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Abstract 

Naive-Bayes induction algorithms were previously 
shown to be surprisingly accurate on many classifi- 
cation tasks even when the conditional independence 
assumption on which they are based is violated. How- 
ever, most studies were done on small databases. We 
show that in some larger databases, the accuracy of 
Naive-Bayes does not scale up as well as decision trees. 
We then propose a new algorithm, NBTree, which in- 
duces a hybrid of decision-tree classifiers and Naive- 
Bayes classifiers: the decision-tree nodes contain uni- 
variate splits as regular decision-trees, but the leaves 
contain Naive-Bayesian classifiers. The approach re- 
tains the interpretability of Naive-Bayes and decision 
trees, while resulting in classifiers that frequently out- 
perform both constituents, especially in the larger 
databases tested. 

Int reduction 
Seeing the future first requires not only a wide-angle 

lens, it requires a multiplicity of lenses 
-Hamel &Y Prahalad (1994), p. 95 

Many data mining tasks require classification of data 
into classes. For example, loan applications can be 
classified into either ‘approve’ or ‘disapprove’ classes. 
A clcsssifier provides a function that maps (classifies) 
a data item (instance) into one of several predefined 
classes (Fayyad, Piatetsky-Shapiro, & Smyth 1996). 
The automatic induction of classifiers from data not 
only provides a classifier that can be used to map new 
instances into their classes, but may also provide a 
human-comprehensible characterization of the classes. 
In many cases, interpretability-the ability to under- 
stand the output of the induction algorithm-is a cru- 
cial step in the design and analysis cycle. Some clas- 
sifiers are naturally easier to interpret than others; for 
example, decision-trees (Quinlan 1993) are easy to vi- 
sualize, while neural-networks aTe much harder. 

Naive-Bayes classifiers (Langley, Iba, & Thompson 
1992) are generally easy to understand and the in- 
duction of these classifiers is extremely fast, requiring 
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only a single pass through the data if all attributes 
are discrete. Naive-Bayes classifiers are also very sim- 
ple and easy to understand. Kononenko (1993) wrote 
that physicians found the induced classifiers easy to 
understand when the log probabilities were presented 
as evidence that adds up in favor of different classes. 

Figure 1 shows a visualization of the Naive-Bayes 
classifier for Fisher’s Iris data set, where the task is 
to determine the type of iris based on four attributes. 
Each bar represents evidence for a given class and at- 
tribute value. Users can immediately see that all values 
for petal-width and petal length are excellent deter- 
miners, while the middle range (2.95-3.35) for sepal- 
width adds little evidence in favor of one class or an- 
other. 

Naive-Bayesian classifiers are very robust to irrele- 
vant attributes, and classification takes into account 
evidence from many attributes to make the final pre- 
diction, a property that is useful in many cases where 
there is no “main effect.” On the downside, Naive- 
Bayes classifiers require making strong independence 
assumptions and when these are violated, the achiev- 
able accuracy may asymptote early and will not im- 
prove much as the database size increases. 

Decision-tree classifiers are also fast and comprehen- 
sible, but current induction methods based on recursive 
partitioning suffer from the fragmentation problem: as 
each split is made, the data is split based on the test 
and after two dozen levels there is usually very little 
data on which to base decisions. 

In this paper we describe a hybrid approach that 
attempts to utilize the advantages of both decision- 
trees (i.e., segmentation) and Naive-Bayes (evidence 
accumulation from multiple attributes). A decision- 
tree is built with univariate splits at each node, but 
with Naive-Bayes classifiers at the leaves. The final 
classifier resembles Utgoff’s Perceptron trees (Utgoff 
1988), but the induction process is very different and 
geared toward larger datasets. 

The resulting classifier is as easy to interpret as 
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decision-trees and Naive-Bayes. The decision-tree seg- 
ments the data, a task that is consider an essential part 
of the data mining process in large databases (Brach- 
man & Anand 1996). Each segment of the data, rep- 
resented by a leaf, is described through a Naive-Bayes 
classifier. As will be shown later, the induction algo- 
rithm segments the data so that the conditional in- 
dependence assu.mptions required for Naive-Bayes are 
likely to be true. 

The Induction Algorithms 

We briefly review methods for induction of decision- 
trees and Naive-Bayes. 

Decision-tree (Quinlan 1993; Breiman et al. 1984) 
are commonly built by recursive partitioning. A uni- 
variate (single attribute) split is chosen for the root 
of the tree using some criterion (e.g., mutual infor- 
mation, gain-ratio, gini index). The data is then di- 
vided according to the test, and the process repeats 
recursively for each child. After a full tree is built, a 
pruning step is executed, which reduces the tree size. 
In the experiments, we compared our results with the 
C4.5 decision-tree induction algorithm (Quinlan 1993), 
which is a stateof-the-art algorithm. 

Naive-Bayes (Good 1965; Langley, Iba, & Thomp- 
son 1992) uses Bayes rule to compute the probabil- 
ity of each class given the instance, assuming the at- 
tributes are conditionally independent given the la- 
bel. The version of Naive-Bayes we use in our ex- 
periments was implemented in MCC++ (Kohavi et 
al. 1994). The data is pre-discretized using the 
an entropy-based algorithm (Fayyad & Irani 1993; 
Dougherty, Kohavi, & Sahami 1995). The probabil- 
ities are estimated directly from data based directly 
on counts (without any corrections, such as Laplace or 
m-estimates). 

Accuracy Scale-Up: the Learning 
Curves 

A Naive-Bayes classifier requires estimation of the con- 
ditional probabilities for each attribute value given the 
label. For discrete data, because only few parameters 
need to be estimated, the estimates tend to stabilize 
quickly and more data does not change the underly- 
ing model much. With continuous attributes, the dis- 
cretization is likely to form more intervals as more data 
is available, thus increasing the representation power. 
However, even with continuous data, the discretization 
is global and cannot take into account attribute inter- 
actions. 

Decision-trees are non-parametric estimators and 
can approximate any “reasonable” function as the 
database size grows (Gordon & Olshen 1984). This 
theoretical result, however, may not be very comfort- 
ing if the database size required to reach the asymp- 
totic performance is more than the number of atoms 
in the universe, as is sometimes the case. In practice, 
some parametric estimators, such as Naive-Bayes, may 
perform better. 

Figure 2 shows learning curves for both algorithms 
on large datasets from the UC Irvine repository1 (Mur- 
phy & Aha 1996). The learning curves show how the 
accuracy changes as more instances (training data) are 
shown to the algorithm. The accuracy is computed 
based on the data not used for training, so it repre- 
sents the true generalization accuracy. Each point was 
computed as an average of 20 runs of the algorithm, 
and 20 intervals were used. The error bars show 95% 
confidence intervals on the accuracy, based on the left- 
out sample. 

In most cases it is clear that even with much more 

‘The Adult dataset is from the Census bureau and the 
task is to predict whether a given adult makes more than 
$50,000 a year based attributes such as education, hours of 
work per week, etc.. 
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Figure 2: Learning curves for Naive-Bayes and  C4.5. The top three graphs show datasets where Naive-Bayes outperformed 
C4.5, and  the lower six graphs show datasets where C4.5 outperformed Naive-Bayes. The error bars are 95% conf idence 
intervals on  the accuracy. 

data, the learning curves will not cross. While it is 
well known that no algorithm can outperform all others 
in all cases (Wolpert 1994), our world does tend to 
have some smoothness conditions and algorithms can 
be more successful than others in practice. In the next 
section we show that a hybrid approach can improve 
both algorithms in important practical datasets. 

NBTree: The Hybrid Algorithm 

The NBTree algorithm we propose is shown in Fig- 
ure 3. The algorithm is similar to the classical recur- 
sive partitioning schemes, except that the leaf nodes 
created are Naive-Bayes categorizers instead of nodes 
predicting a single class. 

fold cross-validation accuracy estimate of using Naive- 
Bayes at the node. The utility of a split is the weighted 
sum of the utility of the nodes, where the weight given 
to a node is proportional to the number of instances 
that go  down to that node.  

Intuitively, we are attempting to approximate 
whether the generalization accuracy for a Naive-Bayes 
classifier at each leaf is higher than a  single Naive- 
Bayes classifier at the current node. To avoid splits 
with little value, we define a split to be significant if 
the relative (not absolute) reduction in error is greater 
than 5% and there are at least 30 instances in the node. 

A threshold for continuous attributes is chosen us- 
ing the standard entropy minimization technique, as is 
done for decision-trees. The utility of a node is com- 
puted by discretizing the data and computing the 5- 

Direct use of cross-validation to select attributes has 
not been commonly used because of the large overhead 
involved in using it in general.  However, if the data is 
discretized, Naive-Bayes can be cross-validated in time 
that is l inear in the number  of instances, number  of 
attributes, and  number  of label values. The reason is 
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Input: a set 2’ of labelled instances. 
Output: a decision-tree with naive-bayes categorizers at 
the leaves. 

1. 

2. 

3. 

4. 

5. 

For each attribute Xi, evaluate the utility, u(Xi), of 
a split on attribute Xi. For continuous attributes, a 
threshold is also found at this stage. 
Let j = argmaxi(ui), i.e., the attribute with the highest 
utility. 
If uj is not significantly better than the utility of the cur- 
rent node, create a Naive-Bayes classifier for the current 
node and return. 
Partition T according to the test on Xj. If Xj is con- 
tinuous, a threshold split is used; if Xj is discrete, a 
multi-way split is made for ail possible values. 
For each child, call the algorithm recursively on the por- 
tion of T that matches the test leading to the child. 

Figure 3: The NBTree algorithm. The utility u(Xi) is 
described in the text. 

that we can remove the instances, update the counters, 
classify them, and repeat for a different set of instances. 
See Kohavi (1995) for details. 

Given m  instances, n attributes, and e label values, 
the complexity of the attribute selection phase for dis- 
cretized attributes is O(m s n2 . e). If the number of 
attributes is less than O(logm), which is usually the 
case, and the number of labels is small, then the time 
spent on attribute selection using cross-validation is 
less than the time spent sorting the instances by each 
attribute. We can thus expect NBTree to scale up well 
to large databases. 

Experiments 
To evaluate the NBTree algorithm we used a large set 
of files from the UC Irvine repository. Table 1 de- 
scribes the characteristics of the data. Artificial files 
(e.g., monkl) were evaluated on the whole space of pos- 
sible values; files with over 3,000 instances were evalu- 
ated on a left out sample which is of size one third of 
the data, unless a specific test set came with the data 
(e.g., shuttle, DNA, satimage); other files were evalu- 
ated using lo-fold cross-validation. C4.5 has a complex 
mechanism for dealing with unknown values. To elim- 
inate the effects of unknown values, we have removed 
all instances with unknown values from the datasets 
prior to the experiments. 

Figure 4 shows the absolute differences between the 
accuracies for C4.5, Naive-Bayes, and NBTree. Each 
line represents the accuracy difference for NBTree and 
one of the two other methods. The average accuracy 
for C4.5 is 81.91%, for Naive-Bayes it is 81.69%, and 

for NBTree it is 84.47%. 
Absolute differences do not tell the whole story be- 

cause the accuracies may be close to 100% in some 
cases. Increasing the accuracy of medical diagnosis 
from 98% to 99% may cut costs by half because the 
number of errors is halved. Figure 5 shows the ratio 
of errors (where error is lOO%-accuracy). The shuttle 
dataset, which is the largest dataset tested, has only 
0.04% absolute difference between NBTree and C4.5, 
but the error decreases from 0.05% to O.Ol%, which is 
a huge relative improvement. 

The number of nodes induced by NBTree was in 
many cases significantly smaller than that of C4.5. 
For example, for the letter dataset, C4.5 induced 2109 
nodes while NBTree induced only 251; in the adult 
dataset, C4.5 induced 2213 nodes while NBTree in- 
duced only 137; for DNA, C4.5 induced 131 nodes and 
NBTree induced 3; for led24, C4.5 induced 49 nodes, 
while NBTree used a single node. While the complex- 
ity of each leaf in NBTree is higher, ordinary trees with 
thousands of nodes could be extremely hard to inter- 
pret. 

Related Work 
Many attempts have been made to extend Naive-Bayes 
or to restrict the learning of general Bayesian networks. 
Approaches based on feature subset selection may help, 
but they cannot increase the representation power as 
w&s done here, thus we will not review them. 

Kononenko (1991) attempted to join pairs of at- 
tributes (make a cross-product attribute) based on sta- 
tistical tests for independence. Experimentation re- 
sults were very disappointing. Pazzani (1995) searched 
for attributes to join based on cross-validation esti- 
mates. 

Recently, Friedman & Goldszmidt (1996) showed 
how to learn a Tree Augmented Naive-Bayes (TAN), 
which is a Bayes network restricted to a tree topology. 
The results are promising and running times should 
scale up, but the approach is still restrictive. For ex- 
ample; their accuracy for the Chess dataset, which con- 
tains high-order interactions is about 93%, much lower 
then C4.5 and NBTree, which achieve accuracies above 
99%. 

Conclusions 
We have described a new algorithm, NBTree, which is 
a hybrid approach suitable in learning scenarios when 
many attributes are likely to be relevant for a clas- 
sification task, yet the attributes are not necessarily 
conditionally independent given the label. 

NBTree induces highly accurate classifiers in prac- 
tice, significantly improving upon both its constituents 
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Dataset No Train Test 
attrs size size 

adult 14 30,162 15,060 
chess 36 2,130 1,066 
DNA 180 2,000 1,186 
glass 9 214 CV-10 
ionosphere 34 351 cv-10 
letter 16 15,000 5,000 
pima 8 768 CV-10 
segment 19 2,310 CV-10 
tic-tat-toe 9 958 CV-10 
vote1 15 435 cv-10 

Dataset 

breast (LI 

No Train Test 
attrs size size 

9 277 CV-10 
\  I  

cleve 
flare 
glass2 
iris 
monk1 
primary-tumor 
shuttle 
vehicle 
waveform-40 

13 296 CV-10 
10 1,066 cv-10 

9 163 CV-10 
4 150 cv-10 
6 124 432 

17 132 CV-10 
9 43,500 14,500 

18 846 CV-10 
40 300 4,700 

Dataset 

breast (W) 

No Train Test 
attrs size size 

10 683 CV-10 

,. 
,/ 

“/ 
.’ 

\  I  

crx 15 653 CV-10 
german 20 1,000 cv-10 
heart 13 270 CV-10 
led24 24 200 3000 
mushroom 22 5,644 3,803 
satimage 36 4,435 2,000 
soybean-large 35 562 CV-10 
vote 16 435 cv-10 

Table 1: The datasets used, the number of attributes, and the training/test-set sizes (CV-10 denotes lo-fold 
cross-validation was used). 

Figure 4: The accuracy differences. One line represents the accuracy difference between NBTree and C4.5 and the 
other between NBTree and Naive-Bayes. Points above the zero show improvements. The files are sorted by the 
difference of the two lines so that they cross once. 

NBTree/ C4.5 

n NBTreel NB 

Figure 5: The error ratios of NBTree to C4.5 and Naive-Bayes. Values less than one indicate improvement. 
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in many cases. Although no classifier can outper- 
form others in all domains, NBTree seems to work 
well on real-world datasets we tested and it scales up 
well in terms of its accuracy. In fact, for the three 
datasets over 10,000 instances (adult, letter, shuttle), 
it outperformed both C4.5 and Naive-Bayes. Running 
time is longer than for decision-trees and Naive-Bayes 
alone, but the dependence on the number of instances 
for creating a split is the same as for decision-trees, 
O(m log m), indicating that the running time can scale 
up well. 

Interpretability is an important issue in data min- 
ing applications. NBTree segments the data using a 
univariate decision-tree, making the segmentation easy 
to understand. Each leaf is a Naive-Bayes classifiers, 
which can also be easily understood when displayed 
graphically, as shown in Figure 1. The number of 
nodes induced by NBTree was in many cases signifi- 
cantly smaller than that of C4.5. 
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