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Abstract 
This paper demonstrates a KDD method applied to 
audio data analysis, particularly, it presents 
possibilities which result from replacing traditional 
methods of analysis and acoustic signal processing 
by KDD algorithms when restoring audio recordings 
at&cted by strong noise. 

Introduction 
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audio acoustics only rarely consider the opportunities of 
data processing with the use of methods which stem 
from KDD approach. What is essential here is the fact 
that methods of analysis and signal processing 
developed on the basis of speech acoustics have not been 
transferre4l respectively so far to other related areas, e.g. 
as an algorithm of intelligent analysis and processing of 
the musical audio signal. In the meantime the area of 
audio acoustics has an extensive demand for 
applications of intelligent signal processing. 

The paper demonstrates a KDD method applied 
to audio data analysis, which was studied at the Sound 
Engineering Department of the Gdat+isk Technical 
University. Particularly, it presents possibilities which 
result from replacing traditional methods of analysis 
and acoustic signal processing by KDD algorithms when 
restoring audio recordings aRcted by strong noise. 

Previously, the parallel algorithm applied 
to the removal of clicks has been tested (Czyzewski 
1994, 1995a) and the rough set method applied to 
noise suppression in old audio recordings was tried 
(Czyzewski 1995b). A new concept of perceptual coding 
allowing for noise reduction in old musical recordings 
stemmed from a modification of KDD applications 
investieated nreviouslv bv the author K’zvzewski 199% p----r- -.-- ---, -, ,d-+, -_.. --- -. . -, 
1995c). Perceptual coding provides the way of 
processing audio signal in such a way that the portions 
of signal which are perceptible to human hearing sense 
are to be encoded while the remaining portions of signal 
or noise are to be rejected. The algorithm processes 
signal in subbands of the frequency scale corresponding 
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to the critical bands of hearing. The rough set method 
was employed to building the knowledge base of signal 
and distortions in such a way that it becomes possible to 
automatically control the masking threshold in order to 
maintain the noise affecting audio signals not audible to 
listeners, 

Details of the elaborated and tested algorithms will be 
presented and results of their application discussed. 
Some general conclusions concerning knowledge 
acquisition of audio signal affected by noise and 
distortions will be added. Potential telecommunications 
and multimedia appiications wiii be quoted. 

Rough set approach to mining signal and 
noise data 

The idea of using KDD approach to the removal 
of continuous noise from old recordings uses the 
perceptual coding scheme enhanced by the intelligent 
decision algorithm based on the rough set method. The 
rule set used for the determination of thresholds for the 
selection of eligible components of the signal is obtained 
by learning from examples. Hence, the data mining 
process allows one to discern between signal and noise 
portions of the audio material. Consequently, the 
masking threshold level can be determined for each data 
frame allowing one to make the noise inaudible after the 
execution of the perceptual coding procedure. 

Before the details of the elaborated algorithm are 
presented a brief introduction to the domains of rough 
sets and of perceptual coding of audio data will be 
provided. 

Basic concepts of the rough set theory 
The Boolean traditional logic, which is employed 

by computers for general use, stems from clhntofs 
formulation of the definition of a set and operations on 
sets. However, as numerous examples prove, computers 
which work on this basis, are not good enough to solve 
many practical problems which require automatic 
inference, especially in situations when the data being 
analyzed carry a certain inaccuracy or irreproducibility 
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and when there is no possibility to create a precise 
enough model of the decisive process. In such cases, 
overcoming the axioms of Cantor’s definition of sets 
may turn out to be of purpose and very useN. This 
situation obviously corresponds to the problems of 
discerning between signal and noise components in 
noisy audio patterns. Overcoming the iimitations 
related to Cantor’s definition of the set is possible by 
:-P...i..,-, .l.eh -“..:ram,...+ +l.n+ CL- “a* l.,...ewan;a.. kn..a +rr Ipjllvllllg U&F IGqyuu~,,~cur LuaL LUG ret. lAlulLualI~~ IUIVC- L” 
be strictly defined, that is of a set which is precisely 
defined by its elements. By doing so it is possible to 
define the set based on its lower and upper 
approximations. Such a set, since it is not defined fully, 
may include elements which belong to it mauy times. 
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Fig. 1. Illustration of elementary notions related to the 
rough set theory. 

Overcoming the traditional axioms applied in the 
case of rough sets causes the logic based on the rough 
set theory to acquire completely new features which 
make it an extremely useful tool for solving many 

problems which require an intelligent data analysis, 
searching for hidden relationships between the data and 
even making the right decisions in situations when 
incomplete and partially contrary antecedents exist. 

The fundamentals of this theory were announced 
by Pawlak in the early 1980’s (pawlak, 1982). The 
theory was quickly adopted by the scientific world and is 
now one of the fast developing methods of artificial 
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defining a rough set are illustrated schematically in 
Fig. 1. More detailed definitions of these terms can be 
found in the literature (Slowinski ed., 1992). 

The knowledge is represented in a system based 
on rough sets in a tabular form composed of the 
following elements: 

a finite set of objects, P - is a finite set of attributes, D - 
is a special decisive attribute determined by the expert, 

P is a collection of all conditional attributes in P, vo, 
represents the area of decisive attributes, F - is called 
the knowledge function. 

An inductive learning system based on rough set .~ a-.-.-.- consists of the iearning component for the automauc 
rule derivation from training samples and of the 
inference system used for decision-making at the 
recognition stage. Rules are expressions in the following 
format: 

if <conditionl>n2~. . and~ndition d 
then <decision>. 

Conditions are based on attributes. Attributes 
should be equal to concrete values or should belong to 
certain ranges. The decision always use a single rule 
matching approach. 

The knowledge base in rough set method can be 
conveniently represented in the form of a decision table, 
in which rows represent ob&cts and c0imns represent 
attributes. In the last column decision attributes are 
collected. The main task for the learning phase (rule 
generation procedure) is to find the minimum number 
of maximum composed sets that cover the so called 
positive region J%%s) providing one of the basic 
notions of the rough set theory @ ‘awl& 1982). 
Consequently, two types of rules are to be derived from 
the &.4cinn t-hlw rclrtcain nrbc md nnccihlp ndec An UIV UVIIY*“II WVIV. W.-L SWVY s4AI.s yv”LuY’” *UIIY. . Y. 

important parameter of possible rules, reflecting quality 
of them is the rough measure k&s defined as follows: 

pm=IXnYI 
1’1 !U 

where: X is the concept and Y is the set of all 
examples described by the rule. 

Spatial, Text, & Multimedia 221 



An additional parameter was proposed by the author 
doting one to optimize the rule generation process. 
This parameter was called the rule strength r and is 
defined as follows: 

where: c - number of cases conforming the rule, 
n p - the neutral point of the rough 

measure. 

The neutral point of the rough measure ‘fl provides 
one of some parameters of the rule generation system to 
be set by its operator. This parameter allows one to 
regulate the influence of possible (uncertain) rules on 
the process of decision making. More details concerning 
the rough set concepts are to be found in the rich 
literature (Slowidski ed., 1992; Wojcik, 1993). 

Perceptual coding algorithm 
Empirical data reveal that some signals are 

inaudible in the presence of others both in time and in 
frequency domain. The level of the barely audible pure 
tone depends on the ditference of frequencies of the 
signal components and the masking tone, and on the 
excitation level of the masker. Usually, this dependence 
is presented as the function of frequency in a linear 
scale or in a logarithmic scale (Zwicker&Zwicker 
1991). It can be observed that the shape varies 
“:-:Cn,.nCLr ..F..-.,.....x..” 4,. &v.,....m..-. .A.....%.%.” T.. rL. 3lpulclaluy &uJluullj LO ncqllcmby bmlllt;E;~. u1 WIE; 
literature, some attempts to calculate that shape can be 
found (Krohkowski, 1996). 

Another well-proven phenomenon is the fact that 
human auditory system analyses spectrum ranges which 
correspond to subbands, called critical bands. The 
stimuli frequencies within a critical band are perceived 
similarly and processed independently from those of 
other critical bands. Because of the need to use the 
critical bands scale, the Bark unit for this was defined, 
which is of the width of one critical band. It can be 
observed that Bark-to-Hertz dependence can be 
approximated by the straight line: up to the 8th Bark in 
the linear frequency scale and from the 8th Bark in the 
logarithmic one. The above property was taken into 
account when converting to Bark units in the eiaborated 
algorithm. Moreover, it turns out that masking curves 
assume almost an uniform shape when calculated versus 
Bark units. One can notice that the slopes of the curves 
at the lower frequencies are constant, whereas at the 
higher ones, the slope depends on the excitation level of 
the masker. 

Basing on the above indications, the elaborated 
perceptual algorithm for the encoder performs the - __ folIowing operations: 

Step 1. On the basis of the sampling frequency, 
values of frequencies for consecutive spectral lines are 
computed. Next, they are converted to Bark units. 

Step 2. The continuous series of 16-bit samples are 
grouped into blocks of the length of 512 samples. This 
&.P ie ncrr~md tn lm 1 t.r.mnrnmi~~ lustw~c.n hinh “I- 10 UOY~IIYU L” LN ss w*n,p”“~oY uwL,,YvII 1LL611 

spectral resolution (long blocks) and time resolution 
requirements (short blocks). Since at the borders of 
blocks some audible distortions may occur, so called 
‘block effects’, thus overlapping technique with the 
length of the fold equals to 32 was applied. 

Step 3. Because of the Digital Fourier Transform 
properties, blocks containing samples are windowed 
before the processing is made. Rectangular-cosine 
shaped window was used calculated according to the 
following formula: 

data - sin(: e G , ‘) i e(O,L-1) 
d&u(i) = data, A u 

I 

i E(L,N-L-1) 

datacos($-$), i E(N-&N-l) 
(3) 

where: 
L - the size of the fold, 
N - the length of the block. 
Step 4. The FFT procedure is executed. Amplitudes 

and phases of spectral lines are calculated using 
complex representations. Since these values are 
symmetrical, only half of them is further processed. The 
remaining part is restored in the decoder. 

Step 5. The amplitudes of spectral lines are sorted 
according to decreasing values of amplitude. 

Step 6. Simultaneous masking procedure is 
executed. Spectral lines with amplitude value remaining 
below the masking threshold are discarded. Masking 
curves are represented by uniform curves. For the 
practical use, shapes of these curves are approximated 
hv ctraioht lin~c Thp clone nf the line at thP lnw~r “J YU.a~.. I...WY. L1.W Ya”p “a UX” 11-w u. ua” 1”..ll 

frequencies is set to 27 dB/Bark, whereas at the higher 
ones, the slope S (with minus sign) is expressed as: 

S =22-0.2-I [dB/Bark] 
where: 

(4) 

I - denotes the ievei of the masker. 
For each non-masked spectral line, there is a mask 

level computed, i.e. the excitation value of barely 
audible tone of the respective frequency. 

Step 7. Within every critical band for each spectral 
line, the minimum mask level is chosen. This approach 
ensures that after the quantization of non-masked 
components, the quantization noise is maintained below 
the audible level. 
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Step 8. Subjective level of noise is estimated by a up to 25 of one-bit flags. They describe the change 
human listener. If its value is below the mask level in of the word length engaged to encode complex 
every critical band - no further actions are performed. If components in a critical band, 
not, new masking thresholds are established to shift the up to 25 of one-bit flags. They concern the change of 
noise below the masking level in each particular permissible noise level in a critical band, 
subband. This procedure is conceived as a flexible one up to 25 of 4-bit values of a new value of word 
in order to not to diminish nor to neglect eligible length used to encode spectral components in a critical 
components within the band. band, 

Step 9. After the perceptual processing, every 
spectml component is quantized or set to 0 (if masked). 
It would be redundant to encode masked vahles: ml& 
only these components with non-zero magnitudes are 
processed. However, there is a need to know, for which 
frequencies spectml lines were neglected if they were. 
Therefore, an additional piece of information is sent, 
which defines whether consecutive complex components 
are transmitted or not. And thus, every package of data 
is preceded by 256 one-bit flags. If the flag is set to 0 at 
the kth position, it means that the magnitude and phase 
for the kth spectml component is not processed (the 
masking occurred). On the other hand if the kth value 
is set to 1, it denotes that the package includes the kth 
complex component. 

16-bit values of a new permissible noise level in a 
critical band, 

vdaes of amnlitudes and nhasen of non-masked ---r------ --- r---- 
spectral lines. The value of phases can be encoded using 
5 bits, what is recommended in the literature. 
Consequently, amplitude and phase of the constant 
complex component is encoded. 

The decoder uses the above data for the additive 
synthesis of sound on the basis of spectral components 
which have been qualified as non-masked ones. 

Knoyledge acquisition of signal and of noise 
Previously, the rough set approach to the 

determination of spectral components obtained in the 
McAulay-Quatieri analysis was tried by the author 
(Czyzewski 1995b, 1995c). Similar KDD procedure to 
the one elaborated previously was exploited in the 
current experiments to derive rules allowing to 
automatically select the optimal level of the masking 
threshold in the perceptual codingffiltration procedure. 

utili= all 16-bit representation whereas the value can 
match only a part of it. Thus, it can be assumed that the 
number of bits used to encode these values is constant in 
a critical band within the time duration of several 
frames. In a case, when the word length changes, one 
needs to send only a new value for appropriate subband. 
Consequently, the data package is preceded by a number 
of one-bit flags. When the kth flag is set to 0, it means 
that the number of bits used to encode spectml 
components in the kth critical band did not change. 
When the flag is equal to 1, it denotes that a new 
number for these bits will be transmitted for the kth 
band. The number of one-bit flags is equal to the 
number of critical bands determined by the given 
nnms.1:..n &.-..a..-, 341qJlll1~ UGquGll~y. 

During the masking procedure, it is evahrated the 
permissible noise level in each critical baud. The level 
is used for the quantimtion and should be known to 
restore sound correctly. Thus, there is a need to store 
values of the levels for every subband. Fortunately, it 
turns out that it is essential to precede the audio package 
by a number of flags informing whether the noise level 
in consecutive criticai bands changed. If so, a new 16- 
bit value of the level for appropriate band is transmitted. 
As previously, the number of the one-bit flags refer to 
the number of utilized critical bands. 

Consequently, each SlZsample frame is stored in 
the format as follows: 

256 of one-bit flags of non-masked spectral lines, 

The masking threshold influencing the selection of 
spectral components in the encoder should be updated 
frame by frame basing on the rule set. This rule set is to 
be acquired on the basis of examples processed during 
the learning phase. Correspondingly, three classes are to 
be defined: threshold low (too low), threshold medium 
or balanced (right) and threshold high (too high). The 
expressions in brackets correspond to subjective 
assessment of the effect of filtration. When the threshold 
is too low, then the noise is clearly audible. When the 
threshold is too high, many eligible components are 
removed, so the resulting sound is clean but poor and 
distorted. Balanced threshold allows one to remove 
noise without discarding eligible signal components. As 
results from above indications, threshold values need to 
be quantized. The quantization consists in replacing real 
values of masking threshold by the range 
representations which are utilized as decision attributes 
(Slowinski ed., 1992). Practically, the uuiform 
. . . . . . ..r.-..r... ---^ ..-,,...-.,.I L.-.r,A ,.^ L .a73 -I--” rC yuat1uuuw1 wala GlupluyGu UiibGu Ull u up 1illl~CS Ul 
magnitude of threshold. 

Practically, the learuing procedure consists in 
selecting some short fragments of the recording, 
automatically setting various threshold levels and 
assessing the effect subjectively when playing back 
those fragments after the resynthesis. Correspondingly, 
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each sample fragment is to be represented by a set of 
threshold values in each critical band and the decision 
comes from the human expert. That is the way the 
knowledge base is built withregard to expert subjective 
assessm&ts of individual examples. Normally, it is 
suBicient to choose some examples corresponding to the 
most characteristic fragments of the recording. 
Typically, up to 5 percent of the whole material should 
be chosen and assessed on the basis of 2 to 3 seconds 
portions. This produces a stream of exemplary data to 
be added to the relevant classes labeled as “low”, “right” 
and too “high”. Consequently, the knowledge base is 
build up to be applicable to the selected fragments 
(certainly) and to the rest of the whole recording 
(possibly). The generalization capabilities of KDD 
algorithms the rough set belongs to proved to work well 
also with the new patterns representing the material not 
employed to the %aining. The rule base represents 
knowledge acquired during the training of the 
algorithm. Thfi rule set may contain rules of the 
following form: 

(5) 
where: W,) = V*J*,...J*,~ denotes that in the 

frequency band No. k the threshold value is to be set to 

the quantized level I is i EC l,2,...,16 > . , , 
k E< 1,2,...,24 > 

Then, the magnitude of the threshold set in kth 
critical band is as follows: 

4 = 61,. [m] (6) 

The exemplary rules presented above are to be 
determined automatically through the learning from 
fragments of the recording, packet after packet. As each 
packet represents the result of FFI’ tran&orm of 512 
samples, thus for each 1s portion of audio sampled with 
the frequency 22.05 kHz as much as 22.050/512 z 43 
rules may be generated. 

Thus, initially after typical learning procedure 
employing 10 or 15 s of exemplary audio material the 
decision table is constructed containing several 
hundreds of rules. Usually, such a data collection is 
superfluous. This feature results from the fact that 
musical tones duration usually exceeds single packet 

length. Consequently, many rules and attributes W, ) 
are discarded after the rough set based reduction of the 
obtained decision table and the resulting knowledge 
base is automatically compacted. Subsequently, the 

acquired rule base is used for the automatic setting 
thresholds for all subbands and all consecutive packets 
of the whole recording. For the concrete combination of 
input data many rules are firing, some of them certain 
(rough measure equal to 1) and some uncertain (rough 
measure lower than 1) - see eq. 1. According to the 
rough set method principles, the decision always comes 
from the single firing rule being the strongest one - see 
eq. 2. Consequently, the specuum filtering thresholds 
are to be updated according to the winning rules. 
Subsequently, the current packet is processed using 
threshold values update controlled by the rule 
conditional attributes. Results of processing noisy 
recordings with this method are presented in the next 
paragraph. 

Results 

Music affected by strong noise was used for the 
described experiments. The analysis-resynthesis 
algorithm with the “intelligent” threshold update was 
applied among others to an exemplary fragment of the 
song performed by Edith Piaf taken from a very noisy 
record. 

After the perceptual filtration is executed, which is 
supported by the rough set-based control of masking 
threshold, the rectified signal was obtained revealing 
enhanced subjective quality. Results of analyses of 
music material made before and after the processing are 
presented in Fig. 2. As is seen from Fig. 2a, spectral 
analysis of the musical fragment reveals that signal 
components are accompanied by very strong noise. The 
noise is broadband (so called hiss) and its components 
are strong within the whole range of frequency (up to 
l/2 sampling freq which was equal to 22.05 kHz). 

Fig. 2b presents spectral analysis of the fragment 
restored with the perceptual coding algorithm with not 
properly selected masking thresholds - some eligible 
signal components are weakened while the higher 
components of hiss remain still beyond the masking 
threshold. Fig. 2c presents the result of signal 
restoration with the perceptual coding algorithm 
controlled by the rule set derived from eight 
characteristic portions of the whole recording (time 
duration of each portion: 2 to 3 s). 

Conclusions 

KDD algorithms should find their way to more audio 
applications. The previously conducted experiments 
related to neural network implementation to the removal 
of impulse distortions (Czyzewski 1994, 1995a) and the 
presented exemplary application related to the 
restoration of noisy audio recordings may support this 
opinion. There are many potential applications of 
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intelligent algorithms applied to the removal of noise 
and distortions. Some of them might be used in 
telecommunications and digital broadcasting, in 
databases and multimedia-related systems as data 
reduction and noise suppression techniques. 
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Fig. 2 Results of perceptual filtering of sound with the 
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by strong noise, 

b./ The same fragment restored with the use of 
insufliciently trainal algorithm, 

c./ Fragment as in Fig. (a) processed employing the 
final version of the rule set. 
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