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Abstract 
Struck attributes have domains (value sets) that are 
ptialiy odered sets, typically hierarchies. Such 
attihntm SIlhW Im~WlPA~~ . ..IaY”IY ..a&” ” -u “a-6” AifCn”PCII pq-gmg “AOIV I VA J to 

incorporate background knowledge about hierarchical 
relationships among attribute values. Inductive 
generalization rules for structured attributes have been 
developed that take into consideration the type of nodes 
in the domain hierarchy (anchor or non-anchor) and the 
type of decision rules to be generated (characteristic, 
discriminant or miniium complexity). These 
generalization rules enhance the ability of knowledge 
discovery system INIEN-2 to exploit the semantic 
content of the domain knowledge in the process of 
generating hypotheses. If the dependent attribute (e.g., a 
decision attribute) is structured, the system generates a 
system of hierarchicaliy organ&d ruies representing 
relationships between the values of this attribute and 
independent attributes. Such a situation often occurs in 
practice when the decision to be assigned to a situation 
can be at different levels of abstraction (e.g., this is a 
liver disease, or this is a liver cancer). Continuous 
attributes (e.g., physical measurements) am quantized 
into a hierarchy of values (ranges of values arranged into 
different levels). These methods am illustrated by an 
example concerning the discovery of patterns in world 
economics and demographics. 

Introduction 
Most symbolic learning systems represent information 
about objects or events in the form of attribute-value 
vectors. Attributes used in these systems are typically 
numerical (i.e., have totally oulemd value sets) or nominal 
(i.e., have unordemd value sets). In some applications it is 
useful to use attributes with value sets that are partially 
order& for example, representing a genemlization hierarchy 
of concepts. Theoretically, almost any attribute can be 
viewed as having a hierarchical domain. For example, the 
domain of a numeric q&&]e “&* ra & @it iEt& 8 
hierarchicalIy organized set of classes-specilic numeric 
values at the lowest level; toddler, child teen, young adult, 
middleage, senior and very senior at the second level; ti 
possibly young, adult and mature at the third level. To 
represent such concepts, a system needs background 
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knowledge that relates the numerical age with the higher 
level concepts. In general, the structure of the domain does 
not have to be fixed; it may be changing with the context . . . or me problem at hand. 

Structuring attributes can prove advantageous for a 
knowledge discovery system. It allows facts, trends and 
regularities to be mmied both at high and low levels of 
abstraction, and for backgmund knowledge to be stored and 
generalizations to be ma& at the appropriate levels. 

The idea of grouping values of attributes into a structure 
of classes in order to reflect semantic relationships 
characteristic to the given application domain has led to the 
introduction of structured attributes (Michalski 1980). The 
domain of a structured attribute is a partially a&red set, 
tvnicallv ahierarchv Domains of structu& variables can ~I= I *I ~ ------__-L _- .-----& -- 
be gene by a domain expert (e.g., Kami & Loksh 
1996), or by an automatic process using a numerical or 
conceptual clustering method (e.g., Sokal & Sneath 1973; 
Michalski & Stepp 1983; Fisher 1987). The structure of 
the domain can be modifred to suit a specific class of 
problems (e.g., Fisher 1995). Structumd attributes can be 
used as independent (input) variables (Michalski 1980), as 
well as dcpcndcnt (output) variables (e.g., Reinke 1984). 
The roles of structured variables in these two cases differ. 

This paper discusses methods for reasoning with 
strut attriiutes in the process of data analysis and 
‘knowledge discovery. ‘Many of the presented ideas have 
been adapted for knowledge discovery from the Inferential 
Theory of Learning, which provides a unifying framework 
for characterizing learning and discovery processes 
(Michalski, 1994). Among the novel ideas am the use of 
“anchor nod& to guide the inductive generalization 
process, the use of non-hierarchical attribute domains, and 
the introduction of different kinds of genemhzation rules for 
structured attributes. The use of continuous variables in 
reasoning is closely related to that of structmed attributes 
in that the way their domains are structured is tailored to 
the particular discovery problem. The presented ideas amd 
methods have been implemented in the lNLEN-2 
knowledge discovery system, and am illustrated by an 
application to a knowledge discovery problem in world 
demographics. 
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The Extension-Against Operator and 
Three Types of Descriptions 

An inductive generalization ruie (or transmutationj takes 
input information and background knowledge, and 
hypothesizes more general knowledge (Michalski 1980; 
1994). For example, dropping a condition from a decision 
rule is a generalization transmutation. 

A powerful inductive generalization rule used in the AQ 
learning program is the extension-against operator. If rule 
Rl: [x1 = al 8z CTX characterizes positive concept 
examples E+ and rule R2: [x,= b] & CTX chamcteh 
negative examples E’ (where the CTK, a context, stands 
for any additional conditions), then the extension of Rl 
against R2 

Rl -I R2 
produces R3: [xi # b], which is the maximal consistent 
generalization of Rl (Michalski & McCormick 1971; 
Michalski 1983). 

By qeatiug the extension-against operator until the 
resulting rule no longer covers any negative examples, a 
consistent concept description (one that covers no negative 
examples) can be generated. Such a process cau applied to 
generate a description (cover) that is complete and 
consistent withregaul to all the training examples (i.e., it 
covers all positive examples and no negative examples). 

Another important concept that needs to be exp-Gned 
before introducing the central ideas of this paper is the type 
of description, as defined in the AQ rule learning 
methodology (Michalski et al. 1986). By applying the 
extension-against operator in different ways, one can 
generate a range of descriptions with different degrees of 
generality. Hem we distinguish three types of descriptions: 
1) discriminant cover$ (in which the extension-against is 
usedto create maximal generalizations; such descriptions 
specify minimal conditions to discriminate between the 
concept and non-concept examples); 2) characteristic covers 
(in which the extension-against is specialized to create 
maximally specific genera&ations; such generaliitions 
specify the maximal number of conditions that chamctcrize 
positive examples); and 3) minimal complexity covers (in 
which the extension-against is used to create the simplest 
possible generalizations). 

To illustrate these concepts, consider the diagram shown 
in Figure 1, which represents a two-dimensional 
representation space spanned over three-valued attribute 
Shape (Sh) and six-valued attribute Color (Co). Positive 
and negative concept examples am marked by + and -, 
respectively. The characteristic cover (maximally speciflr) ~.~- .- * ~~ is represented by thc snaoea area ~~~I~~ It states: C&r is rea’ & 
yellow or green, and Shape is square or triangle. A 
discriminant description (maximum generahzation) of the 
same set of examples states: Color is red, yellow, green or 
white (or, equivalently, Color is not blue or orange). A 
minimum complexity description of these examples states: 
Color is red or yellow or green. The three descriptions are 
equally consistent with the five input examples. 

Thesethmetypesofdescriptionsareusedin theNLEN- 
2 system for knowledge discovery in databases. In the 
following section, we present an extension of these i&as to 
descriptions with structnred attributes (both as independent 
(input) and dqendent (output) variables) and continuous 
independent attributes. 

Color is red or yellow or green, and Shape is square or 
tritlngie 

Figure 1. A characteristic cover of E+ vs. E-. 

Generalization Rules for Structured 
Attributes 

Structured Input Variables 
In o&r to apply the previously defined extension-against 
operator to structured attributes, new generalization rules 
riced to be defied. Let us illustrate the problem by an 
example that uses a suucmmd attribute “Food” shown in 
Figure 2. Each non-leaf node denotes a concept that is 
more general than its chiklren nodes. These relationships 
riced to be taken into consideration when developing a 
genemhzation of some facts. Suppose the concept to be 
learned is exemplified by statements: “John eats strip 
ntm-.lP L&w (‘Tnhn Ar\ncw.*t an+ . ..-.r..lln :M ,...a,.- ” krtnn., 

J”ll‘l - c GaL “QLuua 1w C11-. 

EZstent generalizations of these facts exist, for e&z: 
that John eats strip steak, steak, cattle, meat, meat or 
vegetables, or anything but vanilla ice cream. The first 
statement represents a maximally specific description, the 
last statement represents a maximally geneml description, 
and the remaining ones represent intermediate levels of 
genemlization. A problem arises in determining the 
generalizations of most interest. We approach this 
problem by drawing insights from human reasoning. 

We tend to assign different levels of significance to 
nodes in a generalization hierarchy. Some cognitive 
scientists explain thii in part with the idea of basic level 
nodes, whose children share many sensorially mcognizable 
commonalities (l&he et al. 1976). Other factors that ate 
important for characterizing nodes are concept typicality 
(how common am a concept’s features among its sibling 
concepts), and the context in which the concept is being 
used (Klimesch 1988; Kubat, Bratko, & Michalski 1996). 
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A 
o e Rocky Road 

Anchor nodes are shown in bold Nodes marked by + and - 
are values occurring in positive and negative examples, 

respectively. 
Figure 2. The domain of a structured attribute “Food.” 

To capture such preferences simply, we introduce the 
idea of anchor nodes in a hierarchy. Such nodes are the 
ones that are desirable to use for the given task domain. 
To illustrate this idea, consider Figure 2 again. 

In the presented hierarchy, vanilla and rocky road are 
kinds of ice cream; ice cream is a frozen dessert, which is a 
dessert, which is a type of food. In everyday usage, 
depending on the context, we will typically think of them 
as ice cream or dessert, but not so typically as l3ozen 
dessert or food. 

In designing a knowledge discovery system, we should 
be able to encode the contextual significance of the nodes 
into the knowledge representation of the system, so that 
the cdeated rules will represent desirable levels of 
abstraction. To this end, nodes in the hierarchy that am 
considemd to be at preferable levels of abstraction am -.x.l,,.A .x.. “~“I..*.. rP.#?x,” 11ull- aa uJK.Ilu‘ I-J. 

Given the information which nodes am anchors zmd 
which are not, different types of descriptions can be created 
during the generalization phase of knowledge diver-y. 
The meaning of diiinant and characteristic descriptions 
needs to be properly defined. In building a characteristic 
description, the following rule is assumed: General& 
positive examples to the next higher anchor node(s) if this 
maintains consistency conditions. For example, consider 
the nodes in bold in Figure 2 to be anchors. Then in 
chamcuzistic mode, the extension of the positive attribute 
value “Strip” against the negative attribute “Vanilla” would 
generalize to “Steak.” In building a discriminant 
description from these examples, attribute values am 
general&xl to the most gene& value that does not cover 
the nearest anchor node to the value of a negative example. 
In the example above, the positive value “Strip” would 
genemlixe (extend) against the value “Vanilla” to “not Ice 
Cream.” In building the equivalent of minimum 
complexity descriptions, any of the intermedii anchor 
nodes could be used if this would simplify the description. 
For instance, one generalization rule would be to generalize 

positive examples to the highest anchor nodes possible, 
such that consistency is maintained. In this example, the &dpGon of ,3,,. wo&i gene m “GMe&F 

Another featum to hmXease the power of repmsenting 
structured variables is that one does not need to limit the 
domain of structured attributes to strict hiemrchies (one 
parent for every node). Instead, an arbitrary lattice may be 
used when desimd. This feature is useful for representing 
overlapping or orthogonal classification hierarchies. ‘Ibe 
nature of the particular problem determines how the nodes 
are gexmalkml. The system genemhzes the nodes in the 
way that produces the most desirable (for example, the 
simplest) description. 

Generalization in structured domains does not incmase 
the complexity of the extension-against operator, save far 
the fact that the internal n&s in the hierarchy must now 
be among the attribute’s legal value set, while in an 
unstructured domain they may or may not be present. Any 
incmase in discovery complexity will come during the 
postprocessing, when different possible generalizations of 
the discov& cover will be examined; in the worst case, 
this will be bounded in number of applications by the 
number of internal nodes in the tree times the tree’s 
maximum height. 

StructurecS Output Vadabies 
Typically, dependent variables am numeric or nominal. In 
the latter case, values of an independent variable zxe 
independent concepts. Such a representation fails to take 
advantage of any genemhxation hierarchies that may exist 
among values of a dependent variable. For example, when 
selecting a personal computer to buy, the on&date models 
may be group& into IBM-compatible and Macintosh- 
compatible. Rather than just choosing one system from 
among the entire set, it may be simpler to organize the 
knowledge to choose first the general type, and then the ---AC.. --A-l -C.L- -.....-..A L-^ ‘FL:- ,..-A- __^ .^ CL- 
s~llGluuuGlurulG ilswluGu~ylx;. 1llls1GNIs us w UlG 

need for using structnmd attributes as depzident variables 
and &fining an appropriate method for handling them in 
the process of rule search and generaliion. 

Given a structured dependent variable (a decision 
variable), decision rules or descriptions can relate to nodes 
of the dependent variable at different levels in the hierarchy. 
The proposed method focuses Fist on the top-level nodes, 
creating rules for them. Subsequently, rules ate created for 
the descendant nodes in the context of their ancestors. For 
example, in the case of the computer selection problem, 
the genemhxation opemtor would first determhre how to 
choose between IBM- and Macintosh-compatible machines, 
and then generate rules for distinguishing among the 
machines in each class, and that class alone. The rule for a 
specific IBM-compatible machine. does not attempt to 
differentiate it from a particular Macintosh; it will be based 
on the assumption that an IBMcompatible computer is to 
be selected. Due to this algorithm, the rules at each level 
of abstraction will tend to be more concise and easier to 
interpret. 
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Dynamic Quantization of Continuous Attributes 
In some respects, numerical attriiutes are similar to 
structured attributes with multiple views. There am 
different ways to group the values into discrete ranges, awl 
unless definitive background knowledge is available, the 
optimal organization for a particular discovery problem 
may not be apparent. Even when numeric values have 
been quantized into ranges by a domain expert, the expeft- 
generated abstraction schema may not be optimal for the 
learning task (e.g., Kami & Loksh 1996). Furthermore, a 
particular set of rauges may be useful for one learning task, 
but irrelevant to another. 

The implemented methodology performs automatic 
discretization of numeric data using the ChiMerge 
algorithm (Kerbes 1992). With this method, neighboring 
distinct values of the attribute found in the data are merged 
into single ranges based on a x2 analysis of the 
ClassGcation of the values. When the classification 
patterns of adjacent ranges are statistically dependent on one 
another, the ranges are combined into one. 

One important consequence of this algorithm is that the 
grouping of values into intervals will depend on the 
classification of the input data. Specifically, given a new 
learning problem from the same data set, the training data 
will likely be grouped into classes much differently, nd 
thus the set of ranges of a given attribute most likely to 
generate concise and useful knowledge may be much 
different. For example, given an auto insurance customer 
database, there may be little correlation between the set of 
accident-prone clients and the set of customers who m 
likely be interested in purchasing a service offered by the 
company. It is quite possible that the ranges into which 
the driver’s ages are divided that are most useful for the first 
learning task are not appropriate for the second one. To 
combat this problem, ChiMerge recomputes the ranges for 
each numeric variable whenever new sets of data m added 
or a new discovery problem is specified. 

A limitation of the ChiMerge methodology is that it is 
dependent on the classification of input training examples, 
and that it therefore can not be used to quantize an output 
variable (since that would depend on its already having been 
divided into classes). There are several ways that an output 
numeric variable can be disc~tized into a hierarchy of 
ranges. A domain expert can suggest ranges, ranges can be 
detfmined based on some other output variable, conceptual 
clustering can be used, etc. A discussion and comparison 
of these methods will be addressed in a forthcoming paper. 

Experiments 
The above ideas and algorithms have been implemented in 
the IWEN-2 system for knowledge discovery in data. 
INIEN-2 belongs to the INLEN family of knowledge 
discovery programs that use an integraa multi-operator 
approach to knowledge discovery (Kaufman, Michalski, & 
Kerschberg 1991; Michalski et al. 1992). This section 

illustrates an application of the presented methods to a 
problem of knowledge discovery in world economics and 
dB.llOgl%@iCS. 

The predominant religion of diffemt countries, as 
specified in the PEOPLE da&base of the Workl Factbook 
published by the Central Intelligence Agency, is used as an 
example of a structured attribute. The set of values found 
in the data contain some natural inclusion relationships. 
For example, there co-exist labels of “Christian”, 
“Protestant” and ‘Zutheran” in the da&base. IIhe 
organization of some of this attribute’s values when 
structured is shown in Figure 3. 

Religion 

Muslim Jewish Buddhist Shinto Christian Indigenous 

Sunni Sbi’a Ibadhi R. Catholic Protestant Orthodox 

Figure 3. Part of the structure of the PEOPLE database’s 
Religion attribute 

If the Religion attribute were set up in an unstmctmed 
manner, the statement “Religion is Lutheran” would be 
regarded equally as antithetical to “Religion is Christian” as 
to the statement “Religion is Buddhist,” leadmg to the 
possibility that some contradictions (such as “Religion is 
Lutheran, but not Christian”) might be discovered. 

Experiments using INLEN- have indicated very 
interesting findings regarding the usage of structured and 
non-structured attributes. Among the findings regarding 
their use as independent variables were that structuring 
attributes led to simpler rules than when the attributes were 
not structures, and that certain patterns wede only found 
when the domains were structured. These findings are 
illustrated by the results below: 

When INLEN- leamed rules to distinguish the 55 
countries with low (less than 1 per 1000 people) 
population growth mte (PGR) from other countries, in a 
version of the PEOPLE database in which the attribute 
“Religion” was not structured, one of the rules it found was 
as follows: 
PGR<I@ (20 examples) 

Literacy = 95% to 99%, 
Life Expectancy is 70 to 80 years, 
Religion is Roman Catholic or Orthodox or 

Romanian or Lutheran or 
Evangelical or Anglican or Shinto, 

Net Migration Rate I +20 per loo0 people. 
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This rule was satisfied by 20 of the 55 countries with 
low growth rates. 

When the ame evnerimc?nt wear rnn with “Rdioinn” I. a..,.. W ” -I “r.tR”-‘~-’ ., - --- ., ^- -“emaD ---- 
structura a similar rule was discover& 
PGR<I$ (I4 examples) 

Literacy = 95% to 99%, 
Life ExZxctancy is 70 to 80 years, 
Religion is Roman Catholic or Orthodox or Shinto, 
Net Migration Rate I +I0 per IO00 people. 
This rule was satisfied by 14 of the 55 low-growth 

countries. The removal of some of the Protestant 
subclasses from the Religion condition and the tightening 
of the Net Migration Rate condition caused six countries 
which had been covered bv the first rule, not to satisfy this 
rule. At a slight cost -in consistency, simpler, more 
encompassing rules than either of the above were found: 
PGR<l$ (21 examples, 1 exception) 

Literacy = 95% to 99%, 
Life Expectancy is 70 to 80 years, 
Religion is Christian or Shinto, 
Net Migration Rate I +lO per 1OOOpeopk 
Even when not relaxing the consistency constraint, a 

concise rule not generated in the unstructured dataset was 
discovered that descrii 20 countries including the six 
omitted in the structured rule: 
PGRcl$ (20 examples) 

Birth Rate = 10 to 20 per loo0 people, 
Death Rate is 10 to IS per IIKK)people. 
Similar differences were obtained using structured output 

variables. By classifying events at different levels of 
generality, rules can classify both in general and in specific 
terms. This tends to reduce the complexity and increase the 
significance of the rules at all levels of generalization. 

In the PEOPLE da&base it is difficult to learn a set of 
rules for predicting a country’s likely predominant religion 
given other demographic attributes without using the 

on ""'11-1 X__^ ""r""-"2"^ ,:..&^A A.". a." 
hieraichies. Thereare3u rGllgious l.a~gullGs llsK4J 101 UIG 

170 countries. The conditions making up the rules will 
likely have very low support levels (informational 
significance, &fined as number of positive examples 
satisfying the condition divided by total number of 
examples satisfying the condition) because a single 
condition that exists in most of the countries with a certain 
pmdomhntnt religion will typically be founQ at least 
occasionally, elsewhere. 

When learning rules for distinguishing between the 
religions in an unstructured format, the highest support 
level found in the entire rule base was 37% for the awkward 
condition “Literacy is 70-90% or 95-99%“, which descdbed 
26 of the 50 Roman Catholic countries, and 43 of the 
remainder of the world’s countries. In contrast structuring 
the classification of religions led to several top-level 
conditions with higher support levels. One condition, with 
a 63% support level in its ability to distinguish the 88 
Christian countries was “Population Growth Rate I 2”. 

More drastic effects wem seen at the lower levels of the 
hierarchy. In the unstructured dataset, five rules, each with 
two to five conditions, were required to define the 11 Sunni 

Muslim countries. The only one to descrii mom than 
two of the 11 countries was this set of fragmented 
CQ~~~~~p~~ 
Religion is &w&Muslim g (4 examples) 

Literacy = liW90 or less than 3W0, 
Znfant Mortality Rate is 25 to 40 or 

greater than 55per looOpeople, 
Fertility Rate is 1 to 2 or 4 to 5 or 6 to 7, 
Population Growth Rate is 1 to 3 or greater than 4. 
The ranges in each of the four conditions are divided into 

multiple segments, suggesting that this is not at all a 
strong pattern. In contrast, the structured dataset pmduced 
two rules, each with one condition, to distinguish Sunni 
Muslii countries from other predominantly Islamic 
nations. The fast, “Religion is Sunni_Muslii if Infant 
Mortality Rate 2 40”, described all but one of the positive 
examples (Jordan was the exception), and only one non- 
Sunni Islamic nation. The second, “Religion is 
Sunni-Muslim if Birth Rate is 30 to 40” alone 
discriminated Algeria, Egypt, Jordan and Tajikistan from * 
the rest of the Muslim world. 

Experiments also mdicate the practical utility of 
problem-oriented quantixation of continuous variables. 
Advantages include simpler rules that will often have 
higher acunacy than with a fixed discretization schema. xxn%“., ,&..-.-,..~A,:..~ rl:Fplurr..c -&r...o rrc Aa ..,n..,A kn”Lwl I\n VvllGu I;lliu&lG*m‘1g UalLG~bxlLL ,G&Ljl”,W “A IUG W”IIU - LJU 
an economic database, INLEN- was able set thresholds 
that would generate knowledge with high support levels. 
For example, the allocation of a country’s GNP to 
agriculture of greater than 28% (with that number genemted 
by &Merge) was a useful indicator for distinguishing 
Eastern African countries from other regions of the world. 

Conclusion 
This paper describes some novel features implemented in 4l.A mlT ChT r) n.m+,3... F,... bn,. ..,, aAn. A:on,-.~,or.r 
UlG LIWAIXI’& a,‘WZUl L”, NL”WIGU~-Z UWWVS,IJ. StNCti 
and numeric domains share the common trait that many 
organizational schemas are possible, and the selection of 
one can have an impact on the success of the discovery 
process. Structured variables provide a very useful method 
for providing learning programs with background 
information about a feature domain, when such is 
available. A schema for structuring an attribute may be 
provided either by a domain expert or by a learning system. 
The implementation of structured attributes can introduce 
the concepts of generalization, agglomeration, anchor nodes 
and multiple domain views to a discovery system. 

In large databases the structuring of nominal or numeric 
attributes can assist in the discovery process. In most 
attribute domains in which there am more than just a few 
distinct values, structuring of the domain is usually both 
possible and recommended. There will generally be a way 
to organize the values tig to some classification 
schema. This allows the import of background lmowledge, 
even to those empirical discovery engines that traditionally 
rely on a minimum of background knowledge. This 
domain knowledge, in turn, can result in the discovery of 
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relationships mom attuned to the user’s existing 
understanding of the backgtound domain through such 
techniques as the defmition of author nodes. Attribute ^L_ “A.-“z- - ic- suur;-,l: - &so “* u@.%Jj for olltput “&-&&* Doing so 
provides a means for separating the tasks of determining 
the general class of the decision and de&mining the 
specific decision within that class. 

By allowing multiple npresentations of structumd and 
numeric da@ &ptive representation selection may be 
possible, potentially leading to discovering relationships 
that cau alter a user’s preconceived notions about the 
domain. The learning engine can select mpresentations far 
the attribute domains after, rather than before the learning. 
These representations may include not only variations on 
one basis for classification, but also orthogonal 
classification hierarchies. Similarly, problemoriented 
quantization of numeric data may enhance the likelihood of 
useful results in continuous domains. 

Techniques such as anchor nodes and multiple domain 
views can help cmate an environment in which a 
representation space suitable to the problem is selected, 
while attention is focused on the levels of abstraction of 
greatest utility to the user. One area for future research is 
the development of a representation of a node’s significance 
beyond a simple anchor/non-anchor value, and the 
exploration of thresholds for determining the proper level AC A,. ..^..,., :-“d.z”.. 2.. “..“L -- ---2”” -I”- L 
“I g011wuluauu11 ill suul all GlIvuolllllGllL. 
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