervised learning of relational pat- 
terns. We have applied this method to several simple 
databases and obtained some encouraging results. 

Introduction 
Metapatterns (also known as metaqueries) (Shen et al. 
1995; Kero et al. 1995; Fu & Han 1995; Shen & Leng 
1996) have been proposed as a new data mining ap- 
proach to integrate induction, deduction, and human 
guidance. They are second-order expressions, such as 

where P, Q, and R are variables for predicates and X, 
Y, and 2 are variables for objects. Metapatterns are 
used to control the discovery loop shown in Figure 1. 
For the deductive part of the loop, metapatterns out- 
line data-collecting strategies and serve as the basis for 
the generation of specific queries. Queries are gener- 
ated by instantiating the variables in the left-hand side 
of metapatterns with relevant table names and column 
names in the database of interest and then run against 
the database to collect relevant data. For example, 
one possible query instantiated from the above meta- 
pattern is: 

parent(X, Y) A brother(Y, 2) * uncie(X, Z). 

The final results of discovered patterns are associated 
with probability factors to reflect how much support 
received from the underlying databases and provide 
handlers to deal with noise. For the inductive part of 
the loop, metapatterns serve as generic descriptions of 
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classes of pattern to be discovered: A metapattern de- 
termines which inductive action to apply, and what for- 
mat the final results should be in. Furthermore, since 
metapatterns are declarative expressions, they serve 
as a search control interface between humans and sys- 
tems. By examing, selecting, and executing different 
metapatterns, human users can expand or contract the 
search space and change the search direction at will. 
For more detailed description of metapatterns, readers 
are encouraged to read (Shen et al. 1995) and (Shen 
& Leng 1996). 

Although metapatterns are powerful tools for data 
mining and have been applied successfully to several 
real-world applications (Shen 1992; Shen et al. 1995; 
Fu & Han 1995), designing the right metapatterns for 
a given application is not an easy task. If a metap- 
attern is too specific, then it may miss the interest- 
ing patterns. If a metapattern is too general, then 
it may exhaust the computing resources that are avail- 
able. To generate the right metapatterns, one must not 
only understand the nature of the underlying data, but 
also analyze the patterns discovered from the previous 
metapatterns. 

To illustrate how productive metapatterns are gener- 
ated manually, consider our experience in the chemical 
research domain as an example. Following a sugges- 
tion by a chemist, we initially used a metapattern to 
find the relationship between a set of compounds that 
have different percentages of the ingredients ‘A322’ and 
‘B721’ and their chemical properties. However, the 
patterns returned based on this metapattern did not 
show any trends. When we showed the results to the 
chemist, he discovered that these compounds also con- 
tained auxiliary chemicals that may affect the prop- 
erties in a different way. Given this knowledge, we 
constrained the metapattern so that the compounds 
that had such auxiliary ingredients were not consid- 
ered. Sure enough, the resulting patterns showed many 
clear trends. We can see from this example that if 
domain experts can directly interact with the system 
(i.e., metapatterns can be automatically generated and 
offered to them to choose and test), then the entire 
discovery process can be much more efficient and pro- 
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DBS 

Figure 1: The Metapattern-Based Discovery Loop 

ductive. The system should provide suggestions and 
feedback of metapatterns so the experts can discover 
new knowledge and try better metapatterns. 

For this purpose, we have developed a metapattern 
generator for the metapattern-based discovery loop. 
Given a completely new database, the generator first 
identifies, by examining the types and ranges of the 
data columns, a set of significant connections among 
tables. Using these connections, a connection graph is 
then built and all the loops in this graph are found. 
These loops are then used to generate an initial set of 
transitivity metupatterns. These initial metapatterns 
are then run against the database; based on the re- 
sults, new metapatterns are generated dynamically by 
adding more constraints to the more plausible meta- 
patterns. Since transitivity metapatterns are among 
the most general types of metapatterns, this top-down 
approach can generate many interesting metapatterns 
(and patterns) automatically. In fact, we have applied 
this approach to some of the well-known examples in 
the literature of supervised learning of relation pat- 
terns, and demonstrated that our system can learn 
these concepts without “supervision,” that is, with- 
out requiring humans to pre-label the data as positive 
or negative examples of some pm-specified target con- 
cepts. 

The Metapattern Generator 
As shown in Figure 1, the metapattern generator 
will be placed in parallel with the human user and 
will generate metapatterns based on either the meta- 
knowledge of the database (e.g., schema), or the pat- 
terns that are discovered with other metapatterns. Hu- 
man users can interact with the generator by exam- 
ining, selecting, and executing the metapatterns, and 
they can also create metapatterns by themselves as 
before. The motivation for having this generator is to 
give human users suggestions for new metapatterns so 
that the more expert users can get inspirations, and 
the less expert users can learn how to perform data 
mining in a particular domain by observation. 

The Space of Metapatterns 
In order to generate metapatterns, we must first un- 
derstand the nature of the set of all possible metapat- 
terns. In this paper, we consider Horn clause metap- 
atterns and assume that the underlying databases are 
relational. Thus, a predicate variable in a metapat- 
tern can be bound to relational table names or built-in 
predicates (such as epval or greaterThan), and an ob- 
ject variable can be bound to column names or con- 
stant values (such as the integer “20” or the language 
“English”). 

For a fixed length, metapatterns can be ordered from 
the most general to the most specific, depending on 
how many variables, either for predicates or for objects, 
are present. For example, among all metapatterns that 
have three binary (second-order) predicates, the most 
general ones include: 

P(X, Y) A w, Z) * R(X, Z) (MP-1) 

P(X, Y) A ax, Z) * WC w (MP-2) 

pw, Y) A QW, Z) * NX, w (MP-3) 

These metapatterns are the most general because 
they contain only variables. On the other hand, the 
most specific metapatterns corresponding to the gen- 
eral ones listed above (MP-1, MP-2, and MP-3) in- 
clude: 

authorOf(‘Orwell’,‘AnimalFarm’) A 
writtenIn(‘AnimalFar’,‘English’) -+ canWrite(‘Orwell’,‘English’) 

likes(‘John’,toola) A haaHobby(‘John’,‘Carpenter’) -+ 
ownsOne(‘John’,hammer) 

livesIn(‘Mary’,‘Housel’) A costs(‘House1’,900893) + 
Income(‘Mary’,‘High’) 

All the variables in these metapatterns are bound to 
specific table names (e.g., likes), column names (e.g., 
tools), or constant values (e.g. ‘John’). We define a 
family of metapatterns to be the set of all metapatterns 
of length n. The metapatterns in a family are partially 
ordered by the number of variables they contain. One 
can traverse a family of metapatterns from the gen- 
eral to the specific by incrementally instantiating the 
predicate variables with table names and built-in pred- 
icates and the object variables with column names and 
in turn constant values. 

Notice that not all metapatterns in a family are in- 
teresting. In order to have some prediction value, a 
metapattern must be connected. That is, the predicate 
on the right-hand side must share at least one variable 
with some predicate on the left-hand side. For exam- 
ple, the metapattern P(X,Y) A &(Y,Z) + R(U,V) is 
not interesting because its right-hand side is not con- 
nected to the left-hand side. Furthermore, predicates 
like P(X, X) or p(X) X) are not considered interesting 
because they do not link to others. 

With the families of metapatterns so defined, one 
natural question to ask is whether the length of meta- 
patterns can be arbitrarily long. Fortunately, for any 
given set of databases, the length of the longest meta- 
patterns is bounded because metapatterns must be 
connected and there is only a fixed number of tables, 
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columns, built-in predicates, and values that are pre- 
sented in the databases. (Even if a column is typed 
“real”, the number of distinct values in the column is 
finite because of the implementation.) Therefore, it is 
meaningful to define the space of all possible metapat- 
terns for an application to be the union of all possible 
families of metapatterns. 

Generating Metapatterns Based on Data 
Schema and Ranges 
The space of metapatterns is very large and it is in- 
feasible to enumerate them all. Our approach is to 
start with the set of most general metapatterns, and 
incrementally generate interesting ones as the process 
of discovery continues. Our goal is not to cover all 
the metapatterns but to guide the discovery process in 
fruitful directions. 

Among all the general metapatterns, the transi- 
tivity metapattern (see MP-1 for example) is the 
most interesting. In essence, it subsumes many other 
types of metapatterns, such as implication, inher- 
itance, transfers-through, and function dependency 
(Shen 1992). In this section, we describe how tran- 
sitivity meatpatterns are generated. How other types 
of metapatterns are generated based on transitivities 
will be described in the section after the next. 

The set of all possible transitivity metapatterns can 
be generated based on the data schema and ranges of 
the databases. The idea is to first identify the sets of 
columns that are significantly connected, and then use 
these sets to build metapatterns. 

Two columns, from different database tables, are sig- 
nificantly connected, if they have the same type and 
have ranges that overlap each other above a user spec- 
ified threshold o, where 0 < o < 1. The degree of 
overlapping is computed as follows. Let 15’~ and C, be 
two columns, and V, and V, be their value sets, re- 
spectively, then the overlapping of C, and C, is the 
maximum number of the shared values relative to ei- 
ther V, or V,, as follows: 

Overlap(C,, C,) = max(r, - Iv= n VA Iv= n VA) 
IV,1 

where 1 a 1 denotes the cardinality of a set. Here do- 
main knowledge may be used to eliminate unnecessary 
connections (e.g., height vs. temperature) or suggest 
and establish syntactically different connections (e.g., 
color vs. light frequency). Each pair of columns that 
are connected are then given a reference name, and 
these connections will be represented in a significant 
connection table (SCT), where each row is a connec- 
tion, each column is a table, and each non-empty entry 
is the name of a connected data field (or column). 

To illustrate the idea, consider for example an ab- 
stract database shown in Figure 2. In this database, 
there are four tables, ti to t4, each has some columns 
c” . For simplicity, the value ranges of each column are 
ago listed along with the schema. (In reality, value 
ranges can be obtained by simple SQL queries.) 

Schema and Data Ranges 
Table Columns Type[ValueRange] 

t1 ~1, char(Z) cls, int[2-7] q3, real[0.4-0.81 
$2 ~21, int[12-17] ~22, real[O.l-0.11 ~23, char@) 
13 ~31, int[13-161 c32, char(2) 
t4 ~41, char(3) C42, real[O.O-0.11 C43, int[4-7] 

r 
mmm 0.0 6 

rrr 0.1 4 
mmm 0.0 4 
000 0.1 7 . . . 
JJJ i.8 ; 
kkk . 

mmm 0.0 5 . . . 
JJJ 0.1 ; 

mmm 0.0 . . . 
?!? ;.; ; 
JJJ 
111 0:o 7 

“IIll n-1 4 

L 

lwe $2 
c21 e22 C23 
14 0.5 mmm 
14 0.6 iii 
14 0.3 .l.lJ ‘.. 

--- 12 0.7 nnn 
12 0.1 111 
15 0.6 PPP 
15 0.4 mmm 
13 0.6 ooo 
16 0.6 000 
17 0.4 mmm 
14 0.4 111 
14 0.6 kkk 
15 0.3 mmm 
12 0.5 mmm 
15 0.4 nnn 
15 0.6 000 
16 0.5 PPP 
16 0.7 $I; 

Figure 2: An Example Database 

Given these information, pairs of columns that are 
connected can be easily determined according to our 
definition. For example, suppose the threshold o for 
overlapping is set to 0.6, then column cl3 in table tl 
and column ~22 in table t2 are connected because they 
have the same data type and their overlapping is 0.9. 
A reference name, X1, is then created for this pair 
of connected columns. After considering every pair of 
columns, a significant connection table, shown in the 
upright part of Figure 3, is constructed. As we can 
see, every connected pair of columns is represented as 
a row in this SCT. For instance, columns cl3 and ~22 
are in the first row, where cl3 is under tl while ~22 is 
under t2. 

For reasons that will become clear later, we also rep- 
resent the information in SCT as a graph G, where 
each node in G is an non-empty entry in the SCT, and 
each edge connects two non-empty entries that are on 
the same row or column in the SCT. For example, the 
graph built from the SCT in Figure 3 is shown in the 
lower-left part of Figure 3, where node (tl, Xi) and 
node (tz, Xl) represent two non-empty entries, cl3 and 
~22, in the SCT. Since they are in the same row, there 
is an horizontal edge between them. Similarly, node 
(tl, Xl) and node (tl, X2) represent two non-empty en- 
tries, cl3 and ~11, in the same column of the SCT, so 
there is a vertical edge between them. 
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SCT 
t1 12 t3 t4 

Xl Cl3 c22 
C32 X2 C** 

Figure 3: A Significant Connection Table (SCT) and 
its graph G 

The graph G generated above provides a basis for 
generating all possible transitivity patterns in a given 
database. The idea is to find all the cycles in the graph 
with alternated vertical and horizontal edges, and con- 
vert each of these cycles into a “cycle” of predicates 
before generating a set of transitivity patterns. 

Finding cycles in a graph can be accomplished by us- 
ing a standard transitive closure algorithm with some 
simple augmentation to enforce the alternating edge 
constraint. A graph G cannot have more than IGI! 
cycles because the length of a cycle, without dupli- 
cated nodes, cannot be greater than the number of 
the nodes in the graph. To convert a cycle of graph 
nodes into a cycle of predicates is also a straight- 
forward task; one can simply rewrite each vertical 
edge in the cycle by the table name. For exam- 
ple, the cycle indicated by thick lines in Figure 3 
is ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ and 
it can be rewritten as a cycle of predicates a8 
%(x1, x5), t.@5, x3), tic-c XI),” where &(X1, X5) is 
a rewrite of the vertical edge (t2, X,)(-&,X5), and 
t4(X5, X8) is a rewrite of (t4, X5)(t4, X8), and so on. 
Using this method, we can generate all cycles of pred- 
icates from the graph G, as listed in Figure 4. 

Figure 4: All predicate cycles found in the example DB 

From the list of all possible cycles of predicates, 
we can now generate a complete set of transitivity 
metapatterns by generalizing table names and refer- 

ence names and introducing an implication in each 
cle. In our current example database, the result is 
following set of metapatterns: 

Xe 

q(Yl,Yz)hQl(Yz,Y3)jR1(Y11Y3) W’-4) 
P2(YlrY2)A Q2(Y2rY3)A %(y3,y4) *R2(Y1,Y4) @4P-5) 

P3(Yl,Y2)A03(Y2,y3)hW3(Y3,Y4)A v3(y49y5) 

* R3 0’1, Y5 ) (MP-6) 

For example, MP-4 is a generalization of the first two 
predicate cycles in Figure 4; MP-5 is a generalization 
of cycles 3 through 7; and MP-6 is a generalization of 
the last two cycles. This set is complete because it 
includes all possible transitivity metapatterns in our 
example database. 

Discovering and Evaluating New Patterns 
Generating all transitivity metapatterns is not the end 
of our story. Depending on the strength or interestness 
of the patterns that are found with these metapatterns, 
the discovery system should generate more metapat- 
terns that are deemed to be plausible. To do so, let us 
first examine how discovered patterns are evaluated. 

When a metapattern is selected for execution, the 
system first instantiates it into a set of specific patterns 
that are possible in the current databases, and then 
evaluates them to check if they have sufficient support 
from the actual data. Given the information produced 
in the process of generating metapatterns, instantiat- 
ing a metapattern is a straightforward procedure. It 
simply replaces the variables in the metapattern with 
specific table names and column names. For example, 
the predicate variables Pi, &I, and Rr in MP-4 can be 
bound to table names tl,tz,ta, and t4 (these are the 
table names involve in the first two cycles of predicates 
in Figure 4), and the object variables Yi,Y2, and Y8, 
can be bound to the reference variables Xi, X2, X8, X4, 
and X5, which in turn can be bound to corresponding 
columns according to the SCT in Figure 3, a8 follows: 

t2(XlX5)t4(X5X3) + tl(X3Xl) 
tl(x3xl)t2(xlx5) - t4cXSX3) 
t4(X5X3)tl(X3Xl) - tz(XlX5) 
t2(XlX4)t3(X4X2) - tl(XzXl) 
tl(X2Xl)t2(XlX4) - ta(X4X2) 
t3(X4X2h(X2Xl I + tZ(XlX4) 

Notice that not all instantiated patterns are sup- 
ported by the data in the database. We say a pattern 
is “interesting” only if its significance is above some 
user specified thresholds. In our approach, each pat- 
tern p is evaluated by two values that are computed 
against the databases: the base value pb which reflects 
how much the left-hand side of p is supported by the 
actual data in the database, and the strength value p, 
which reflects how much the right-hand side is sup- 
ported by the data satisfying the left-hand side. 

’ The base value is computed a8 pb = 1mgFkj.p 
where LHS is the set of tuples in the database for 
which the left-hand side of p is true, and DOM(LHS) 
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is the domain of the tables in the left-hand side. A do- 
main of two or more tables is defined as the union of the 
values of the fields (columns) through which these ta- 
bles are joined. For example, if two tables S and T are 
joined by fields S.a and T.b, and the field S.a ha3 val- 
ues {VI, ~2, ~3)~ and the field T.b has values (~1,213, vd}, 
then the domain of S and T, DOM(S.a,T.b), in this 
join is the set of {vi, 213, v3, vd), and the cardinality of 
this domain is ]DOM(S.a,T.b)( = 4. 

The strength value is computed as p, = fgs,, P 
where LHS is defined the same as above, and RHS 
is the set of tuples in the LHS that satisfy the right- 
hand side of p. 

A pattern’s base and strength values, pb and p,, are 
compared with two user specified thresholds b and s. 
When both base and strength values are above their 
thresholds, the pattern is accepted. If the base value 
is the only one above its threshold, then the pattern is 
considered plausible. Such a pattern still has enough 
tuples (for it has a high enough base value) to be con- 
strained to increase the strength value, and is recorded 
for further search (considered in the next section). A 
pattern is discarded when both base and strength are 
below the thresholds. As an example, suppose that 
the user specified thresholds are b = 0.1 and s = 0.7, 
and the following three sample patterns, with their 
base and strength values, can be found in the example 
database in Figure 2: 

h(XPXl)t3(X4X2) + t2(X4Xl) b17, o*r] 
t3(X4X2)h(XZ&)t4(X5X3) + t2(X4X5) b”2, 0.51 
t2(X4Xl)tl(X3Xl)t4(X5X3) + t2(X4X5) b159 0.41 

Among these patterns, the first one will be accepted 
because it has high enough base and strength values. 
The second one will be discarded because both its base 
and strength are lower than the thresholds. The third 
one will be kept as a plausible pattern because it has 
high enough base although its strength is low. Notice 
that for any given database, users may need several 
trial-and-errors to find suitable thresholds. (We are 
investigating methods to determine these parameters 
in a more principled way.) 

Generating Metapatterns Based on 
Plausible Patterns 
We have seen that with the initial set of metapatterns, 
a large set of actual patterns may be generated from 
the database. Some of these patterns are accepted, 
some discarded and some are still plausible. Interest- 
ingly, the plausible patterns provide the basis for dy- 
namically generating more metapatterns. In particu- 
lar, if a metapattern is associated with many plausible 
patterns, it will be used to generate more metapatterns 
by adding additional (meta)constraints to its left-hand 
side. If we consider these patterns as cycle of predi- 
cates, then with some added constraints the resultant 
patterns are cycles with extra or alternative branches. 
These types of patterns are beyond the simple transi- 
tivities. 
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Adding constraints to generate new metapatterns is 
accomplished as follows. Given a candidate metapat- 
tern, the system will add to its left-hand side a new 
(meta)constraint of the form S(X, W), where S is a 
predicate variable and W is an object variable, while 
X must be a variable that already exists in the metap- 
attern in order to link the constraint in. For example, 
one can add Sr(Y3, O),, where 0 is an object variable, 
to MP-4 to get: 

pl(Yl,Y2)A Ql(Y2,Yi)h sl(Y210) * h(Y1aY3) (MP - 7) 

or add S3(Y3,Y3) to MP-6 to get: 

The motivation for this generation is to have the sys- 
tem search for an actual constraint, instantiated from 
S, that can yield patterns that have higher strengths. 

The added meta-constraint can be instantiated to ei- 
ther a table that connects (i.e., share a reference name 
in SCT) to at least one predicate in the pattern or any 
of the build-in predicates (e.g., equal) with some vari- 
ables that are already in the pattern. It is interesting to 
notice that the extended metapatterns enable the sys- 
tem to discover patterns that are beyond transitivities. 
For example, instantiating the metapattern MP-7, if 
Pi and RI are bound to “ancestor”, &i to “parent”, 
Sr to “gender”, and 0 to “male”, then the following 
‘Lmale-ancestor” pattern may be discovered 

onceator(Y1, Y2),parent(Y2, Y3), gender(Y2, maze) 
+ aflcestor(Y~, Y3) 

In general, adding a new constraint to the left-hand 
side of a pattern will reduce the size of LHS, thus the 
number of plausible patterns will decrease as the length 
of their left-hand side increases. Furthermore, we only 
consider to add a constraint to a pattern when it re- 
duces the number of tuples that satisfy the left-hand 
side of the pattern, so this process of adding constraints 
will eventually terminate. 

Experimental Results 
The described system ha3 been applied to two sim- 
ply databases to show’that it can learn relational pat- 
terns directly from databases without requiring hu- 
mans to pre-label the data as positive or negative ex- 
amples of some pre-specified target concepts. The first 
database contains a small network used by the FOIL 
system (Quinlan 1990). From this database, our sys- 
tem learned, without pm-labeling the examples, the 
same recursive concepts as FOIL and more: 

linkedTo(XlX3) + canReach(X1X3) [l.O, 

canReoch(X1X~) A l inkedTo(XzX3) 
--r canReach(X1X3) [0.14, LO] 

canReach(X1X3) + linkedTo(X1X3) [l.O, 

1.01 

0.51 

canReach(X1X3) A l inkedTo(X2Xa) 
--f canReach(X1X2) [0.63, 0.41 



Although the last two patterns are not true in gen- 
eral, but they are interesting enough patterns in this 
database and have sufficient support from the data. 

The second database contains a set of families used 
by Hinton’s neural network (Hinton 1986). From this 
database, our system discovered many interesting re- 
lations among people, such as 

husband(X2, Xl) -r wife(X1, X2) [l.O, 1.01 

nieCe(x65, x73), brother(XW, X66) 
+ nephew(Xg5,Xg6) [0.22, 1.01 

daughter(X56,X57)brother(X57,X60) 
+ 8On(X56,&0)[0.33, 1.01 

brother(X63, x34) + eieter(x64, X33) [l.o, 1.01 

Again, the last one is not true in general, but, a valid 
pattern in this particular database (i.e., all the families 
in the database have siblings of opposite gender). 

Related Work 

The most relevant work to this research includes super- 
vised learning of relation patterns (e.g., (Quinlan 1990; 
Muggleton & Feng 1990)) and applications of ILP 
to KDD (e.g., (Dzeroski 1995)). However, most of 
these approaches learn rules that are rigid logical state- 
ments with no allowance for uncertainty, and often 
assume databases are correct and noise-free. While 
the patterns discovered by our method have associated 
probabilities that allows uncertainties and noise. One 
notable exception in ILP is the CLAUDIEN system 
(Raedt & Bruynooghe 1993; Laer, Dehaspe, & Raedt 
1994)) which uses the notion of clausemodels that share 
the same sprit of metapattern and can learn from pos- 
itive examples only. However, CLAUDIEN requires 
clausemodels to be given while our system can generate 
metapatterns automatically. It would be interesting to 
see if the method described here can also be used to 
generate clausemodels for CLAUDIEN. 

Conclusions and Future Work 

In this paper, we have described a method for automat- 
ically generating metapatterns from meta-information 
of databases. With such a method, a metapattern- 
based, integrated data mining system can become both 
autonomous and interactive. There are clearly much 
room for more research in this area. One natural di- 
rection is to investigate methods for generating meta- 
patterns that have other types of inductive actions on 
the right-hand side. The other one is to scale up this 
approach to large real-world databases. The current 
application under development is a set of six logis- 
tics databases, which have 104 tables, more than 2,000 
columns, and over one million tuples. Following a valu- 
able suggestion made by an anonymous reviewer, we 
will also include function dependency as another im- 
portant criterion for testing significant connections. 

Acknowledgments 
We would like to thank Weixiong Zhang for his com- 
ments and suggestions on this paper. Special thanks 
to Eastman Chemical Company, Motorola Inc., and 
USC/Information Sciences’ Institution for providing 
tasks and resources. This work is also supported in 
part by the National Science Foundation under Grant 
No. IRI-9529615. Any opinions, findings, and conclu- 
sions or recommendations expressed in this material 
are those of the author(s) and do not necessarilty re- 
flect the views of the National Science Foundation. 

References 
Dzeroski, S. 1995. Inductive logic programming and 
knowledge discovery in databases. In Advances in 
Knowledge Discovery and Dada Mining. MIT Press. 
chapter 5. 
Fu, Y., and Han, J. 1995. Meta-rule-guided mining of 
association rules in relational databases. In DOOD95 
Workshop on the Integration of Knowlege Discovery 
with Deductive and Object Oriented Databases. 
Hinton, G. 1986. Learning distributed represents 
tions of concepts. In Proceedings of the 8th Annual 
Conference of the Cognitive Science Society. 
Kero, B.; Russell, L.; Tsur, S.; and Shen, W. 1995. 
An overview of data mining technologies. In DO0095 
Workshop on the Integration of Knowlege Discovery 
with Deductive and Object Oriented Databases. 
Laer, W. V.; Dehsspe, L.; and Raedt, L. D. 1994. 
Applications of a logical discovery engine. In Pro- 
ceedings of AAAI Workshop on Knowledge Discovery 
in Databases. AAAI Press. 
Muggleton, S., and Feng, C. 1990. Efficient induction 
of logic programs. In Proceedings of the 1st Confer- 
ence on Algorithmic Learning Theory. Tokyo, Japan: 
Ohmsha. 
Quinlan, R. J. 1990. Learning logical definitions from 
relations. Machine Learning 5(3):239-266. 
Raedt, L. D., and Bruynooghe, M. 1993. A theory 
of clausal discovery. In The Proceedings of the 19th 
IJCA I. 
Shen, W. M., and Leng, B. 1996. A metapattern- 
based automated discovery loop for integrated data 
mining. IEEE Transactions on Data and Knowledge 
Engineering. To appear in the special issue on data 
mining and knowledge discovery from databases. 
Shen, W.; Ong, K.; Mitbander, B.; and Zaniolo, C. 
1995. Metaqueries for data mining. In Advances in 
Knowledge Discovery and Dada Mining. MIT Press. 
chapter 15. 
Shen, W. 1992. Discovering regularities from knowl- 
edge bases. International Journal of Intelligent Sys- 
tems 7(7):623-636. 

pattern-oriented Data Mining 157 


