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Introduction 
The main objective of the RataMine is to provide ap 
plication development interface to develop knowledge 
discovery applications on the top of large databases. 

Current database systems have been designed 
mainly to support business applications. The success 
of SQL capitalized on a small number of primitives 
which are sufficient to support a vast majority of ap 
plications today. Unfortunately this is not enough to 
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ing with the so called rule and knowledge discovery. 
The goal of the DataMine and our work is to make 
the next step in the development of DBMS and pro- 
vide much needed support for the rule discovery appli- 
cations. 

A typical knowledge discovery application starts 
with rule discovery, but rules are not necessarily the 
end products. For example: 

1. 

2. 

3. 

Finding the “best” candidates for a marketing pro- 
motion package from a large population stored in 
the database; for example, the best candidates for 
certain type of insurance may be those who frequent 
health clubs and are under 40 etc. 

Finding any strong rules between the age, disease, 
and residence area, such as “40% of heart disease 
case in NJ occur in patients older than 50” (rules 
are statements of the form ‘if condition then conse- 
quentn .) 

Finding the most distinctive features (as opposed to 
other states) of NJ heart patients 

Finding rules is only the first step in a knowledge dis- 
covery application. Typically, a user wants to embed 
!~~f-----~ 1. XL-! mrormarron ootamed from the rules in a larger pro- 
gram. For instance, in target marketing applications a 
company may have a fixed promotion budget and can 
only offer some limited number of promotions. A pro- 
motion mailing application must rank the best candi- 
dates for mailing and go “down the list” of most likely 

candidates until all promotion offerings are taken. To 
accomplish such a task we need an integrated API for 
knowledge discovery applications, integrated with the 
programming language (like C) and with the database 
query language (such as SQL). 

There is no commercial system nor research proto- 
type today which would offer such integrated API for 
knowledge discovery applications. Today, most sys- 
tems offer “stand alone” features using tree classifiers, 
neural nets: and meta-pattern generators, Such eys- 
terns cannot be embedded into a large application and 
typically offer just one knowledge discovery feature. 
The situation today is thus very similar to the situa- 
tion in DBMS in the early sixties when each applica- 
tion had to build from scratch, without the benefit of 
dedicated database primitives provided later by SQL 
and relational database APIs. 

The objective of DataMine is to fill this gap and 
bring the database support for knowledge discovery 
applications to the same level that ezista today for busi- 
ness applications. What we offer and plan to offer can 
be summarized as follows: 

Extension of SQL, called M-SQL to generate and se- 
lectively retrieve sets of rules from a large database. 

Embedding of M-SQL in the general host language 
(in a similar way as SQL is embedded in C) to pro- 
vide API for Knowledge and Data Discovery appli- 
cations. 

Thus, just as SQL does, we are supporting two ba- 
sic modes: free form querying and embedded querying. 
Free form querying allows the user to perform inter- 
active and exploratory data analysis, while embedded 
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rely on rule discovery, but use rules in some further 
computations. 

Key Features 
The key features of the DataMine system include: 
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Extension of SQL to handle rule mining applications 

The proposed extension uses just one additional 
primitive - the MINE operator. 

Query Optimizer to compile M-SQL queries into ef- 
ficient execution plans. 

Application Programming Interface (API) with M- 
SQL embedded into C++ host programming lan- 
guage 

Both in the query language as well as in the applica- 
tion programming interface, a single rzlle, and a set of 
rzlles are the basic objects which are manipulated and 
queried. Rules are defined as in (Agrawal, Imielinski, 
& Swami 1993). A rule is an expression of the form: 

Body --J Consequent 
where Body is a conjunction of descriptors and con- 

sequent is a descriptor. A descriptor is a pair (At- 
tribute, Value), and is satisfied by those tuples in the 
database for which Attribute equals Value. (When the 
domain of Ai is continuous we also allow ranges of val- 
ues to also appear as descriptors. Thus, for example, 
(Age IN < 30,40 >) is a legal descriptor as well). At- 
tributes could &her e-&t, in the database nrieinallv --.----- ---o-----J 
or could be a user defined method, in which case the 
evaluation for the method is done at run time. 

Additionally, each rule is specified by two parame- 
ters: support and confidence. The support of the rule 
is defined as a number of tuples which satisfy the body 
of the rule. The confidence is defined as the ratio of 
the number of all tuples which satisfy both the body 
and the consequent to the number of all tuples which 
satisfy just the body of the rule. 

Eager Evaluation: Since rule queries may possibly 
take a very long time to execute and in addition, may 
return very large rule sets, (the rule generation 
problem is in general of exponential worst case 
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we have implemented a new mode of query evaluation 
in which the first few rules are generated as soon as 
possible, and then a certain steady rate of rule 
production is ensured. This enables the system to 
keep users interested and let the user cognitively 
process the returned rules while other rules are 
generated. 
n---l - n-- ~~~~ v ~~ mule query mmguage: The rule query ianguage, 
M-SQL, (the M stands for Mining) is built as an 
extension of SQL by including a small set of 
primitives for data mining. A typical M-SQL query is 
of the form: 

Select 
From Mine(C) 

Where 
D-CONDITION 
si ( support < $2 
cl < Confidence < c2 

C can be a persistent class or a table defined by a 
“Mine-Free” SQL expression. Mine(C) returns the set 
of all rules as defined above, which are true in C. 
This set could be very large, but in the presence of 
constraints and D-Conditions (defined below), an 
nr\t;m:nnA c,lnr\r:thm ,,PT.~,- os.t..nll.. rramaratr\o cl.., "~"'~AA'YUA Cll~"LI"LIIII 111;."Gil ab"uarrJ gwmxorr;~ "IICZ 

whole set. Thus, Mine is viewed as a logical operator. 
Let MUST, MAY and TARGET be sets of 
descriptors. D-CONDITION is defined as a 
disjunction of atoms of the following form: 

(MUST c Body 2 MAY) 
AND (Consequent IN TARGET) 

This allows specification of conditions imposed on the 
bodies as well as on consequents of target rules. 
For example, the query: “Find all rules in Table T 
involving the Attributes(methods) Disease, Age and 
ClaimAmt, which have a confidence of at least 50%” 
might be expressed as: 

select * 
from Mine(T) R 
where 

R.Bodp < C(Disease=*),(Age=*),(ClaimAmt=*)) 
and {I < R.Body 
and R.Consequent II 

~(Disease=*),(Age=*),(ClaimAmt=*)) 
end R.Confidence > 0.5 

The “from” line in the query allows substitution of 
Mine(T) for R, for notation simplicity. The above 
query explicitly disallows rules with empty bodies. 
However, a rule with an empty body does state a fact 
about the database, for example, a rule like 0 * 
(Sex = ‘Male’) (30%, 239) merely states that out 
of the database of 239 objects, 30 percent are males. 
Queries are compiled and executed using an efficient 
algorithm for rule generation (in the case when the 
data mining mode is used). We describe below the 
two lines of development we have chosen for the 
system, i.e. Free Form Querying, and Embedded 
querying, which complement each other and are each 
useful in their own ways. 

Free Form Querying 
Free form querying works in two modes: data mining 
mode and rule mining modt. First, the user 
formulates a rule query. The rule query is specified in 
M-SQL described above and describes the conditions 
which the rule should satisfy in order to be included 
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in the answer. The airrent prototype ii;ilphients 
only the graphical “query by example” style version 
of the language. Then, If a query is processed in the 
data mining mode, it is evaluated on the top of the 
original database and the requested rules are 
generated from data in the run time of the query. In 
the rzsle mining mode, it is assumed that rules have 
been generated earlier and are stored in a rule base. 
In this case query behaves like a pattern against 
which existing rules are matched and retrieved from 
the rulebase. 

Data Mining Mode This mode forms the core of 
the mining engine, which is responsible for 
transforming the query into an optimized algorithm 
for rule generation depending on the search space 
requested by the user. If the user has some 
understanding of the data set, he can exercise greater 
control over the mining process by specifying a user 
defined discretization function to be applied to 
continuous attributes (or one of the several builtin 
choices), and for instance, restricting the rules from 
containing redundant information by specifying 
dependencies that exist among the attributes. On the 
other hand, for a novice user, who is trying to gain an 
understanding of the data set, the mining engine can 
run in a highly interactive mode, where a graphical 
interface is constantly updated with progress 
information from the system (see “Exploratory 
Mining Scenario” later in this paper), and the user 
can query the ruiebase as it is being generated, 
narrow his preferences about what he wants, and 
--..-- Lh, -..--.. 11 . . ..l. ,.-“,.A &LA ,....4......“. -..-A p’uuc CUC: ““~IQII Lulr;-~prx.r; u&G JyJbI;III UlUBb 

generate. Figure 1 shows a screen snapshot of this 
mode. 

Rule Mining Mode The rule mining mode helps 
to browse through the vast numbers of rules which 
can be generated from a database. In addition to 
being just a retriever/browser, this mode contains a 
builtin applications suite or “Macros” (described in 
more detail later) which run on top of the rulebase, 
and can help the user query the rulebase in a very 
effective manner It also lets the user shuflle back and --_------e ~. ~~~~ 
forth between the rulebase and database asking for 
tuples that satisfied or violated a given rule and 
vice-versa. Figure 2 shows one of the screen shots of 
this mode. 

Embedded Querying: API 

We demonstrate a number of pilot knowledge 
discovery applications which were developed using the 
proposed API, like classification, typicality and 
“characteristic of’ applications. Using these 

Figure 1: DataMine system in online-mining mode. 

Figure 2: Rule Manger - query based mining. 

258 KDD-96 



applications one can find the “moat typical” heart 
patients, the moat characteristic features of smokers 
from New Jersey or the beat candidates for life 
insurance in a given population sub-category. One 
can also “mine around a rule”, when a user can look 
for rules which are similar but stronger than a given 
one.The key aspect of DataMine is that it provides 
application programming interface to develop new 
discovery applications. 
Our API design mirrors the design of C++ with SQL 
calls, using standard host language/SQL interface 
involving cursors. We plan to offer a similar interface 
between C++ and M-SQL. This requires adding an 
extra class of rules and binding cursor variables which 
range through rule sets to that rule class. The rule 
class will be a generic library class with methods 
directly corresponding to the specific rule attributes. 
In addition, several visualization primitives are 
provided which to graphically display the rules, or to 
display a bar graph based on a certain attribute, or 
the confidence and support of a set of rules. 

Scenarios of Use 
In this section we briefly describe what you will see in 
the Demo of the existing prototype and some of the 
features which will be added very soon. The first four 
scenarios are fully supported, the fifth is currently 
“under construction”. 
Scenario 1: Mining around a rule 
User starts from a specific rule which he wants to 
check/verify against the data. DataMine system 
additionally offers a possibility of mining around a 
ruZe, that is not only verifying whether the original 
rule holds but also suggesting other, perhaps stronger 
rules which are “close” to the original rule which the 
user wanted to verify. 
Scenario 2: Rule Querying 
User can query and obtain all rules having certain 
body, consequent, support, confidence, or a mixture 
of one of more the above criteria. Once the rules are 
generated, the user can pick a rule and further mine 
around it, as in the previous scenario. Alternately, 
(s)he can obtain all the records in the database which 
satisfy(violate) the rule, select a subset of these 
records, look for further rules there etc. This process 
crosses the border between the rulebase and the 
A,C,l-..,“” -rJnrr G-n” ..,A :, h:nhlrr ;n+nrw.+;.ra ualro”cuG lUClUJ “LL~,xx3 ouu AU Uu16Y’J IU”~Icab”A.~. 
Scenario 3: Exploratory Mining 
This mode is intended for the user who knows very 
little about the data, probably not enough to even 
formulate a query. In this mode, the system looks for 
all rules between all attributes in the database. This 
is computationally expensive, but we have 

implemented this process in a very incremental way 
to keep the user interested. Such a user will see the 
database with tuples (records) changing colors, while 
mining process is taking place. The colors reflect how 
many rules, discovered so far, a given record in the 
database satisfies. The “hottest” (red color) tuples 
satisfy most of the rules and attract user’s interest. 
The user can then click on such a record and see all 
the rules which such a record satisfies. In addition, a 
scatter plot of the confidence vs. support of the rules 
(see fig. 1) is also constantly updated. The user can 
zoom a section of this plot and see the rules contained 
in that confidence and support range. These queries 
can further lead to mining around a rule if some rule 
looks particularly interesting to the user. 
Scenario 4: Typicality and Atypicality 
This is an application which we have built using our 
API as a proof of concept. Prom the user specified 
subset of records it selects the moat “typical” and the 
moat “atypical” records. Typical records are the 
records which satisfy moat of the rules, atypical 
records violate moat of the rules. Coloring is used 
again to make a distinction between typical and 
atypical records (atypical are blue, typical are red). 
This application helps in identifying database 
irregularities and can be useful, for example, in fraud 
detection. 
Scenario 5: Application Development 
User constructs a new application on the top of the 
set of rules generated by a rule query. The graphical 
API helps the user to write a C program which uses 
rules as first class objects. 

System Platform 
The DataMine prototype has been built keeping in 
mind the above features. It currently generates 
propositional rules matching a specified set of 
patterns (The patterns could be wildcard, in which 
case it generates all rules). The mining engine has 
been implemented in C (about 15,000 lines of code), 
and the front and back end GUI has been developed 
using Tel-Tk (about 20,000 lines of code). It can read 
data from Ascii files or from a database directly, 
without any need for preprocessing by the user. The 
database system used currently is Sybase 10.2, but 
the design ensures a “loos&coupling” between the 
I..L^l....“” --A Al.” --,:-, I^ Lh^L ,l..,A,, :.. -..~..l.., Ut&bb”bJt: allu cut: twguq B” CUQL y’ugljug 1u IU”UUIc;I) 
for other database systems is very straightforward. 
The systems comes with a smart browser which can 
let a user query rules by example, perform mining 
‘ar~nd” a first guess, and a pilot suite of 
applications which treat rules as first class objects, 
and we believe should be part of core M-SQL. 
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Currently, the system runs on Solaris 2.5 on an 
UltraSparc 170E, but in the near future, we hope to 
-__- _ ---- 1,-11--J --^--I-- -r IL:- -,,“-:Lh- ^.. . run a paranenzeu very1011 “1 arms argvrlrnm on Q 
cluster of 6 UltraSparcs connected via a gigabit 
switch. 

Performance 
The DataMine engine can be run in either a 
“Memory Saver Mode” when it uses more economical 
data structures (at the coat of time) which conserve 
memory (less swapping), or a “Performance Mode” 
where it uses slightly more memory intensive data 
structures! but performs much better. The idea is 
that if the data is relatively small (see fig 3 below), 
then it makes sense to make full use of memory 
available. The graph below was obtained by mining 
different fractions of a 1.2 million record database 
containing seven attributes in both modes, and 
comparing the performance. The steep rise in the 
time taken by performance mode (from 50% to 100% 
of data size) is explained by the fact that extensive 
swapping began at that point. 

Figure 3: Performance comparison in two modes of 
operation. 

Comparison with Relevant Systems 
Systems which are compatible in scope include the 
DBMiner system (Han et al. 1996b) which is built on 
top of DMQL (H an et al. 1996a), another query 
laneilnm for rule eenaration -----o---o- --- --_- o---------* 
However, our system is somewhat different in 
language design by providing a specific language 
primitive “Mine” as an extension to SQL. Besides, a 
query expressed in our language can work in rule 
generation (data-mining) mode as well as rule 
retrieval (rule-mining) mode. 
In addition, this is, to our knowledge the first 
prototype of a system which provides an API to 
facilitate building complex data mining applications. 

Conclusions 
We believe that a “Query Based” approach is 
particulariy suited for the data mining with human in 
the loop, where the human actively participates in 
the data mining process by changing and modifying 
the data mining requests. It makes an effective tool 
to provide users with precise specification of their 
mining interests, and also helps to deal with 
potentially very large results of data mining. 
There is a wide variety of applications which are 
using knowledge discovery techniques today. 
Typically, each application is handled by a specialized 
“stand alone” svstem which is develoned from L<---------- ..------ -~ ~~~ -m-r ~- ------ 
“scratch”. The objective of our API design is to 
provide a platform which will make the knowledge 
discovery application development faster and easier. 
SQL and relational APIs increased programmer’s 
productivity for business applications, DataMine will 
offer similar advantages for knowledge discovery 
application developers. 
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