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The requirement of a strict and fixed distinction between 
dependent variables and independent variables, together 
with the presence of missing data, typically imposes consid- 
erable problems for most standard statistical prediction pro- 
cedures. This paper describes a solution of these problems 
through the “weighted effect” approach in which recursive 
neural nets are used to learn how to compensate for any 
main and interaction effects attributable to missing data 
through the use of an “effect set” in addition to the data of 
actual cxqes. Fxtensive simulations of the approach based on -__--_ _-____ *..-.-- 
an existing psychological data base showed high predictive 
validity, and a graceful degradation in performance with an 
increase in the number of unknown predictor variables. 
Moreover, the method proved amenable to the use of two- 
parameter logistic curves to arrive at a three way “low,” 
“high,” and “undecided” decision scheme with a-priori 
known error rates. 

Introduction 
Most texts on statistical methods (e.g., 111) present the 
topic of prediction as the problem of finding an optimal 
function to predict a set of unknown (dependent) variables 
from a disjoint set of known (independent) variables. Al- 
though this approach is appropriate when testing hypothe- 
ses, it may not be applicable in many applied contexts. For 
instance, when diagnosing a client, physicians and psy- 
chologists typically have access to a personal file con- 
taining the outcomes on standard tests, together with di- 
verse items of information already gathered by other pro- 
fessionals. Depending on the nature of the case, the dis- 
tinction between dependent and independent variabies is 
often blurred because: (a) some dependent variables may 
already be known, whereas some of their indicators 
(independent variables) are lacking; (b) the same 
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Wayne Penn and Naomi Lynn for their vivid demonstration of the urgent 
need for more sophisticated thinking tools in order to avoid erroneous 
conclusions derived by naiVe analyses of quantitative data. 
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available information; and (c) at any point, practitioners 
have the option to gather additional information. Since the 
same variable may occur both as a dependent variable and 
as an independent variable, the resulting process defies 
description in terms of a rigid a-priori distinction between 
these two types of variables. 

Situations such as the above would benefit greatly 
from knowledge discovery systems that allow any set of 
unknown variables to be predicted from arbitrary collec- 
tions of already known variables. To achieve this goal in 
the traditional framework, one might propose to simply re- 
compute the predictor function each time a new situation 
arises. Where feasible from a computational and statistical 
point of view, this approach would require constant access 
to all appropriate databases. Unfortunately, such databases 
are often confidential or proprietary, and hence this solu- 
tion is rarely feasible for large scale applications. Altema- 
tively, one might consider computing a different predictor 
function for each conceivable pattern of known and un- 
known variables. However, this approach soon breaks 
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a relatively simple application with 30 variables there are a 
maximum of 230 different patterns of known and unknown 
variables. Even if only 0.1% of these combinations did 
actually occur, this would still leave over 1 million cases to 
be considered. 

The present research describes an approach to knowl- 
edge discovery that relies on the capability of recursive 
neural nets to store information such that their perform- 
ance benefits from knowing which variables can or cannot 
be used in the prediction process. Because known variables 
are allowed to differ with respect to their contribution to a 
particular prediction, the resulting procedure is called a 
“weighted effect” approach. Following an outline of this 
approach, later sections describe an empirical evaluation 
based on an actual data set. Finally, to determine the prac- 
tical potential of the approach, particular attention is paid 
to the validity of its predictions. 
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A Weighted Effects Approach 

To facilitate the presentation, the following terminology is 
introduced: 

(i) The set V (with elements v) contains all variables that 
are relevant in a particular context. 

(ii) All knower variables are contained in the subset 
INcV. 

(iii) All unknown variables are contained in the subset 
OUT c V. 

(iv> For reasons that will become clear later, predictions 
are the result of the mapping: 

V’ = F(V,E), 

where E represents the “effect” of knowing [or not know- 
ing] the value of each variable v. That is, all variables in V 
(including the unknown variables in OUT) are input to the 
function F to yield an new vector V’ with predicted values 
(including predictions for already known variables in IN), 
as moderated by the effects in E. 

The author proposes that the effect set E should con- 
tain an entry for every variable in V, such that e = 1 when 
the value of the variable is known, and e = -1 when its I 
value is not known. The rationale behind this assumption is 
that such weights allow a neural net to learn all linear main 
and interaction effects [and perhaps some non-linear ef- 
fects also] associated with the presence or absence of each 
variable. This claim follows from the observation that the 
IN vs. OUT status of the variables in V can be thought of 
as creating a v-factorial 2 x 2 x . . . x 2 analysis of variance 
(ANOVA) design. It has long been known [2] that any 
ANOVA design can be translated into an equivalent multi- 
ple regression problem through the use of “coded dummy 
variables.” In our particular case where each factor has 
only two levels, the situation simplifies considerably since 
all main and interaction effects can be captured by single 
parameters. Also, in this case the required number of or- 
thogonal dummy variables is equal to number of main and 
interaction effects. 

For instance, assume that we are interested in esti- 
mating a dependent variable I’ from the two predictor vari- 
ables A and B in a 2 x 2 ANOVA design. By defining the 
three sets of orthogonal dummy weights e , eb, and cab, 
least- squares estimates of all main and inieraction effects 
can be obtained by minimizing the expression: 
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where a represents the main effect of A, j3 represents the 
main effect of B, x represents the A x B interaction, and K 
denotes an additive constant. The procedure is illustrated 
in Figure 1 which shows the predicted yij as the sum of the 
dummy variables .c,, es, and eabweighted by their corre- 
sponding effects a, p and x. 

e e e 
-LX -LB -T.x = yoo 
-1.a +1.p +1.x = yol 
+l.CX -l.p +1,x = yld 
+1.a +1,p -1,x = yl, 

Figure 1: Prediction of Y based on the main efses a and 
pt and their interaction x in a multiple regressionj?ame- 
work using the dummy weights e , e , and e . 

a b ab 

Note that for n predictor variables there are a total of 
2n - (n + 1) possible interaction terms, leading to a combi- 
natorial explosion that contradicts our assumption that E 
should contain only v items. Notice however that the e , e 

a b’ 

and cab columns in Figure 1 are related as if: 

cab =e XORe, a b 

provided that the weights + 1 and - 1 are replaced by the 
truth values T and F, respectively. Thus, the dummy vari- 
able cab need not be provided explicitly because it can be 
learned from e and eb via backpropagation in neural nets 
with at least oie intermediate layer. 

In general, the weighted effect alsproach is predicated 
on the assumption that interaction effects need not be rep- 
resented explicitly in E because they can be learned selec- 
tively from training data on an “as needed” basis by neural 
nets. Thus, the number of interactions that can be accom- 
modated will depend on the size of the layers of the neural 
net. Also, the order of the interactions is limited by the 
number of intermediate layers. For exanmle, analogous to 
XOR problems with three variables, three way interactions 
require at least two intermediate layers. Thus, the weighted 
effect approach is best used in situations where higher or- 
der interactions are rare. However, such interactions are 
perhaps best avoided anyway because they typically gen- 
eralize poorly to new cases. 



An Empirical Test 

Naturally, the above considerations do not guarantee that 
adding any main and interaction effects due to (not) 
knowing predictor variables will improve prediction in 
actual practice. For this reason, the next sections describe 
the results of an empirical performance study based on an 
existing body of psychological data. In particular, all re- 
sults reported below were derived from a database of 72 1 
cases of hallucinatory episodes experienced by ostensibly 
normal individuals as described in detail in a psychological 
study published by Lange et al. [3]. Each case consists of 
3 1 variables, 3 of these are considered continuous, but 
most (28) are binary categorizations. Since the present 
research focuses primarily on the predictive quality of the 
weighted effect approach, the following presentation ad- 
dresses only the statistical properties of the results. Conse- 
quentiy, variabies are simpiy referred to by their ordinai 
position in the original database (i.e., 1 through 3 l), and 
readers interested in content oriented issues are referred to 
the aforementioned paper. 

Design. In order to test whether addition of the effect set E 
improves prediction, two basic experimental conditions 
were created: 

In the Effect condition, the effect set E is defined as 
ciescrihed in the nrecedine section. V is a CQOV of a re- - ---_---- -- ----~--------p’ --.---- I 
cord in the data set, and the function F was imple- 
mented as a partially recursive neural net. This net has 
as its outputs the 3 1 variables in V’ and as its inputs 
the 3 1 + 3 1 = 62 variables in V and E. A standard 
backpropagation algorithm [4] was used with logistic 
squashing functions over the range - 1 .O to + 1 .O. All 
variables were scaled over the range -0.9 to +0.9. The 
721 cases were randomly divided into a training set 
and a test set of approximately equal size (i.e., n = 360 
orn=361). 

Truinina Phase. During the training phase, knowledge 
of predictor variables (or the lack thereof) was simu- 
lated by randomly selecting between 0 and 15 vari- 
ables, using an efficient algorithm described in [5, p. 
1221. The thus selected variables were assigned the 
value 0.0, they were added to OUT, and their entry in 
E was set to -0.9. The remaining variables kept their 
original values, were added to IN, and their entry in E 
was set to +0.9. The resulting V + E were then pre- 
sented to the backnrooanation algorithm. Over 5000 
iterations were used to train each of two types of nets: 
Effect [ 11, a partially recursive net with one interme- 
diate layer, and Effect [2] a partially recursive net with 
two intermediate layers. 

Test Phase. The weights obtained during the training 
phase were validated on the test set by randomly se- 
lecting between 1 and 15 variables for inclusion in the 
OUT set, and the E set was constructed and used ex- 
actly as during the forward propagation stage in the 
training phase. Care was taken to insure that each 
variable occurred in the OUT set about 10,000 times. 

The “Control” condition was identical to the Effect 
condition with the exception that no set E was used 
during the training phase. Instead, randomly selected 
elements of OUT were simply assigned the value 0. 
That is, all results are based on a fully recursive neural 
net with 2 intermediate layers, 3 1 outputs (V’), but 
only 3 1 inputs (V). This net is referred to as Control 
PI* 
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cients of determination (i.e., Pearson r”, between the actual 
and the predicted values of the variables in V as computed 
over the cases in the test set. The values shown are the 
average over all 3 1 variables. The crucial comparison is 
between the Effect and Control models with two interme- 
diate layers. It can be seen that our basic hypothesis is sup- 
ported because the average predictive validity is consis- 
tently greater for Effect [2] than for Control [2], for OUT 
sets ranging in size from 1 to 15 unknown variables. 

i 
0 2 4 6 8 10 12 14 16 

Size of OUT set = No. Unknown Variables 

-O Effect [I] - IN variables 
-8- Effect [I] - OUT variables 
-’ Effect [2] - IN variables 
-B- Effect [2] - OUT variables 
me Control [2] - IN variables 
-e- Control [2] - OUT vanables 

Figure 2: Average Predictive Validity [Pearson r2j Over 
All 31 Variables for Effect Models [l] and [2] and Control 
Model [I] by size of OUT set. (Test data only) 
NOTE: The de$nitions of Eflect [I], EfSect [2], and Con- 
trol [2] are given in the preceding Design section. 
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The performance of Control [I] catches up for larger OUT 
sets. However, it behaves more like the simpler Effect [I] 
model for smaller OUT sets. Nearly identical findings 
were obtained when using RMS as a performance crite- 
rion. Thus, these results clearly show that the effect set E 
improved overall predictive validity. 

Although only of tangential importance for the present 
purposes, Figure 2 also shows that the predictive validity 
of Control [2] is consistently lower for IN variables 
(diamonds + dotted lines). In other words, the addition of 
the effect set E to the inputs served to minimize distortions 
in known variables in the transformation from V to V’. 

Response Curves 
Of particular interest for present validation purposes is the 
likelihood that a person will be classified correctly as ei- 
ther “low” or “high” on some dependent variable of inter- 
est based on knowledge of his or her predicted score v’. 
Because most of our variables represent binary categoriza- 
tions, a person was classified as “high ” on a variable if 
this person’s actual score exceeded 0.0, and the person 
was classified as “low” otherwise. As is customary, 
the resulting relation between the predicted and the actual 
score is assumed to follow a logistic “response” curve of 
the form: 

P(“,$igh”l v’) = (1 + em~cq*v’))w’, 

where the parameters p and q can be estimated via standard 
maximum likelihood methods. 

For instance, Figure 3 compares the performance of a 
particular variable (No. 28) under Effect [l] and Effect [2] 
as derived from about 10,000 data points generated during 
the training phase (for details see next section). Note that 
the response curve under Effect [l] (left panel) breaks 

Vanable 28 under Effect [I] 
I I 

1 

0.5 

0 

Predicted Value [VI 

- Best fitting Logistic Curve 
- - - O-znell observations 
- l - 10 c n c 101 observations 
0 - - 100 c n observations 

down over the range 0.2 < v’< 0.5. Adding an intermedi- 
ate layer greatly improves this situation as it appears that 
the Effect [2] net (right panel) smoothes the response 
curve nicely while providing a “patch” for 0.2 < v’ < 0.5. 

Three-Way Decisions. In the following, response curves 
were used to create a three-way decision scheme with ar- 
bitrary and adjustable error rates. This can be achieved by 
selecting two appropriate percentiles in the logistic curve. 
For instance, the right panel in Figure 3 shows the 40-th 
and 60-th percentiles (pa0 and PsO) of the logistic curve. By 
classifying people as “low” on Variable 28 if their pre- 
dicted score falls below PdO and as “high” if their predicted 
score exceeds PeO, a third category, “undecided, ” is defined 
for predicted scores between PdO and PeO. Naturally, the 
choice of percentiles used to define these three categories 
will depend on the nature of the application. In our case, 
PbO and PsO were deemed appropriate for all variables and 
these values were used throughout. 

To determine the viability of this approach, the fol- 
lowing experiment was performed. First, analogous to the 
procedure described in the design section, ihe training data 
set and the connection weights from the training phase 
were used to generate predictions from randomly con- 
structed OUT sets (and corresponding E sets) with be- 
tween 0 and 15 unknown variables. The known classiflca- 
tions and their corresponding predicted values v’ were 
used to generate logistic parameters p and q for all vari- 
ables, using about 10,000 observations per variable. Sec- 
ond, the thus obtained parameters p and q, as well as the 
already existing connection weights, were then used to 
generate predictions over the test data set. In particular, 
randomly constructed OUT sets (and corresponding E 
sets) were used with between 1 and 15 unknown variables. 
Each prediction v’ was then classified as “low,” “unde- 
cided,” or “high” depending on the values of P40 and P . 

60 

Vanable 28 under Effect [2] 
I II I 

PredicledValua Iv1 

Figure 3: Best Fitting Two Parameter Logistic Curve and Actual Observations for Variable 28 Under EfSect [I] and 
Effect [2]. (‘NOTE: Training data only). 
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Figure 4: Proportion of Erroneous ClassiJications and the Predictive Vaiidity ofAlI 31 Variables Ordered by Their /z 
CoefJicients for Eflect [I] and Effect [2]. (Test data). 

Because our main interest concerns the correctness of the 
classification as either “low,” “undecided,” or “high,” 
predictive validity cannot be determined via Pearson cor- 
relation’s or RMS values. Instead, the directional and 
non-parametric h coefficient was used. The value of this 
coefficient can be interpreted directly as the proportional 
increase in classification correctness as the result of 
knowing the predicted value v’. Figure 4 shows the h val- 
ues for all 3 1 variables under Effect [l] and Effect [2] 
averaged over the 15 OUT conditions and ordered by the 
combined h magnitudes. It can be seen that the predict- . . . . 
ability increased by more than 50% for 25 out of the 3 i 
variables, but that the leftmost few variables performed 
very poorly. It should be pointed out, however, that the 
low h values occur mainly for variables showing little 
variation. Because such variables can be predicted relia- 
bly from their modal values, the overall error rate remains 
relatively low (n/i = 0.091). In fact, the solid line in Figure 
4 indicates that only one variable (the second worst) has 
an overall error rate in excess of 0.3. 

Highlv similar conclusions were obtained from an ---~---, --~~~~~ 
analysis of the error rates for the individual categorization 
as either “low,” or “high.” Figure 5 shows the average 
probability of being classified as “high” given that v’ > 
Pso (solid curves), or that v’ < PA0 (dotted curves). It can 
be seen that all but the first three variables perform very 
satisfactory. 

A Comparison of Effect [l] vs. Effect [2] 
Throughout the preceding, Effect [2] was slightly supe- 
rior to Effect [l] in various respects. For instance, Figure 

4 (top row) indicates that Effect [2] yielded higher h val- 
ues for 24 of the 3 1 variables (A4 = 0.655 VS. A4 = 0.617). 
Also, Effect [2] resulted in slightly more correct overall 
classifications (A4 = 0.913) than Effect [l] (M = 0.904). 
Although the overall differences are very small, the addi- 
tion of an intermediate layer had important consequences 
for some individual variables, as indicated by a detailed 
analysis of the relation between h and the size of OUT for 
all 3 1 variables. Due to space limitations, Figure 6 shows 
this relation only for the “worst” performing variable 
(leftmost in Figures 4 and 5), the “best” performing vari- 
able (rightmost in Figures 4 and 5 j, and one ‘&inter- 
mediate” performing variable (the fourth in Figures 4 and 
5). It can be seen that the “best” variable does not benefit 
from the additional intermediate layer, 

1 

s 

E 
05 

____------- ----------------+ 

"0 5 10 15 20 25 30 
Vadables Oldered by Lambda 

-@ Effect [I]: P(Hfgh) when “IoW 
+ Effect [I]’ P(HIgh) when “high’ 
-If Effect [2]: P(High) when “low” 
* Effect [2]. P(High) when “high” 

Figure 5: Proportion “High” Classifications for Actually 
‘High I9 or “Low” Cases Averaged Over OUT Sets of Size 
0 to 15. (Test da?a). 
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Figure 6: Predictive Validity A of Three Variables as a Function of the Size of OUTfor EfSect [l] and Efect [2] (Test data). 

and that the improvement for the worst variable is limited 
to small OUT sets. However, the “intermediate” variable 
shows dramatic improvements over the entire range. It is 
recommended therefore that the decision concerning the 
desired number of intermediate layers should take the per- 
formance of individual variables into account, and that it 
should not solely be based on overall performance indices. 

Discussion 

The results presented in this paper strongly support the 
weighted effects approach since it proved possible to find a 
single framework to accommodate prediction in situations 
with varying numbers of dependent and independent vari- 
ables. In addition, the case study indicated that the method 
is sufficiently flexible and powerful for practical applica- 
tion, and the current results have already led to new re- 
search in psychology and criminology. Further, given that 
all information is contained in the net’s connection 
weights, it is possible to provide predictions without hav- 
ing to provide access to the original data set. For this rea- 
son, research is currently underway to provide an expert 
svstem tvue user interface similar to MACIE [4]. -,-~---- -,I 

Additional study of the weighted effect approach 
seems desirable. For instance, it is not clear whether 

the present training approach is optimal or whether more 
efficient “training schedules” exist. Also, currently the net 
is used for all learning that takes place. It seems desirable, 
however, to be able to separate the learning associated with 
the effect set E from that associated with V in applications 
containing higher order interaction effects. 

Finally, the author feels that further development 
might benefit from more detailed analyses of the statistical 
rationale underlying the weighted effect approach as this 
might lead to increased control over the quality of predic- 
tion. 
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