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Abstract 

An important but neglected aspect of automated data 
mining is discovering patterns at different scale in the 
Sitllle data. 8C& DhVS the r& ar?&ZOUS to er21X, It 
can be used to focus the search for patterns on differ- 
ences that exceed the given scale and to disregard those 
smaller. We introduce a discovery mechanism that ap 
plies to bi-variate data. It combines search for maxima 
and minima with search for regularities in the form 
of equations. Groups of detected patterns are recur- 
sively searched for patterns on their parameters. If the 
mechanism cannot find a regularity for all data, it uses 
patterns discovered from data to divide data into sub- 
sets, and explores recursively each subset. Detected 
patterns are subtracted from data and the search con- 
tinues in the residua. Our mechanism seeks patterns at 
each scale. Applied at many scales and to many data 
sets, it seems explosive, but it terminates surprisingly 
fast because of data reduction and the requirements 
of pattern stability. We walk through an application 
on a half million datapoints, showing how our method 
leads to the discovery of many extrema, equations on 
their parameters, and equations that hold in subsets of 
data or in residua. Then we analyze the clues provide 
by the discovered regularities about phenomena in the 
environment in which the data have been gathered. 

Automated data mining: the role of 
error and scale 

Regularities at different scale (also called tolerance) are 
common in data, when large amounts of datapoints are 
available. For instance, consider a time series in which 
the overall linear growth may be altered with a short 
cycle periodic pattern. Both patterns may be caused by 
different phenomena. It is possible that those phenom- 
ena can be recognized from the discovered patterns. 
Real data contain information about many phenomena 
as a rule, not as an exception. 

St&c&ic~ data anrrlvair offers Illany m&J&r for --..- -----.f --- 
data exploration that assist human data miners (Tukey 
1977; Hoaglin, Mosteller & Tukey 1983), yet the ma- 
jority of methods make a small step and require user 
choice of the next step (Kendall & Ord, 1990). To- 
day’s statistical packages, such as Lisp-Stat (Tierney, 
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1990) offer the user access to medium level operators, 
but only recently, in the domain of Knowledge Dis- 
covery, the research focused on large-scale search for 
knowledge that can be invoked with a simple command 
and keeps the user out of the i00p (Piatetsky-Matheus, 
1991; Kloesgen 1996; 49er: Zytkow Zembowicz, 1993). 
Such systems become necessary when thousands of ex- 
ploratory steps are needed. 

” 

The need for mining massive data at many scale lev- 
els leads to a challenging vision for automated knowl- 
edge discovery: develop a mechanism that discovers aa 
many independent patterns as possible, not overlook- 
ing patterns at any scale but not accepting spurious 
regularities which can occur by chance when data are 
confronted with very large hypotheses spaces. That 
mechanism qhmllrl ha nhle tn detect nattwna nf differ- -----------Lee_ L___-_- -- ---- 2- v-4..-., rld” -___I -. -... _- 
ent types, such aa equations, maxima and minima, and 
search for patterns in data subsets if the search fails to 
detect patterns satisfied by all data. 

In this paper we present an automated data mining 
mechanism that works efficiently for large amounts of 
data and makes progress on each of these requirements. 
We report an application of our methods on a large set 
of bi-variate data, computationally efficient and leading 
to a number of surprising conclusions. We concentrate 
on the algorithmic aspect of our system. Because of 
the paper size limit we do not present the representa- 
tion of the nascent knowiedge and the way in which 
the unknown elements of knowledge drive the search. 
This mechanism is a modification of FAHRENHEIT’s 
knowledge representation (Zytkow, 1996). 

The roles of error in pattern discovery 
Error is a parameter that defines the difference be- 
tween values of a variable which are empirically non- 
distinguishable. Scale plays the role analogous to er- 
ror. It specifies the difference between the values of a 
variable which we, tentatively, consider unimportant. 
RP,TII.W nf this analnvv in nrrler tn aearph fnr nat+mna --“-IIv -* ...--- -“-‘..bJ, aa- ----a 1., ---a.,*. *WI yuv”v*Y., 
at different scale we can simply replace the error with 
scale in our discovery algorithms. 

Let us briefly summarize the roles of error (noise) 
in the process of automated discovery. Those roles are 
well-known in statistical data analysis. Consider the 
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data in the form D = { (zi, gi, ei) : i = 1, . . . , N}. Con- 
sider the search for equations of the form y = f(z) that 
fit data (zi, yi) within the accuracy of error ei. For the 
same ((Zi, vi) : i = 1, . . . . N}, the smaller are the error 
values ei, i = 1, . . . . N, the closer fit is required between 
data and equations. Even a constant pattern y = C 
can fit any data, if error is very large, but the smaller 
is the error, the more complex equations may be needed 
to fit the data. 

The same conclusions about error apply to other pat- 
terns, too. Let us consider maxima and minima. For 
the same data (zi, yi), when the error is large, many dif- 
ferences between the values of y are treated as random 
fluctuations within error. In consequence, few maxima 
and minima are detected. When the error is small, 
however, the same differences may become significant. 
The smaller is the error, the larger number of maxima 
and minima shall be detected. 

Knowledge of error has been used in many ways 
during the search conducted by Equation Finder (EF: 
Zembowicz & iytkow, 1992): 

1. The error is used in the evaluation of each equa- 
tion y = f(z). For each datum, O.&i = ui can be inter- 
preted as the standard deviation of the normal distri- 
bution N(g(zi), a,:) of y’s for each zi, where ~v(ziJ is the -\ -, 
mean value and ui is standard deviation. Knowledge 
of that distribution permits to compute the probability 
that the data have been generated as a sum of the value 
y(zi) and the value drawn randomly from the normal 
distribution N(0, ai), for all i = 1, . . . , N. 

2. When the error ei varies for different data, the 
weighted x2 value [(vi - f(zi))/0.5ei]2 is used to com- 
pute the best fit parameters for any model. This en- 
forces better fit to the more precise data. 

3. Error is propagated to the parameter values of 
f(z). For instance, EF computes the error e, for the 
slope a in y = az. When patterns are sought for those 
parameters (e.g., in BACON-like recursive search for 
multidimensional regularities), the parameter error is 
used as data error. 

4. If the parameter error is larger than the value of 
that parameter, EF assumes that the parameter value 
is zero. When y = az + b and [al < e,, then the 
equation is reduced to a constant. 

5. EF generates new variables by transforming the 
initial variables 2 and y into terms such as log(t). Error 
values are propagated to the transformed data and used 
in search for equations that apply those terms. 

Phenomena at different scale 
When we collect data about a physical, social or eco- 
nomical process, it is common that the data capture 
phenomena at different scale. They describe the pro- 
cess, but the values may be influenced by data collec- 
tion, instruments behavior, and the environment. Dif- 
ferent phenomena can be characterized by their scales 
in both variables. Periodic phenomena, for instance, 
can have different amplitudes of change in y and differ- 

ent cycle length in 2. In a time series (8 is time) one 
phenomenon may occur in a daily cycle, the cycle for 
another can be few hours, while still another may fol- 
low a monotonous dependence between x and y. Each 
phenomenon may produce influence of different scale 
on the value of y. 

Each datum combines the effects of all phenomena. 
When they are additive, the measured value of y for 
each x is the total of values contributed by each phe- 
nomenon. Given the resultant data, we want to sepa- 
rate the phenomena by detecting patterns that describe 
each of them individually. The basic question of this 
paper is how can it be done by an automated system. 

Suppose that a particular search method has cap- 
tured a pattern P in data D. Subtracting P from D 
produces residua which hold the remaining patterns. 
Repeated application of pattern detection and subtrac- 
tion can gradually recover patterns that account for 
several phenomena. In this process, one has to be cau- 
tious of artifacts generated by spurious patterns and 
propagated to their residua. 

It is a good idea to start the search for patterns from 
large scale phenomena, by using a large value of scale in 
pattern finding. The phenomena captured at the large 
values of error follow simple patterns. Many smaller 
scale patterns can be discovered later, in the residua 
obtained by subtracting the larger scale patterns. 

The roles for maxima and minima 
In this paper we concentrate on two types of pat- 
terns: maxima/minima, jointly called extrema, and 
equations. We explore the ways in which the results 
in one category can feedback the search for patterns of 
the other type. 

A simple al 
at a given sea e 6: P 

orithm can detect maxima and minima 

Algorithm: Find Extrema (X,,, , Y,,,) and (X,,,, Y,,,,,) 
given ordered sequence of points (I,, y,), i = 1 . . N, and scale 6 

task -unknown, Xm., -xl, Xm,, + XI, Ym.o + yl , Ym,, - yl 
for i &am 2 to N do 

if task # max and y, > Y,,, + 6 then 
store minimum (X,,,, Y,,,) 
tad-m=, Xm,, + z,, Ymaz + Y, 

else if task # min and y, < Y,,,,= - 6 then 
store maximum (X,.,, Y,,,) 
task + min, X,,,, - I,, Y,,,,,, + y, 

else if Y, > I’,,, then Xmas + I., Ymaz - Y, . else If y, < Y,,, then Xmln t m,, Y,,, - y, 
if ym,* - Y,,,,,, > 6 then ; handle the last extremum, if any 

if task = min then store minimum (X,,,, Y,;,) 
else if task = max then store maximum (X,.,, Y,,,) 

Our discovery mechanism uses maxima and minima 
detected by this algorithm in several ways. First, if 
the number of extrema is M, then the minimum poly- 
nomial degree tried by Equation Finder is M + 1. A I, .~~... L --1L~----L~1-- --.3-J degree higher than 1~1 may De ulrlmately neeaeu, be- 
cause the inflection points also increase the degree of 
the polynomial. As the high degree polynomials are 
difficult to interpret and generalize, if IL/f > 3, only the 
periodic functions are tried. 

Another application is search for regularities on dif- 
ferent properties of maxima and minima, such as the 
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location, and height. Those regularities can be instru- 
mental in understanding the nature of a periodic phe- 
nomenon. A regularity on the locations of the subse- 
quent maxima and minima estimates the cycle length. 
A regularity on the extrema heights estimates the am- 
plitude of a periodic pattern. Jointly, they can guide 
the search for sophisticated periodic equations. 

Still another application is data partitioning at the 
extrema locations. Data between the adjacent extrema, 
detected at scale 6, are monotonous at 6, so that the 
equation finding search similar to BACON1 (Langley et 
al., 1987) applies in each partition. We use EF, limiting 1,. ---.~-1- I- I!-- ~~~ me searcn to nnear equations and term transformations 
to monotonous (e.g., 2’ = log%, 2’ = exp 2). Since all 
the data in each partition fit a constant at the tolerance 
level l/2 x 6, EF is applied with the error set at 1/3x 6. 

Data reduction 
The search for extrema at all scales starts at the min- 
imum positive distance in y between adjacent data- 
points, or the error of y, if it is known. The search 
uses the minimum difference between the adjacent ex- 
trema as the next scale value. The search terminates 
at the firnt ncale at whirh nn mrt.wma have hmn fnrlnll -2 2-a.. _._I 2 I--.- -4 . . . ..-.. ..- -.-“.-...Y ..V.” ““VY .V....... 
Since an extremum at a larger scale must be also an ex- 
tremum at each lower scale, when the search proceeds 
from the low end of scale, the extrema detected at a 
given scale become the input data for the search at the 
next higher scale. This way the number of data is re- 
duced very fast and the search at all levels can be very 
efficient. The whole search for extrema at each scale 
typically takes less than double the time spent at the 
initial scale. 
Algorithm: Detect axtrema at all tolerance levels 
Given an ordered sequence of points (z,, y,), i = 1.. . N, 

Jnin + Imin(y, 
6+&n,,, 

-Y,+I)~, for all Y. # Y,+I, i = l...N 
data + (I,, y;), i = 1. . . N 

while data includes more than two points do 
Find Extrema (X mrn/mors Ymin/mar ) in data at *de 6 
Store 6 , store list-of-extrema (Xmlrrjmo+, Y,,,,,,,) 
6+6+&n,,, data + list-of-extrema (X,,,irrlm.=, Y,,,,,/,.,) 

The search for equations may benefit from another 
type of data reduction. A number of adjacent data, at 
a small distance between their z values, can be binned 
together and represented by their mean value and stan- 
dard deviation. The size of the bin depends on the tol- 
erance level in the x dimension. The results of binning 
are vrsualized in Figures i and 2. Each pixei in the z 
dimension summarizes about 500 data, so that about 
0.5 mln data have been reduced to about 1000. 

Pattern stability 
No scale is a priori more important than another, as 
patterns can occur at any scale. When the search for 
patterns is successful at scale 6, the same pattern can 
often be detected at scales close to 6. Patterns that 
hold at many levels are called stable (Witkin, 1983). 
Consider the stability of extrema. Each extremum that 
nr.r,,rCl St !A &van level n-mat 2Lan rePP1IF at -11 lnlupr “““U.” uv u (y-V.4 .V.U. . ..UYY .m.- ““IU. uu La.. I....“. 

levels, Ctabilitv annli~ tn n&n nf di~~e~~t. PY*FG~~ L---...l~ -==..-- -‘- =-‘-- -- --ill--Y” -....*w..... 
and is measured by the range of scale levels over which a 
given min/maxpair is detected as adjacent. Expanding 
the definition to the set of all extrema at a given scale, 
we measure stability as the range of scale levels over 
which the set of extrema does not change. 

Stability is important for several reasons. (1) As dis- 
cussed earlier, when a number of extrema are detected 
at a given scale, regularities can be sought on their lo- 
cation, height, and width. It is wasteful to detect the 
same regularities many times at different scales and 
then realize that they are identical. A better idea is 
to recognize that the set of extrema is stabie over an 
interval of scale levels, and search for regularities only 
once. (2) A stable pattern is a likely manifestation of 
a real phenomenon, while an unstable set of extrema S 
may be an artifact. Some extrema may be included in 
S by chance. A slight variation in the tolerance level 
removes them from S. The search for regularities in 
such a set S may fail or lead to spurious regularities. 
It would be a further waste of time to seek their inter- 
pretation and generalization. 

Since regularities for extrema may lead to important 
conclusions about the underlvine Phenomena. our qvs- ~~” ~~~~ r------- ---__ -, --. “+- 
tern pays attention to sets of extrema which are stable 
across many tolerance levels. It searches the sets of ex- 
trema and picks the first stable set at the high end of 
scale. 
Algorithm% Detect stable set of extrema at high end of scale 
Given a sequence of extrema sets EXTREMA,, ordered by 6,) 
6min 5 6% I6maa : 

for 6 from 6.,.... to 6,,, do .- . .- .._ - - 
Compute the number E, of extrema in EXTREMA, 

for each different E, do 
Compute the number N, of occurrences of E, ;; The higher 
;; is N,, the more stable the corresponding set EXTREMA, 

Let N,, Nb two highest numbers among N, - 
return EXTREMA, for the minimum(&) &,) 

;; That among two most stable sets which is of higher scale 
and return 6,:Dbrc = average(6) for EXTRRMA, 

Residual data 
Our mechanism treats patterns as additive. It sub- 
tracts the detected patterns from data and seek further 
patterns in the residua. We will now present the details 
of subtraction and discuss termination of the search. 

Both equations and extrema are functional relation- 
ships between x and y: y = f(z). Some extrema can be 
described by equations that cover also many data that 
extend far beyond a given extremum. For instance, 
a second degree polynomial that fits one extremum, 
may at the same time capture a range of data. Equa- 
tions may not be found, however, for many extrema. 
Those we represent point by point. In the first case, 
when 2/ = f(z) is the best and acceptable equation, the 
residua are computed as ri = gi -f(~i), and they oscil- 
late around y = 0. In the second case we remove from 
the data all datapoints that represent the extremum. 

In the first case the data are decomposed into pattern 
y = p(z) and residua {(zi,ri),i = 1,. . .,N}, SO that 
&I; = f(g;) $ r;. Tn the ~,~nnrl ,-SI~P the rlslt.2 ~WK. nawti- . . . “I.” ““““..U v-v, “1.” ..uuv .a.” mu.“.- 
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tioned into the extremum ((sir vii) : s(zi)}, where s(z) 
describes the scope of the extremum, and the residua 
((G, $6) : 1t(G)}* 

If the residua (Zi, Q) deviate from the normal dis- 
tribution, the search for patterns applies recursively. 
Eventually no more patterns can be found in residua. 
This may happen because regularities in the residua are 
not within the scope of search or because the residua 
represent Gaussian noise. In the latter case, the final 
data model is y = f(z)+N(O, E(Z), where E(Z) is Gaus- 
sian, while f(z) represents all the detected patterns. 
Since the variability of residua is much smaller than 
that of the original data, the subtraction of patterns 
typically takes only a few iterations. 
Algorithm: Detect Patternm 

D c the initial data 
until data D are random 

seek stable pattern(s) P in D at the highest tolerance levels 
D + aubtract pattern(a) P from D 

Data 
As an example we will consider a large number of data 
collected in a simple experiment. In order to find the 
theory of measurement error for an electronic balance, 
we automatically collected the mass readings of an 
empty beaker piaced on the baiance. The measure- 
ments have been continued for several days, approx- 
imately one datapoint per second. Altogether we got 
482,450 readings (7.2 megabytes). Fig. 1 illustrates the 
data. The beaker weighted about 249.130mg. Since the 
nominal accuracy of the balance is O.OOlg=lmg, we ex- 
pected a constant reading that would occasionally di- 
verge by a few milligrams from the average value. But 
the results were very surprising. All datapoints have 
been plotted, but many adjacent data have been plot- 
ted at the same value of 2. 

We can see a periodic pattern consisting of several 
large maxima with a slower ascent and a more rapid 
descent. The heights of the maxima seem constant 
or slightly growing, and they seem to follow a con- 
stant cycle. Superimposed on this constant pattern 
are smaller extrema of different height. Several lev- 
els of even smaller extrema are not visible in Figure 1, 
because the time dimension has been compresses, but 
they are clear in the original data. 

Upon closer examination, one can notice seven data 
points at the values about 249.43Og, that is 0.3g above 
the average result, a huge distance in comparison to 
the accuracy of the balance. They can be seen as small 
plus signs in the upper part of Figure 1. There is one 
point about 0.3g below the average data. Those data 
must have been caused by the same phenomenon be- 
cause they are very speciai and very simiiar: they are 
momentary peaks of one-second duration, at the simi- 
lar distance from the bulk of the data. 

Apparently, several phenomena must have con- 
tributed to those data. Can all these patterns be de- 
tected in automated way by a general purpose mecha- 
nism, or are our eyes smarter than our computer pro- 

grams? Can our mechanism find enough clues about 
chose patterns to discover the underlying phenomena? 

Results of search for patterns at many 
scales 

We will now illustrate the application of our multi-scale 
search mechanism on the dataset described in the pre- 
vious section. 

Detect extrema at all tolerance levels: The 
search for extrema at all levels of tolerance started from 
482,450 data and iterated through some 300 scale lev- 
els. Since the number of extrema decreased rapidly 
between the low scale levels, the majority of time has 
been spent on the first pass through the data. The 
number of extrema at the initial scale of lmg has been 
29,000, so the data have been reduced to 6%. The 
number of extrema has been under 50 for 6 > 9mg. 

Find the first stable set of extrema: The algo- 
rithm that finds the first stable set has been applied to 
all 300 sets of extrema. It detected a set stable at the 
tolerance levels between 30 and 300. The number of ex- 
trema has been 17, including 8 maxima and 9 minima, 
Eight of those are the outliers discussed in Section 2, 
while the complementary extrema lie within the main 
body of data. ‘The stabie extrema became the focus of 
the next step. We will focus on the maxima, where the 
search has been successful. 

Use the stable extrema set: A simple mechanism 
for identification of similar patterns (iytkow, 1996) ex- 
cluded one maximum, which differed very significantly 
from all others in both the height and width (to limit 
the size of this paper, we do not discuss the extrema 
widths). That maximum is an artifact accompanying 
the minimum located 3OOrng under the bulk of the 
data. When applied to the remaining maxima, the 
equation finder discovered two strong regularities: (1) 
maxima heights are constant, (2) the maxima widths 
are constant (equal one second). No equation has been 
found for their location. Even if these l-second devi- 
ations from the far more stable readings of mass oc- 
curred only seven times in nearly half million data, the 
pattern they follow may help us sometime to identify 
their cause. 

Subtract patterns from data: Since the seven 
maxima have the width of 1 datapoint each, according 
to section 1.6 they have been removed from the original 
data. 482,442 data remained for further analysis (one 
single-point minimum has been removed, too). 

Detect patterns in the residua: The search 
for patterns continued recursively in the residual data. 
Now the extrema have been found at the much more 
iimited range oftoierance levels, between i and 43. The 
numbers of maxima at each scale have been depicted 
in Table 1 in the rows labeled M,,,,,. The stability 
analysis determined a set of five maxima and the cor- 
responding minima, which have been stable at the scale 
between 23 and 30. No regularity has been found for 
extrema locations and amplitudes, but interesting reg- 
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Figure 1: The raw results of mass measurements on an electronic balance over the period of five days (482450 
readings). 

ularities have been found for heights and locations of 
the maxima, from the data listed in Table 2. 

Table 2: The first stable group of maxima, at the scale 
23-30 in Table 1, 

For those five maxima, stable equations have been 
found for location and height as functions of the max- 
ima number, M: location = 86855M - 18261 and 
height = 0.0026M + 249.144. 

The successful regularities have been also found for 
minima locations and heights. But no equation has 
been found for all data at the tolerance level l/6 x 
30mg = 5mg. 

DanC:+:rrrr thea rlcs,m. Gnra n* +,;.-Pr\nnma+r;F 1 casYBY.“Y VYT “-“a. VIIIbcI IX” “116”I.“I‘n,YI‘\r 

equation has been found (cf. section 1.3), the data 
have been partitioned at the extrema, and search for 
monotonous equations has been tried and succeeded in 
each partition, with different equations. For instance, 
in two segments of data: down-l (in Figure 2, data for 
X from about 70,000 to about 90,000) and down-2 (X 
from 160,000 to 180,000), the equations are linear: 

(segment down-l) y = -1.61 x lo-’ x x + 249.249 
(segment down-2) g = -1.46 x lo-’ x z + 249.371 

By subtracting these regularities from the data, two 
sets of residua have been generated, labeled down-l and 
down-2. Further search, applied to residua in each par- 
tition, revealed extrema at lower tolerance levels. The 
patterns for the stable maxima locations as a function 
of maxima number M, for instance, have been: 

(segment down-l) location = 1220 x M + 70,425 
(segment down-a) location = 1297 x M + 154,716 

The slope in both equations indicates the average cy- 
cle measured in seconds between the adjacent maxima. 
That cycle is about 21 minutes (1260 seconds). 

Physical interpretation of the results 
How can we interpret the discovered patterns? Recall 
that the readings should be constant or fluctuate min- 
imally, as the beaker has not changed its mass. 

wp & & knnw what cannerl the one-!-necnnd ertrema. ____-.. .._- -1 ------ 1--- ---- -----_ - ___1------ 
at the highest scale. Perhaps an error in analog-to- 
digital conversion. But we can interpret many patterns 
at the lower levels. Consider the linear relation found 
for maxima locations, location = 86855M - 18261. It 
indicates a constant cycle of 86,855 seconds. When 
compared to 24 hours (86,400 seconds), it leads to 
an interesting interpretation: the cycle is just slightly 
longer than 24 hours. The measurements have been 
made in May, when each day is few minutes longer then 
the previous one. These facts make us see a close match 

162 KDD-96 



= - 
-1 E .-.- 
= -- -- -- -- 

--. z - 
1: z 

: ==- = -__ 
:.= 7 

.- .- : _-_- 
=5 : 
-_ z 

have been snhtrncted. i--l---.!--. 
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Mmaz 14337 3114 2308 808 617 267 204 78 46 26 22 16 15 12 12 11 7 7 7 7 6 6 
SC.& 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
Mmm 5 5 5 5 5 5 5 5 4 3 2 2 2 11111 

4; 4; 4; 

Table 1: The number of maxima (M,,,) found for different scale values. 

between the cycle of day and night and the maxima and 
minimain the data. The mass is the highest at the end 
of day. It goes sharply down through the night, which 
is much shorter than the day in May. Then the mass 
goes slowly up during the day, until the next sunset. 

Why would the balance reflect the time of the day 
with such a precision? Among many possible expla- 
nations we can consider temperature, which changes 
in a daily cycle. The actual changes in temperature 
at the balance did not exceed one centigrade and have 
been hardly noticeable, but if this hypothesis is right, it 
should apply to other patterns discovered in the same 
data. The balance has been located in a room with the 
windows facing east and the morning sun raising tem- 
perature from early morning. What about the short 
term cycles of about 20 minutes? The air condition- 
ing seems the culprit. It turns on and off about every 
15-25 minutes, in shorter intervals during the day, in 
longer intervals at night. The regularities in maxima 
locations in different data partitions reveal that pat- 
tern. The room has been under the influence of both 
the air-conditioning and from the outside, which ex- 
plains both the daily cycle and the short term cycle. 
We could not confirm these conclusions by direct mea- 
surements. Few weeks later our discovery lab has been 
m,wswl tn snnthrar hr,;l,-l;ntr AII”.bU “V cu.“UI.“. YU..U...~. 
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