
Extensibility in data mining systems

Stefan Wrobel and Dietrich Wettschereck and Edgar Sommer and Werner Emde

GMD, FIT.KI
(Institute of Applied Information Technology, Artificial Intelligence Research Division)

Schlofi Birlinghoven, 53754 Sankt Augustin, Germany
E-Mail stefan.wrobel@gmd.de

Abstract

The successfulapplication of data mining techniques ideally
requires both system support for the entire knowledge dis-
covery process and the right analysis algorithms for the par-
ticular task at hand. While there are a number of successful
data mining systems that support the entire mining process,
they usually are limited to a fixed selection of analysis algo-
rithms. In this paper, we argue in favor of extensibility as a
key feature of data mining systems, and discuss the require-
ments that this entails for system architecture. We identify in
which points existing data mining systems fail to meet these
requirements, and then describe a new integration architec-
ture for data mining systems that addresses these problems
based on the concept of “plug-ins”. KEPLER, our data mining
system built according to this architecture, is presented and
discussed.

Keywords: data mining, system architecture, extensibil-
ity, J&PLER

Introduction
Data Mining, or Knowledge Discovery in Databases (KDD)
aims at finding novel, interesting, and useful information
in large real-world datasets (Frawley, Piatetsky-Shapiro, &
Matheus 1991; Fayyad, Piatetsky-Shapiro, & Smyth 1996).
While building on parent disciplines such as MachineLearn-
ing and statistics, the field of data mining differs from
these in its stronger orientation to applications on real-world
databases. In Machine Learning and statistics, the focus of
research tends to be mostly on the methods for data analysis,
whereas in data mining, the process of using such methods
to arrive at convincing application results is just as impor-
tant a topic1 . For data mining to be successful in practice,
good system support for the data mining process can be just
as crucial as having the right analysis methods.

Data mining researchers have responded to this challenge
by creating data mining systems that combine support for all
steps of the data mining process (Fayyad, Piatetsky-Shapiro,
& Smyth 1996, p. 10) with a fixed selection of analysis
algorithms in one integrated environment. 1%‘~ Clemen-
tine (Integral Solutions Ltd. 1996) and Lockheed’s Recon
(Simoudis, Livezey, & Kerber 1996) are two commercially

lIn fact, some authors reserve the term KDD to denote the
entire process, whereas data mining is used to refer to a single
analysis step (Fayyad, Piatetsky-Shapiro, & Smyth 1996).

214 KDD-96

available examples of such systems, the former offering de-
cision trees and neural networks, the latter also including
clustering and instance-based algorithms. At the same time,
however, with more and more reported applications of data
mining, it is becoming increasingly clear that there can never
be a fixed arsenal of data mining analysis methods that cov-
ers all problems and tasks. New methods are continually be-
coming available, and in many cases, algorithms are adapted
or newly developed specifically for the requirements of
a particular application (see e.g. (Apte & Hong 1996;
Ezawa & Norton 1995)).

In this paper, we examine extensibility, i.e., the capability
of integrating new analysis methods with as little effort as
possible, as a central requirement for data mining systems
to address the above problem. In the following section, we
motivate the need for extensiblity with reference to the dy-
namic nature of the data mining process, and examine the
shortcomings of existing data mining architectures in light
of extensibility requirements. We then show how an archi-
tecture based on the concept of “plug-ins” can overcome
these problems, and describe KEPLER, an integrated data
mining system developed and implemented as a testbed for
our architectural concepts. After an evaluation and discus-
sion of related work, we conclude with pointers to future
work.

Motivation and goals of extensibility
Conducting KDD in a given database or set of databases
is still an art, perhaps even more so than in KDD’s parent
disciplines machine learning and statistics. Even in the
unlikely situation that there are clear-cut goals at the outset,
it is impossible even for a skilled analyst to predict just which
analysis method will give the best results. More likely, the
goals of data mining will not be clear beforehand, but will
evolve as a result of the data mining process. In practice,
this means that in many situations, several methods are tried
and their results compared or combined to get the desired
results. In some situations, algorithms have actually been
adapted or developed for a particular application (see e.g.
(Apte & Hong 1996; Ezawa & Norton 1995)).

When single-strategy data mining systems are employed,
the above means that in many cases, analysts will have
to switch from one system to another during the course
of working on one data mining problem, incurring all the
trivial but extremely time-consuming problems of adapting

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

1996) where several modules are linked to a data server.
Micro-level integration is only beginning to be attempted,
e.g. in the KESO project, where all search modules use a
common hypothesis space manager and can share descrip-
tion generation operators (Wrobel et al. 1996).

Clearly, it is difficult to make a micro-level integration ar-
chitecture extensible in the sense defined above, since to in-
tegrate a new method, the internals of existing methods and
the system kernel must be known. The architecture we have
chosen is therefore based on macro-level integration. Each
tool that is part of the system is an independent software
module and can be realized e.g. in different programming
languages. To reach the extensibility goal defined above,
we have extended the macro-level integration architecture
into the plug-in architecture shown in Figure 1.

to different user interfaces and converting data and results
back and forth. While existing multi-strategy systems like
RECON (Simoudis, Livezey, & Kerber 1996) or CLEMEN-
TINE (Integral Solutions Ltd. 1996) alleviate this problem
somewhat by offering multiple analysis algorithms (see re-
lated work section below), they still offer a fixed choice of
algorithms, leaving the unsolved problem of what to do if
the necessary method happens not to be included. Only an
extensible system architecture can solve this problem in a
fundamental way, allowing new methods to be added to the
system whenever required.

Of course, in a trivial way, every system is extensible by
reprogramming the system to implement a desired method,
so we need to be more precise in the meaning of extensi-
bility. An extensible system is a system into which new
methods can be integrated without knowledge of system
internals and without reprogramming of the system kernel,
by people other than the system developers. If a system
is extensible in this fashion, different users can extend the
system to match the requirements of individual data mining
problems. In practice, even though end users will not be
able to perform such extensions since some configuration
and programming will be required, the concept of exten-
sibility is important for skilled analysts who can integrate
new methods without having to switch systems, or for algo-
rithm developers who can make their methods available to
end users without having to develop a complete data mining
system.

Finally, for extensibility to make sense, it is not sufficient
to integrate new methods each with their own user interfaces
and different ways of starting tasks and looking at results.
Instead, the data mining kernel system must offer mecha-
nisms that allow the user to manage, in a uniform way, the
specification of analysis tasks and inspection of results of
the different methods, Tasks and results must be first-class
objects in the system kernel to allow the user to restart and
modify tasks and to compare and combine results. Without
integrated and uniform access to the tasks and results of new
methods, a lot of the benefits of extensibility for the data
mining process are lost: if each new extension has different
ways of managing tasks and results, switching methods also
means switching to a different user interface, resulting in an
unnecessarily high learning overhead for the user.

Architecture
Within multi-strategy tool architectures, a popular distinc-
tion is to separate approaches that integrate at the micro
level and those that integrate at the macro level (Emde et
al. 1993). In macro level integration, each method to be
integrated remains a separate module with its own inter-
nal representations and storage structures, but is coupled to
other modules by receiving inputs and passing results back
across a suitable channel. In micro-level integration, all
modules directly rely on a common repository of data with-
out transformation, and cooperate during processing, not
only when they have finished. Multi-strategy data mining
systems have so far mostly been realized by macro-level
integration, e.g. in Recon (Simoudis, Livezey, & Kerber

- Data Mgmt .z :
- Task Mgmt E :

wk
,

- Result Mgmt
& Visualiz. E

L

Figure 1: General plug-in architecture

The major components to realize extensibility in this ar-
chitecture are the following:
l a well-defined and open extension API (application pro-

gramming interface) through which extensions access
data and communicate results back to the system

l declarative extension tool description containing infor-
mation about the data accepted and needed by an analysis
tool and the kinds of results produced

l a task and result manager that offers uniform access to
tasks and results (specification, manipulation, visualiza-
tion), exploiting the declarative specifications in tools

l a minimal tool API which the kernel uses to perform
tool-specific functions
The extension API is the basic component towards reach-

ing extensibility. This API must offer hooks for extension
tools to access the data in the database and to communicate
results back to the system. By making the definition of this
API precise and open, it can be ensured that the developer
of an extension need only know the API; the internals of
the kernel system can be encapsulated. In domains such as
image manipulation, this concept of open APIs has led to
very simple and extensible systems (this is where we have
borrowed the term “plug-in”).

As detailed above, however, the situation in data mining
is more complex since not only does the “plug-in” need to
access data and return results, but the kernel also needs to

Scalability 6t Extensibility 215

provide uniform access to the tasks and results being worked
on by extensions. Since the tasks of data mining methods
vary widely, ranging from classification to clustering to pat-
tern discovery and further, there needs to be a facility with
which each extension can declare the required inputs and
kind of results. Furthermore, since result types also vary
greatly, the extension must be able to declare in which way
its results need to be visualized, choosing from the available
visualization facilities in the kernel. Alternatively, the API
can include visualization operations as well.

Third, the proposed architecture contains a task and re-
sult manager that makes use of the declarative information
described above to ensure uniform access to tools, whether
they be included with the system from the start or added
later on. Ideally, based on the declarative specification in
the extension, the kernel should be capable of dynamically
generating an appropriate graphical user interface to allow
the same comfort of usage for all tools. Tasks specifica-
tions and results are managed by the analysis task manager,
allowing the user to redo and modify each task, check and
interrupt tasks that are running (perhaps in parallel), and
inspect, test and compare results.

Note that in general, results will not be interpretable to
the task manager. This is why in such an architecture, there
must be a fourth component, a minimal tool API containing
functions that each tool must supply to the kernel. Besides
the analysis functionality proper, each tool primarily has to
offer hooks for dealing with its results, ranging from simple
things like producing printed output to hooks for testing
and visualizing results. To simplify this functionality, the
kernel’s API should include libraries of common testing
and visualization functions (e.g. for common results such
as decision trees).

The rest of the plug-in architecture contains the standard
components that are found in most data mining systems,
namely facilities for importing, exporting, selecting, and
transforming data.

Kepler
At a general level, the architecture described in the preced-
ing section contains the components that are necessary to
make extensibility work: with knowledge of only the API
and the tool declaration language, an extension developer
can produce a tool that can be plugged in and will be fully
supported by the kernel - provided that such APIs (i.e.,
declarations and facilities) can be designed in such a way
and still support more than a narrow class of plug-in tools.
We have constructed and fully implemented a data mining
system termed KEPLER~ to prove the feasibility of the pro-
posed architecture. Given the data mining applications we
are working on (market study data, lo4 objects, ecological
system analysis, lo5 objects, protein structure prediction
(Dzeroski et al. 1996), lo4 objects), we decided to target
KEPLER to medium-range data mining problems (lo4 to lo6
objects). Our choice was also motivated by the fact that
many other published data-mining applications fall into this

2K~~~~~ will be demonstrated at the conference.

class (e.g. (Apte & Hong 1996) 104, (Dvzeroski & Gr-
bovic 1995) 103, (Feelders, le Loux, & van? Zand 1995)
lo5 objects, (Li & Biswas 1995) 105, (Sanjeev & Zytkow
1995) 103, (Simoudis, Livezey, & Kerber 1995) lo6), and
by the fact that this application size, there exists a number
of available ML and KDD algorithms (from our own group
and others) that could be used to test the feasibility of the
plug-in concept.

KEPLER's general architecture is based on the concept of
a workspace that stores all data, tasks, and results of a data
mining problem domain. Data are represented as relations
(with associated key and schema information) and can be
organized in different da&sets (subsets of relations). Tuples
are stored in a data management layer which is currently
mapped to a main memory based storage scheme with disk
write-through to compiled files, opening the possibilility
of “swapping out” currently unused data. For the target
application size, this has turned out to be a good choice.
Nonetheless, in future versions of the kernel, the data man-
agement layer will map down to a database management
system to gain scalability and security.

The extension API of Kepler contains only the elementary
calls that are necessary for extensions to access data on a
set-oriented or tuple-oriented basis, and to pass back results.
When called, each extension receives a data specijkation
that it passes back to the kernel whenever it wants to access
data; the kernel then maps this to the actual data. This
scheme protects extensions from details of data access while
still allowing reasonable efficiency since even direct read-
through to a database can be realized. A second set of calls
is available to pass back results to the kernel as soon as they
are generated.

As a tool description language, KEPLER uses parameter
and result declarations. Parameter declarations come in two
types: inputs and algorithm parameters. Input parameters
state what kinds of inputs a tool expects in terms of sup-
plied primitives such as “relation name” or “attribute name”
or general parameter types such as “integer”, “boolean”
or “oneof’. These are employed by the task manager in
KEPLER to automatically generate the appropriate interface
masks to allow the user to specify an analysis task. Simi-
larly, algorithm parameters state the available parameters to
influence algorithm behavior, indicating the allowed values
in a similar fashion by using predefined parameter types.
Here also, KEPLJB automatically generates input masks
with radio-buttons, sliders, pop-up menus etc. to let the
user specify the tool parameters. Hence, KEPLER offers a
uniform interface style for all extension tools, minimizing
the user’s effort to become familiar with a new tool (see Fig-
ure 2, next page, for an example of a task window generated
from a tool description). Through the task manager, tasks
can be created, edited, started and stopped. Cross-validation
and other analysis scripts will be possible in the future.

As for analysis results, each tool can declare several result
types. However, currently these are only utilized for user
information and help. Each extension can pass back to the
system kernel as many results of each type as desired; the
task manager stores them on disk and allows the user to

216 KDD-96

Figure 2: Task window for an EXPLORA task

select and manipulate them. It is also possible for tools to
pass back a pointer to a binary results file which is from
then on managed by the task manager. As indicated in the
previous section, whenever a result needs to be tested on
different data or needs to be visualized, the kernel calls the
appropriate hooks in the extension tool which in turn can
rely again on testing and visualization AFIs that the kernel
offers as a library.

To test the feasibility of the plug-in concept, we decided to
integrate as wide a selection of plug-ins as possible, ranging
not only across different methods, but also across different
tasks. At first, we chose to include as plug-ins for internal
use at our site:
l for classification tasks, the decision tree algorithm C4.5

in the original C version available from Ross Quinlan
(Quinlau 1993), a backpropagation neural network real-
ized using SNSS (Zell1994), as well as our own instance-
based method KNN (Wettschereck 1994) and Salzberg’s
NGE (Salzberg 1991; Wettschereck & Dietterich 1995)).

l for clustering tasks, the AUTOCLASS algorithm (Cheese-
man & Stutz 1996) as available from the authors

l for regression tasks, the MARS (multiple adaptive re-
gresssion spline) algorithm of (Friedman 1991), in our
own implementation

l the pattern discovery algorithmEXPLORA (Klijsgen 1996)
developed at GMD (ported from Macintosh to Sun)

All of these are operational in KEPLER at present. To mini-
mize programming overhead, all algorithms were taken as is
(except for porting to other platforms as indicated) and used
in a compiled form, implementing communication through
files which is feasible for the chosen target application size.
Summarizing this first experiment with the plug-in concept,
we can state that except for reimplementation or porting
efforts, the integration of an algorithm of one of the above

types or tasks into KEPLER as a plug-in takes at most one
day3, since all that is involved is the simple parameter dec-
laration and the writing of grammars for file creation and
reading.

Given this kind of encouraging evidence, we have ex-
tended the plug-in idea to other areas of the system as well.
In KEPLER, the user can plug new input formats and new data
transformation operators into the system in a very similar
fashion. It is therefore no problem to handle applications
that require e.g. an unusual aggregation of tuples, a par-
ticular re-representation of time series, or some other pre-
processing operation for a particular analysis method. For
example, a specific transformation (from DINUS (DZeroski,
Muggleton, & Russell 1992)) is available for transform-
ing first-order representations (across several relations) into
a manageable propositional representation in one relation.
These plug-ins complement the standard ASCII input for-
mats and predefined transformation operators like sampling
and discretization.

Evaluation
KEPLER has been evaluated on three data mining applica-
tions: analysis of retail data, ecological system analysis,
and protein structure prediction (Dzeroski et al. 1996).
In the retail data application (roughly 15.000 tuples), the
primary goal was discovery of interesting customer groups
(carried out with EXPLORA). In addition, certain customer
groups were characterized using C4.5. In the ecosystem
domain (roughly 120.000 tuples), the primary goal was
to derive ecological conditions for the occurence of cer-
tain plants, a secondary goal being clustering of plants into
ecological groups. In the protein structure application (ca.
10.000 tuples), the goal was to predict protein structure from
spectography data, mostly performed using ILP techniques
(Dzeroski et al. 1996).

In these applications, all of which required multiple tasks
to be solved from the same pool of data, we have found our
speed of turning up results to be greatly increased, since all
the time usually spent in preprocessing data and changing
formats when the method first chosen turns out inappropriate
was eliminated. Furthermore, through the automatic gener-
ation of graphical interfaces for plug-in tools, even relative
newcomers to data analysis (students) produce first results
fast. Thus, from an application perspective, KEPLER has
reached its goals of offering multiple tools in an integrated,
easy-to-use environment.

From the development perspective, in our view, KEPLER
has shown that indeed it is possible to realize an extensible
data mining system architecture based on the idea of plug-
ins. For ourselves as system developers, the concept has
resulted in integration times in the order of hours, meaning
that new methods (once they are available) can be integrated
very fast, resulting in a choice of methods in one system
that even with the set of methods described above appears
unmatched in any other system.

3Not including the time it takes to get to know the extension
algorithm.

Scalability Q Extensibility 217

The limits of the present design are in scalability due to
the way tools are integrated. To allow this kind of extremely
rapid integration, we have used existing code (our own and
code made available by others) unchanged, using operating-
system level file communication. For the kinds of dataset
sizes for which KEPLER is targeted, this has turned out ap-
propriate; it will not, however, scale well much beyond lo6
objects. To go to these scales would require algorithms to
be rewritten to use the kernel’s data access facilities directly.
When looking at our own and published applications, how-
ever, a large number of problems seem to fall in the size
range below lo6 objects.

Related Work
The architectural concepts used here are most closely re-
lated to the idea of “external tools” that was realized in the
MOBAL knowledge acquisition system (Morik et al. 1993;
Emde et al. 1993). In MOBAL, a number of ILP learning
algorithms could be used from within the same graphical en-
vironment. However, compared to KEPLER and the general
architecture discussed here, MOBAL is lacking in important
respects. Analysis tasks and results are not first class ob-
jects in MOBAL, making it very difficult for the user to keep
track of what was done when and with which tool. Runs
cannot be repeated. There is no declarative tool description
and no general way of passing inputs and storing results,
since it is implicitly assumed that all algorithms are ILP
algorithms that always take the entire database as input and
always produce first-order Horn clauses as output.

At the general level of multistrategy data mining, there
are several tools which can be usefully compared to the
work presented here. For commercial tools, there is ISL’s
CLEMENTINE system (Integral Solutions Ltd. 1996), in-
tegrating decision trees and neural networks. This system
offers an excellent user interface, but appears limited to clas-
sification and clustering tasks. Lockheed’s Recon system
(Simoudis, Livezey, & Kerber 1996) addresses a wider range
of problems, including also instance based methods. Both
systems, however, seem to lack the extensibility that charac-
terizes the architecture presented here, and seem to require
kernel reprogramming to add new algorithms. Thinking
Machine’s Darwin system (Thinking Machines Corp. 1996)
appears to be more a collection of tools than an integrated
system.

Among other multi-strategy systems, there is DBMINER
(previously DBLEARN) (Han et af. 1992; Han & Fu 1996)
which discovers multiple kinds of knowledge, but is based
on a single attribute-oriented discovery methods and is not
extensible. MLC++ (Kohavi et al. 1994) is a collection
of C++ programs designed to be configured by a user into
a working Machine learning algorithm. Since the source
code is available, MLC++ is an extensible system. Extensi-
bility, however, is achieved purely at the programming and
algorithm level, as MLC++ is a more a library than a sys-
tem, not offering the system kernel and user interface sup-
port discussed here. The INLEN system (Michalski 1992;
Ribeiro, Kaufman, & Kerschberg 1995) is related to the
work presented here since it also conceptualizes data man-

agement and analvsis as ooerators. however without a focus
0; extensibility and closely tied to AQ and related methods.
Similarly, GLS (Zhong & Ohsuga 1995), is a multi-strategy
system with four fixed analysis methods without extension
facilities.

Finally, a useful comparison is with the architectural con-
cepts of the KESO data mining project in which we are also
involved (Wrobel et al. 1996). In PESO, the very explicit
goal at the outset was to create a data mining system ca-
pable of handling the very large scale problems (>>106
objects). Consequently, a macro-level integration as was
used in KEPLER was excluded, as it would not have offered
the required efficiency. Instead, PESO uses a micro-level in-
tegration architecture based on a common hypothesis space
manager that maintains a persistent representation of the
search space in a database. Different search modules can
share subcomponents like the description generator (refine-
ment operator). Since KESO is designed for a particular
class of problems (finding interesting subgroups) and ex-
treme efficiency, extensibility across wide task ranges was
not of concern. Extending I&SO requires reexpressing an
algorithm in I&SO’s framework, but of course (these are the
benefits of rewriting and micro-level integration) the newly
written search module may use e.g. facilities used in the
construction of other methods, like the description generator
or a quality computation module.

Conclusion
Based on our own experience and other reported applica-
tions, we believe extensibility to be a key feature of any data
mining system to keep up with the variability of datamining
tasks which does not allow to design a system once and for
all that has the right methods for all situations. The key
to extensibility is extensibility without system core repro-
gramming, which allows third parties other than developers
to extend a system in their direction without knowing the
system’s internals. This requires carefully designed exten-
sion APIs and declarative tool descriptions so that the kernel
may support extensions tools in the same fashion as possible
in non-extensible systems. Due to the variety of methods
and tasks that could be present in an extensible system, a
task manager is a central component of such a system.

With KEPLER, we have realized an extensible system that
offers a very wide range of methods and tasks for medium
sized data mining problems. The experience of integrating
all these different methods shows that the KEPLER’S plug-
in architecture indeed is a basis for a very rapid extension
of the system that does not require kernel reprogramming.
Even though we have not proved it in implementation, we
nonetheless believe that the plug-in concept can be scaled up
to even larger problems with some more effort in designing
tool interfaces. Our own future work may move into this
direction, but most likely will first concentrate on integrating
more extension tools and further refining the system in other
applications than the ones it was already tested on. For
the distant future, we hope to have the system in a state
that allows us to make it available to others and to publish
the API specification. This would give developers of new

218 KDD-96

data mining algorithms a simple platform for delivering
their methods to uses without having to worry about user
interfaces or data access.

References
Apte, C., and Hong, S. 1996. Predicting equity returns
from securities data. chapter 22,542 - 560. In (Fayyad et
al. 1996).
Cheeseman, P, and Stutz, J. 1996. Bayesian classification
(AutoClass): Theory and results. chapter 6, 153 - 180. In
(Fayyad et al. 1996).
DZeroski, S., and Grbovic, J. 1995. Knowledge discov-
ery in a water quality database. 81 - 86. In (Fayyad &
Uthurusamy 1995).
Dieroski, S.; Muggleton, S.; and Russell, S. 1992. PAC-
learnability of determinate logic programs. In Proc. 5th
ACM Workshop on Comput. Learning Theory, 128-135.
Dzeroski, S.; Schulze-Kremer, S.; Heidtke, K.; Siems, K.;
and Wettschereck, D. 1996. Knowledge discovery for
diterpene structure elucidation from 13C NMR spectra.
Proc. ECAI-96 workshop on Intelligent Data Analysis for
Medicine and Pharmacology.
Emde, W.; Kietz, J.-U.; Sommer, E.; and Wrobel, S. 1993.
Cooperation between internal and external learning mod-
ules in mobal: different facets of multistrategy learning.
MLnet workshop on multistrategy learning, Blanes, Spain.
Ezawa, K., and Norton, S. W. 1995. Knowledge discov-
ery in telecommunications services data using bayesian
network models. 100 - 105. In (Fayyad & Uthurusamy
1995).
Fayyad, U., and Uthurusamy, R., eds. 1995. Proc. First Int.
Con. on Knowledge Discovery and Data Mining. Menlo
Park, CA: AAAI Press.
Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, I?; and Uthu-
rusamy, R., eds. 1996. Advances in Knowledge Discovery
and Data Mining. Cambridge, USA: AAAI/MIT Press.
Fayyad, U.; Piatetsky-Shapiro, G.; and Smyth, P. 1996.
From data mining to knowledge discovery: An overview.
chapter 1, 1 - 34. In (Fayyad et al. 1996).
Feelders, A.; le Loux, A.; and van’t Zand, J. 1995. Data
mining for loan evaluation at ABN AMRO: a case study.
106 - 111,. In (Fayyad & Uthurusamy 1995).
Frawley, W.; Piatetsky-Shapiro, G.; and Matheus, C. 1991.
Knowledge discovery in databases: An overview. In
Piatetsky-Shapiro, G., and Frawley, W., eds., Knowledge
Discovery in Databases. Cambridge, USA: AAAI/MIT
Press. chapter 1, 1 - 27.
Friedman, J. 1991. Multivariate adaptiveregression splines
(with discussion). Annals of Statistics 19(1): 1-141.
Han, J., and Fu, Y. 1996. Exploration of the power of
attribute-oriented induction in data mining. chapter 16,
399 - 421. In (Fayyad et al. 1996).
Han, J.; Cai, Y.; Cercone, N.; and Huang, Y. 1992.
DBLEARN: A knowledge discovery system for databases.
In Proc. 1st Int. ConJ In. & Knowl. Managmt., 473 - 48 1.

Integral Solutions Ltd. 1996. Clementine data mining
system: Decisions fromdata. WWW http://www.isl.co.uk.
Klosgen, W. 1996. Explora: A multipattern and multi-
strategy discovery assistant. chapter 10, 249 - 271. In
(Fayyad et aZ. 1996).
Kohavi, R.; John, G.; Long, R.; Manley, D.; and Pfleger,
K. 1994. MLC++: A machine learning library in C++. In
Proc. Tools with Art$icial Intelligence, 740 - 743. IEEE
Computer Society Press.
Li, C., and Biswas, G. 1995. Knowledge-based scientific
discovery in geological databases. 204 - 210. In (Fayyad
& Uthurusamy 1995).
Michalski, R. et. al.. 1992. Mining for knowledge in
databases: The INLEN architecture, initial implementa-
tion and first results. J. Zntell. Zn. Sys. l(l):85 - 113.
Morik, K.; Wrobel, S.; Kietz, J.-U.; and Emde, W. 1993.
Knowledge Acquisition and Machine Learning: Theory
Methods and Applications. London: Academic Press.
Quinlan, J. R. 1993. C4.5 -programs for machine learn-
ing. San Mateo, CA: Morgan Kaufman.
Ribeiro, J. S.; Kaufman, K. A.; and Kerschberg, L. 1995.
Knowledge discovery from multiple databases. 240 - 245.
In (Fayyad & Uthurusamy 1995).
Salzberg, S. 1991. A nearest hyperrectangle learning
method. Machine Learning 6:277-309.
Sanjeev, A., and Zytkow, J. 1995. Discovering enrollment
knowledge in university databases. 246 - 25 1. In (Fayyad
& Uthurusamy 1995).
Simoudis, E.; Livezey, B.; and Kerber, R. 1995. Us-
ing Recon for data cleaning. 282 - 287. In (Fayyad &
Uthurusamy 1995).
Simoudis, E.; Livezey, B.; and Kerber, R. 1996. Inte-
grating inductive and deductive reasoning for data mining.
chapter 14,353 - 374. In (Fayyad et al. 1996).
Thinking Machines Corp. 1996. Darwin: Intelligent data
mining. WWW http://www.think.com.
Wettschereck, D., and Dietterich, T. 1995. An experi-
mental comparison of the nearest-neighbor and nearest-
hyperrectangle algorithms. Machine Learning 19:5-28.
Wettschereck, D. 1994. A Study of Distance-Based Ma-
chine Learning Algorithms. Ph.D. Dissertation, Oregon
State University.
Wrobel, S.; &‘ettschereck, D.; Verkamo, A. I.; Siebes,
A.; Mannila, H.; Kwakkel, F.; and Kliisgen, W. 1996.
User interactivity in very large scale data mining. Contact
keso-develop@cwi.nl.
Zell, A. e. 1994. SNNS user manual, version 3.2.
Fakultiitsbericht 6/94, IPVR, Universittit Stuttgart, Ger-
many.
Zhong, N., and Ohsuga, S. 1995. Toward a multi-strategy
and cooperative discovery system. 337 - 342. In (Fayyad
& Uthurusamy 1995).

”

Scalability 6r Extensibility 219

