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Introduction 
The goal of the Quest project at the IBM Almaden 
Research center is to develop technology to enable a 
new breed of da&intensive decision-support applica- 
tions. This paper is a capsule summary of the current 
functionality and architecture of the Quest data min- 
ing System. 

Our overall approach has been to identify basic data 
mining operations that cut across applications and 
develop fast, scalable algorithms for their execution 
(Agrawal, Imielinski, & Swami 1993a). We wanted our 
algorithms to: 

l discoveT patterns in very large databases, rather 
than simply verify that a pattern exists; 

l have a completeness property that guarantees that 
all patterns of certain types have been discovered; 

l have high performance and near-linear scaling on 
very large (multiple gigabytes) real-life databases. 

We discuss the operations of discovering associ- 
ation rules, sequential patterns, time-series cluster- 
ing, classification, and incremental mining. Due 
to space limitation, we only give highlights and 
point the reader to the relevant information for de- 
tails. Unfortunately, for the same reason, we have 
not been able to include a discussion of the re- 
lated work. Besides proceedings of the KDD, SIG- 
MOD, VLDB, and Data Engineering Conferences, 
other excellent sources of information about the data 
mining systems and algorithms include (Piatetsky- 
Shapiro & Frawley 1991) (Fayyad et aZ. 1995). 
Further information about Quest can be obtained 
from http://www.almaden.ibm.com/cs/quest. IBM 
is making the Quest technology commercially avail- 
able through the data mining product, IBM Intelligent 
Miner. 

*Current members of the Quest group. 
Q 
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Association Rules 
We introduced the problem of discovering association 
rules in (Agrawal, Imielinski, & Swami 1993b). Given 
a set of transactions, where each transaction is a set 
of literals (called items), an association rule is an ex- ~ 
pression of the form X + Y, where X and Y are sets 
of items. The intuitive meaning of such a rule is that 
transactions of the database which contain X tend to 
contain Y. An example of an association rule is: “30% 
of transactions that contain beer also contain diapers; 
2% of all transactions contain both of these items”. 
Here 30% is called the conjdence of the rule, and 2% 
the support of the rule. The problem is to find all 
association rules that satisfy user-specified minimum 
support and minimum confidence constraints. Appli- 
cations include discovering affinities for market bas- 
ket analysis and cross-marketing, catalog design, loss- 
leader analysis, store layout, customer segmentation 
based on buying patterns, etc. See (Nearhos, Roth- 
man, & Viveros 1996) for a case study of a successful 
application in health insurance. 

Apriori Algorithm 
The problem of mining association rules is decomposed 
into two subproblems (Agrawal, Imielinski, & Swami 
1993b): 

Find all combinations of items that have transaction 
support above minimum support. Call those combi- 
nations frequent itemsets. 

Use the frequent itemsets to generate the desired 
rules. The general idea is that if, say, ABCD and 
AB are frequent itemsets, then we can determine if 
the rule AB + CD holds by computing the ratio T = 
support(ABCD)/support(AB). The rule holds only 
if T > minimum confidence. Note that the rule will 
have minimum support because ABCD is frequent. 

The Apriori algorithm (Agrawal & Srikant 1994) 
used in Quest for finding all frequent itemsets is 
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procedure AprioriAlg() 
begin 

.Ll := {frequent 1-itemsets); 
for ( k := 2; Lk-1 # 0; k++ ) do { 

ck := apriO&gen(Lk-1); // New candidates 
forall transactions t in the dataset do { 

forall candidates c E ck contained in t do 
c.colmt ++; 

1 

&swer := u, Lk; 
end 

Figure 1: Apriori Algorithm 
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Figure 2: Example of a Taxonomy 

given in Figure 1. It makes multiple passes over the 
database. In the first pass, the algorithm simply counts 
item occurrences to determine the frequent 1-itemsets 
(itemsets with 1 item). A subsequent pass, say pass 
k, consists of two phases. First, the frequent itemsets 
Lk-r (the set of all frequent (k - l)-itemsets) found in 
the (k - 1)th pass are used to generate the candidate 
itemsets ck, using the apriori-gen() function. This 
function first joins &k-r with Lk-1, the joining condi- 
tion being that the lexicographically ordered first k - 2 
items are the same. Next, it deletes all those itemsets 
from the join result that have some (k-1)-subset that 
is not in Lk - 1, yielding Ck . For example, let LS be { { 1 
2 31, {l 2 4}, (1 3 41, (1 3 53, (2 3 4)). After the join 
step, Cd will be ((12 3 4}, (13 4 5) }. The prune step 
will delete the itemset {1 3 4 5) because the itemset 
(1 4 5) is not in L3. We will then be left with only (1 
2 3 41 in C4. 

The algorithm now scans the database. For each 
transaction, it determines which of the candidates in 
ck are contained in the transaction using a hash-tree 
data structure and increments the count of those can- 
didates. At the end of the pass, ck is examined to 
determine which of the candidates are frequent, yield- 
ing .&. The algorithm terminates when LI, becomes 
empty. 

Generalizations 

Very often, taxonomies (is-a hierarchies) over the items 
are available. An example of a taxonomy is shown 
in Figure 2: this taxonomy says that Jacket is-a 
Outerwear, Ski Pants is-a Outerwear, Outerwear is- 
a Clothes, etc. Users are often interested in generating 
rules that span different levels of the taxonomy. FOI 
example, we may infer a rule that people who buy Out- 
erwear tend to buy Hiking Boots from the fact that 
people bought Jackets with Hiking Boots and and Ski 
Pants with Hiking Boots. However, the support for 
the rule “Outerwear + Hiking Boots” may not be the 
sum of the supports for the rules “Jackets j Hiking 
Boots” and “Ski Pants $ Hiking Boots” since some 
people may have bought Jackets, Ski Pants and Hik- 
ing Boots in the same transaction. Also, “Outerwear 
j Hiking Boots” may be a valid rule, while “Jackets 
=+ Hiking Boots” and “Clothes + Hiking Boots” may 
not. The former may not have minimum support, and 
the latter may not have minimum confidence. This 
generalization of association rules and the algorithm 
used in Quest for finding such rules are described in 
(Srikant & Agrawal 1995). 

Another generalization of the problem of mining as- 
sociation rules is to discover rules in data containing 
both quantitative and categorical attributes. An ex- 
ample of such a “quantitative” association rule might 
be that “10% of married people between age 50 and 
60 have at least 2 cars”. We deal with quantitative at- 
tributes by fine-partitioning the values of the attribute 
and then combining adjacent partitions as necessary. 
We also have measures of partial completeness that 
quantify the information loss due to partitioning. This 
generalization and the algorithm for finding such rules 
used in Quest are presented in (Srikant & Agrawal 
1996a). 

One potential problem that users experience in 
applying association rules to real problems is that 
many uninteresting or redundant rules may be gen- 
erated along with the interesting rules. In (Srikant 
& Agrawal 1995) (further generalized in (Srikant & 
Agrawal 1996a)), a “greater-than-expected-value” in- 
terest measure was introduced, which is used in Quest 
to prune redundant rules. 

Sequential Patterns 
We introduced the problem of discovering sequential 
patterns in (Agrawal & Srikant 1995). The input data 
is a set of sequences, called data-sequences. Each data- 
sequence is a list of transactions, where each trans- 
action is a sets of items (literals). Typically there is 
a transaction-time associated with each transaction. 
A sequential pattern also consists of a list of sets of 
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items. The problem is to find all sequential patterns 
with a user-specified minimum support, where the sup- 
port of a sequential pattern is the percentage of data- 
sequences that contain the pattern. 

For example, in the database of a book-club, each 
data-sequence may correspond to all book selections 
of a customer, and each transaction to the books se- 
lected by the customer in one order. A sequential pat- 
tern might be “5% of customers bought ‘Foundation’, 
then ‘Foundation and Empire’, and then ‘Second Foun- 
dation’ “. The data-sequence corresponding to a cus- 
tomer who bought some other books in between these 
books still contains this sequential pattern; the data- 
sequence may also have other books in the same trans- 
action as one of the books in the pattern. Elements of 
a sequential pattern can be sets of items, for example, 
“ ‘Foundation’ and ‘Ringworld’, followed by ‘Founda- 
tion and Empire’ and ‘Ringworld Engineers’, followed 
by ‘Second Foundation”‘. However, all the items in an 
element of a sequential pattern must be present in a 
single transaction for the data-sequence to support the 
pattern. 

This problem was initially motivated by applications 
in the retailing industry, including attached mailing, 
add-on sales, and customer satisfaction. But the re- 
sults apply to many scientific and business domains. 
For instance, in the medical domain, a datasequence 
may correspond to the symptoms or diseases of a pa- 
tient, with a transaction corresponding to the symp- 
toms exhibited or diseases diagnosed during a visit to 
the doctor. The patterns discovered using this data 
could be used in disease research to help identify symp- 
toms/diseases that precede certain diseases. 

Generalizations 
The basic definition of sequential patterns was gen- 
eralized in (Srikant & Agrawal 1996b) to incorporate 
following features: 

Introduction of time constraints. Users often 
want to specify maximum and/or minimum time 
gaps between adjacent elements of the sequential 
pattern. For example, a book club probably does 
not care if someone bought “Foundation”, followed 
by “Foundation and Empire” three years later; they 
may want to specify that a customer should support 
a sequential pattern only if adjacent elements occur 
within a specified time interval, say three months. 

Flexible definition of a transaction. For many 
applications, it is immaterial if items in an element 
of a sequential pattern were present in two differ- 
ent transactions, as long as the transaction-times of 
those transactions are within some small time win- 
dow. That is, each element of the pattern can be 

contained in the union of the items bought in a set 
of transactions, as long as the difference between 
the maximum and minimum transaction-times is less 
than the size of a sliding time window. For exam- 
ple, if the book-club specifies a time window of a 
week, a customer who ordered the “Foundation” on 
Monday, “Ringworld” on Saturday, and then “Foun- 
dation and Empire” and “Ringworld Engineers” in 
a single order a few weeks later would still support 
the pattern “‘Foundation’ and ‘Ringworld’, followed 
by ‘Foundation and Empire’ and ‘Ringworld Engi- 
neers’ “. 

In addition, if there were taxonomies (is-a hierar- 
chies) over the items in the data, the sequential pat- 
terns could now include items across different levels of 
the taxonomy. 

See (Srikant & Agrawal 1996b) for a description of 
the GSP algorithm used in Quest for finding such gen- 
eralized sequential patterns. 

Time-Series Clustering 
Time-series data constitute a large portion of data 
stored in computers. The capability to find time-series 
(or portions thereof) that are “similar” to a given time- 
series or to be able to find groups of similar time-series 
has several applications. Examples include identify- 
ing companies with similar pattern of growth, find- 
ing products with similar selling patterns, discovering 
stocks with similar price movements, determining por- 
tions of seismic waves that are not similar to spot ge- 
ological irregularities, etc. 

We introduced a model of time-series similarity in 
(Agrawal et aE. 1995a). In this model, two time-series 
are considered to be similar if they have enough non- 
overlapping time-ordered pieces (subseries) that are 
similar. The amplitude of one of the two time-series 
is allowed to be scaled by any suitable amount and 
its offset adjusted appropriately before matching the 
other series. Two subsequences are considered similar 
if one lies within an envelope of E width around the 
other, ignoring outliers. The matching subseries need 
not be aligned along the time axis. Figure 3 captures 
the intuition underlying our similarity model. 

The matching system used in Quest is described in 
(Agrawal et al. 1995a). It consists of three main parts: 
(i) “atomic” subseries matching, (ii) long subseries 
matching, and (iii) series matching. The basic idea is 
to create a fast, indexable data structure using small, 
atomic subseries that represents all the series up to 
amplitude scaling and offset, and find atomic matches 
by doing a self-join on this structure. The initial proto- 
type used the R+-tree for this representation. A faster 
data structure described in (Shim, Srikant, & Agrawal 
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Figure 3: Illustration of Time-series matching 

1996) is now used in its place. The second stage em- 
ploys a fast algorithm for stitching atomic matches to 
form long subseries matches, allowing non-matching 
gaps to exist between the atomic matches. The third 
stage linearly orders the subseries matches found in the 
second stage to determine if enough similar pieces exist 
in the two time-series. In every stage, the system al- 
lows for the flexibility of user/system-defined matching 
parameters without sacrificing efficiency. 

Classification 
Classification is a well recognized data mining oper- 
ation and it has been studied extensively in statis- 
tics and machine learning literature (Weiss & Ku- 
likowski 1991). However, most of the current classi- 
fication algorithms have the restriction that the train- 
ing data should fit in memory. In data mining appli- 
cations, very large training sets with several million 
examples are common. We therefore wanted to de- 
sign a classifier that scales well and can handle train- 
ing data of this magnitude (without resorting to sam- 
pling/partitioning). The ability to classify larger train- 
ing data can also lead to improved classification accu- 
racy. 

SLIQ (Supervised Learning In Quest), described in 
(Mehta, Agrawal, & Rissanen 1996), is a decision tree 
classifier, designed to classify large training data. It 
uses a pre-sorting technique in the tree-growth phase. 
This sorting procedure is integrated with a breadth- 
first tree growing strategy to enable classification of 
disk-resident datasets. In the pruning phase, it uses a 
pruning strategy based on the Minimum Description 

Length (MDL) principle. The net result of these tech- 
niques is that, given training data that can be han- 
dled by another decision tree classifier, SLIQ exhibits 
the same accuracy characteristics, but executes much 
faster and produces smaller trees. Moreover, SLIQ 
can potentially obtain higher accuracies by classifying 
larger (disk-resident) training datasets which cannot 
be handled by other classifiers. 

While SLIQ was the first classifier to address sev- 
eral issues in building a fast scalable classifier and 
it gracefully handles disk-resident data that are too 
large to fit in memory, it still requires some infor- 
mation to stay memory-resident. Furthermore, this 
information grows in direct proportion to the num- 
ber of input records, putting a hard-limit on the 
size of training data. We have recently designed a 
new decision-tree-based classification algorithm, called 
SPRINT (Scalable PaRallelizable INduction of deci- 
sion !lkees) that for the first time removes all of the 
memory restrictions, and is fast and scalable and eas- 
ily parallelizable. The algorithm, presented in (Shafer, 
Agrawal, & Mehta 1996)) can classify data sets irre- 
spective of the number of classes, attributes, and ex- 
amples (records), making it an attractive tool for data 
mining. 

Increment al Mining 
As the data mining technology is applied in the pro- 
duction mode, the need for incremental/active mining 
arises (Agrawal & Psaila 1995). Rather than applying 
a mining algorithm to the whole data, the data is first 
partitioned according to time periods. The granularity 
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of the time period is application-dependent. The min- 
ing algorithm is now applied to each of the partitioned 
data sets and patterns are obtained for each time pe- 
riod. These patterns are collected into a database. In 
this database, each statistical parameter of a pattern 
will have a sequence of values, called the history of the 
parameter for that pattern. We can now query the 
database using predicates that select patterns based 
on the shape of the history of some or all parameters. 
A shape query language is presented for this purpose 
in (Agrawal et cd. 1995b). 

The user can specify triggers over the database in 
which the triggering condition is a query on the shape 
of the history. As fresh data comes in for the current 
time period, the mining algorithm is run over this data, 
and the database is updated with the generated pat- 
terns. This update causes the histories of the patterns 
to be extended. This, in turn, may cause the trigger- 
ing condition to be satisfied for some patterns and the 
corresponding actions to be executed. 

Such active systems can be used, for instance, to 
build early warning systems for spotting trends in the 
retail industry. For example, if we were mining associa- 
tion rules, we would have histories for the support and 
confidence of each rule. Following the promotion for 
an item X, the user may specify a notification trigger 
on the rule X j Y; the triggering condition being that 
the support history remains stable, but the confidence 
history takes the shape of a downward ramp. Firing 
of this trigger will signify that if the goal of promoting 
X was to drag the sale of Y, it was not fulfilled. The 
loyalists continued to buy X and Y together, but the 
new buyers cherry-picked X. 

Parallelism 
Given that mining can involve very large amounts of 
data, parallel algorithms are needed. Quest algorithms 
have been parallelized to run on IBM’s shared-nothing 
multiprocessor SP2. The parallel implementation of 
the mining of association rules is described in (Agrawal 
& Shafer 1996). This implementation shows linear 
scale-up for association rules. Mining of sequential 
patterns is also parallelized using similar techniques. 
We have also parallelized the SPRINT classification 
algorithm (Shafer, Agrawal, & Mehta 1996), where 
all processors work together to build a single classi- 
fication model. Measurements from these implementa- 
tions show excellent scaleup, speedup and sizeup char- 
acteristics. 

System Architecture 
Figure 4 shows the system architecture of the Quest 
system. The mining algorithms run on the server close 
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to the data source. Users interact with the system 
through a GUI that can run on the same work-station 
or on a different client machine. There is an open API 
using which the user can optionally import results of 
any mining operation into software of choice. 

An interesting aspect of the Quest architecture is 
its I/O architecture. There is a standard stream in- 
terface defined for all accesses to input, insulating the 
algorithm code from data repository details, which are 
encapsulated in a data access API. Thus, it is easy to 
add new data repository types to the Quest system. 

The Quest system runs both on AIX and MVS plat- 
forms, against data in flat files as well as DB2 family 
of database products. Databases can be accessed in 
a loosely-coupled mode using dynamic SQL. However, 
for better performance, it is possible to run the min- 
ing algorithm in a tightly-coupled mode described in 
(Agrawal & Shim 1996). 

Future Directions 

We plan to continue on the current path of identify- 
ing new data mining operations and developing fast 
algorithms for their execution. Two operations that 
we are currently focusing on are deviation detection 
(Aming & Agrawal 1996) and segmentation of high- 
dimensional data. We are also interested in mining 
data types other than structured data, such as text, 
particularly in the context of the world-wide web. Fi- 
nally, we are also exploring the interaction between 
discovery-driven and verification-driven data mining, 
especially in OLAP databases. 
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