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Abstract 

In interactive data mining it is advantageous to 
have condensed representations of data that can 
be used to efficiently answer different queries. In 
this paper we show how frequent sets can be used 
as a condensed representation for answering vari- 
ous types of queries. 
Given a table r with O/i vaiues and a threshoid 6, 

a frequent set of r is a set X of columns of r such 
that at least a fraction u of the rows of r have a 1 
in all the columns of X. Finding frequent sets is 
a first step in finding association rules, and there 
exists several efficient algorithms for &ding the 
frequent sets. We show that frequent sets have 
wider applications than just finding association 
rules. 
We show that using the inclusion-exclusion prin- 
ciple one can obtain approximate confidences of 
arbitrary boolean rules. We derive bounds for the 
errors in the confidences, and show that informa- 
tion collected during the computation of frequent, 
sets can also be used to provide individual error 
bounds for each clause. Experiments show that 
this method enables one to obtain different forms 
-c-..I-_ c---- 3-L. -..I.---,-. r--l. T\.-rl-------~- UI ~ue8 1r0m ua~a exu-errmy lab. rur~nermore, 
we define a general notion of condensed repres- 
entations, and show that frequent sets, samples 
and the data cube can be viewed as instantations 
of this concept. 

Intro duction 

Knowledge discovery in databases is an interactive pro- 
cess: one has to be able to look at the data from several 
different angles, For large data sets, it is not efficient 
to go back and read the data every time the user wants 
to see something new from it. A condenced represent- 
ation of the data for answering most of the needs of the 
user would be very useful. 

One of the most researched areas in data mining is 
the problem of finding association rules from binary 
data (Agrawal, Imielinski, & Swami 1993; Houtsma & 
Swami 1993; Klemettinen et al. 1994; Han &L Fu 1995; 

Holsheimer et al. 1995; Park, Chen, & Yu 1995; Savas- 
ere, Omiecinski, & Navathe 1995; Srikant & Agrawal 
1995; Agrawal et al. 1996; Srikant & Agrawal 1996; 
Toivonen 1996). Assuming we have a relation (table) 
with O/l-valued attributes R, an association rule is an 
expression X + Y, where X, Y C R. The meaning 
of such a rule is that whenever a row has a 1 in all 
the columns of X, it tends to have a i aiso in all the 
columns of Y. l 

The algorithms for finding association rules all pro- 
ceed by first finding frequent sets, i.e., sets X of at- 
tributes such that there are sufficiently many rows con- 
taining a 1 in each column of X. From the number 
of such rows it is easy to compute the confidences of 
association rules. 

In this paper we consider additional uses for fre- 
quent set,s. We show that the collection of frequent 
sets can actually serve as a condensed representation of 
the input data for rules with disjunction and negation, 
a much larger class of rules than simple association 
rules. These simple observations lead to a consider- 
able widenine in the use of frenuent sets: Fxneriments .----~~cI --- .--- x-d--1 -Jml-- __..- 4_..- 
show that this method enables one to obtain generalized 
rules from data extremely fast. 

We analyze formally the use of frequent sets in an- 
swering queries concerning complex rules. Our basic 
tool is the inclusion-exclusion principle. The frequent 
sets provide some of the terms of this sum. Using the 
concept of the border of the collection of frequent sets, 
we are able to derive bounds on the error caused by 
omitting the rest of the terms. 

Finally, we consider the general theory of condensed 
representations of data. We define what it means for 
one class of structures to serve as a representation for 
another with respect to a class of queries. We dis- 

‘Note that the input data need not be explicitly in O/l 
form: one can just as well consider association rules based 
on derived attributes. For example, if the relation contains 
the attribute Age, one can look for rules containing derived 
binary attributes such as “Age 5 40”. 
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cuss how the use of frequent sets, samples and the data 
cube (Gray et al. 1996) can be viewed as instances 
of this general concept. Our concept can be viewed 
as a generalization of the notion of &-approximations 
from computational geometry (Haussler & Welzl 1987; 
Mulmuley 1993). 

General rules and frequent sets 
In this section we describe a simple and basically well- 
known rule formalism of general boolean rules, show 
that knowledge of the frequencies of sets is sufficient to 
determine rule confidences, and give some examples. 

Given a set R of O/l-valued attributes R, a boolean 
formula over R is a formula ‘p built from the atomic 
formulae A = 0 and A = 1, where A E R, using the 
connectives A, V, and 1, and parent(hesis. Given a O/l 
relation T with attributes R, the frequency s(p, T) of ‘p 
in r is 

I{t E r 1 ‘p is true of t}l 

14 ’ 
i.e., the fraction of rows where ‘p holds. 

We introduce some shorthand notations for having 
aii or at least one attribute of a set X equal to i: For 
X = {A1,...,Ak} we denote a(X,r) = s(Al = 1 A 
. . . A & = 1) and o(X, r) = s(Al = 1 V . . . V Ak = 1); 
we simply use notations a(X) and o(X) if the relation 
is clear from the context. 

A boolean rule over R is an expression of the form 
‘p + $, where ‘p and II, are boolean formulae. The 
confidence of the rule is s(cp A $)/S(P). 

The following proposition is of course well-known. 

Proposition 1 For all .boolean formulae ‘p over R 
there exists sets Wi, . . . , W, 2 R, and coefficients 
el,...,e, E (-1, +l} such that for all relations T 

cl 

That is, knowing the special terms a(X, T) is suffi- 
cient, to determine the number of rows satisfying any 
boolean formula, and hence also the confidence of any 
boolean rule. 

Example 2 We give some examples of boolean rules 
and how their confidences can be expressed in terms of 
the fm=nllcnAcx nf mninnrtinnc UllY L’uyu”‘.A”‘v” “I ““‘A,) U1AU”I”II”. 

An assoczatzon rule has the form X +- Y, where 
X, Y C R, and the confidence is defined to be a(X U 
Y)/aW). 

A rule with disjunctrue rzght-hand sade has the form 
X + Y V 2 and expresses that if a row t E r has a 1 in 

each column of X, then it has a 1 in each column of Y 
or in each column of 2. The confidence of the rule is 

a(XUY)+a(XUZ)-a(XUYUZ) 

4-9 

Similarly, we can write a rule with a dzsjunctive left- 
hand szde: X V Y + 2. The rule states that if a row 
t E r has a 1 in each column of X or in each column of 
Y, then it has a 1 in each column of 2. The confidence 
of the rule is 

a(XUZ)+a(YUZ)-a(XUYUZ) 
a(X) + a(Y) - a(X U Y) ’ 

Rules can also have negation in the left-hand side, as 
in X A 1Y + 2. This means that if a row t E r has a 
1 in each column of X and does not have a 1 in each 
column of Y, then it has a 1 in each column of 2. The 
confidence of such a rule is 

a(X U 2) - a(X U Y U 2) 
a(X) - a(X u Y) . 

Negatzon an the rpght-hand side is just as easy. The 
rnnfirlmr~ nf FI nlle nf f.hr= fnrm K + T/ A 7 iQ w .,IAA &uIAAv” -* - &..-” ..& “AL- ~..~,.~. -& - * ,,-ld .- 

a(XUY)-a(XUYUZ) 

4X) 

Example 3 One of our example data sets T is an en- 
rollment database of courses in computer science. The 
data set consists of registration information of 4734 
students. There is a row per student, containing the 
courses the student has registered for. On average, 
a row has 4 courses. The total number of courses 
is 127. We first discovered all sets X of courses with 
a(X, r) 2 0.05. The number of frequent sets is 489. We 
then computed association rules, rules with disjunc- 
tions (two disjuncts) on the left or on the right-hand 
side, and rules with negations, and then used some 
simple selection tools to locate interesting rules from 
these sets. 

While already association rules produce lots of in- 
teresting and sometimes even surprising information 
about the data set, looking for more complex rules 
makes it possible to locate more subtle phenomena. For 
example, we can notice that the confidences of many 
rules of the form 

X j C programming V C and Unix 

have significantly higher confidences than the indi- 
vidual rules 

X * C programmang 
X + C and Unix. 
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qxr) I w c R) and the disjunctzve queries Qv = 
U&V :r*o(W,r)jW~R}. 

An e-adequate representataon for S with respect to 
e is a class R = {ri ( i E I} of structures and a query 
evaluation function m : &J x R + [0, I] such that for all 
Q E & and .sa E S we have 

IQ(%) - m(Q, Till 5 E. 

The data cube (Gray et al. 1996) is a recently in- 
traduced summarizing representation for relations with 
arbitrary values. Using the concepts above, the data 
cube is O-adequate representation for the class of quer- 
ies containing all aggregate functions. An interesting 
possibility is to diminish the space and time complexity 
of the data cube by allowing some error. It seems that 
this can be accomplished by using a similar strategy as 

That is, the values of queries from g on any structure 
from S can be evaluated using the corresponding rep- 
resentation from R and the query evaluation function 
m. 

Example 10 Consider as the class of structures S~,si 
the class of all O/l relations over the set of attributes 
R. Consider the query class Qr, = {Qw ] W 2 R}, 
where for s E S~,sl we have Qw(s) = u(W,s), i.e., 
the fraction of rows of s such that the row has a 1 
in each column of W. Then the collection { Fr(s, E) I 
s E S~,ei} of the frequent sets of s, for each s E S~,si, 
provides an &-adequate representation of S~,si with re- 
spect to &*. 

For the telecommunications alarm database we have 
n nnni-,A,,-...,t, ronrooontot;nn th,t ,,,,;,t, -irr nf a “.“““r-au~yucb”b rb~r~uxzllu~ur”rr “IIcb” l.“IIUIU”U “ll,J “I 

128 sets. In the case of our course enrollment data- 
base r the size of a 0.05-adequate representation is 
(Fr(r, 0.05) ( = 489 sets. Note that the number of fre- 
quent sets does not depend on the number of rows in 
the database. 0 

The notion of an s-adequate representation is very 
closely related to the concept of E-approximations 
and s-nets widely used in computational geometry 
(Haussler & Welzl 1987; Mulmuley 1993). Roughly, 
given a set N and a collection S of subsets of N, an 
s-approximation is a subset M C N such that for each 
X E S we have 

lIxw 
IMI 

IXII <E 
INI - ’ 

Thus an s-approximation is a subset that gives a good 
estimate of the sizes of all subsets in S. The s-adequate 
representations differ in two respects: the representa- 
tion does not have to be of the same form as the ori- 
ginal data, and we have additionally required that such 
representations exist for every structure in a class of 
structures. Still, the results on s-approximations help 
in obtaining results about adequate representations. 

The existence result for s-approximations was proved 
by Vapnik and Chervonenkis, and the sizes of such 
approximations are naturally connected with the VC- 
dimension (Vapnik 1982) One can show that samples 
provide an s-adequate representation for finite query 
classes. 

in the computation of frequent sets, 
The preceding discussion of adequate representations 

is quite tentative: the usefulness of the notion has yet to 
be conclusive demonstrated. It seems to us, however, 
that this concept could serve as a unifying point of view 
to look at several different types of approximat,e ways 
of representing information. 

Conclusions 

We have shown how the collection of frequent sets can 
be used as a condensed representation for a relation 
with O/l values. The collection makes it possible to 
approximate the confidences of arbitrary boolean rules. 
We have given a strong theorem about the sizes of er- 
rors caused by the approximation using the concept 
of the border of the frequent sets, and have given ex- 
perimental evidence that the bound is typically ex- 
tremely good. We h ave also outlined a possible ap- 
proach to a general theory of condensed representations 
and showed how frequent sets, sampling, and also the 
data cube can be viewed as instances of this concept. 

There are several open questions. On the theoretical 
side, the development of the general notions of con- 
densed representation seems useful. From the practical 
point of view, a more thorough investigation on t,he ac- 
tual sizes of the errors in the approximations could be 
worthwhile. 
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