
DataMine: Application Programming Interface and Query Language
for Database Mining

Tomasz Imielinski and Aashu Virmani and Amin Abdulghani
{imielins, avirmani,aminabdu}@cs.rutgers.edu

Department of Computer Science
Rutgers University

New Brunswick, NJ 08903
Phone: (908) 445 3551, Fax: (908) 445 0537

Introduction
The main objective of the RataMine is to provide ap
plication development interface to develop knowledge
discovery applications on the top of large databases.

Current database systems have been designed
mainly to support business applications. The success
of SQL capitalized on a small number of primitives
which are sufficient to support a vast majority of ap
plications today. Unfortunately this is not enough to
rantrrrrr the mn~roino fimilv nf ~PUI annl;rat.;nna rlnal “..y”u*.. “a.., “*““*b*Yb *...‘*‘aJ v. YYyy*.....“*V**Y -“%.a=
ing with the so called rule and knowledge discovery.
The goal of the DataMine and our work is to make
the next step in the development of DBMS and pro-
vide much needed support for the rule discovery appli-
cations.

A typical knowledge discovery application starts
with rule discovery, but rules are not necessarily the
end products. For example:

1.

2.

3.

Finding the “best” candidates for a marketing pro-
motion package from a large population stored in
the database; for example, the best candidates for
certain type of insurance may be those who frequent
health clubs and are under 40 etc.

Finding any strong rules between the age, disease,
and residence area, such as “40% of heart disease
case in NJ occur in patients older than 50” (rules
are statements of the form ‘if condition then conse-
quentn .)

Finding the most distinctive features (as opposed to
other states) of NJ heart patients

Finding rules is only the first step in a knowledge dis-
covery application. Typically, a user wants to embed
!~~f-----~ 1. XL-! mrormarron ootamed from the rules in a larger pro-
gram. For instance, in target marketing applications a
company may have a fixed promotion budget and can
only offer some limited number of promotions. A pro-
motion mailing application must rank the best candi-
dates for mailing and go “down the list” of most likely

candidates until all promotion offerings are taken. To
accomplish such a task we need an integrated API for
knowledge discovery applications, integrated with the
programming language (like C) and with the database
query language (such as SQL).

There is no commercial system nor research proto-
type today which would offer such integrated API for
knowledge discovery applications. Today, most sys-
tems offer “stand alone” features using tree classifiers,
neural nets: and meta-pattern generators, Such eys-
terns cannot be embedded into a large application and
typically offer just one knowledge discovery feature.
The situation today is thus very similar to the situa-
tion in DBMS in the early sixties when each applica-
tion had to build from scratch, without the benefit of
dedicated database primitives provided later by SQL
and relational database APIs.

The objective of DataMine is to fill this gap and
bring the database support for knowledge discovery
applications to the same level that ezista today for busi-
ness applications. What we offer and plan to offer can
be summarized as follows:

Extension of SQL, called M-SQL to generate and se-
lectively retrieve sets of rules from a large database.

Embedding of M-SQL in the general host language
(in a similar way as SQL is embedded in C) to pro-
vide API for Knowledge and Data Discovery appli-
cations.

Thus, just as SQL does, we are supporting two ba-
sic modes: free form querying and embedded querying.
Free form querying allows the user to perform inter-
active and exploratory data analysis, while embedded
--.-me A,, w-^-o :-I-- &-..,^A ___^^ La ---- ^--l:^-L’̂ -- -lZ-L
yutxyulg y’““‘u~s Lcabures 1” cull apy”c;au”ua wuIsxl

rely on rule discovery, but use rules in some further
computations.

Key Features
The key features of the DataMine system include:

256 KDD-96

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Extension of SQL to handle rule mining applications

The proposed extension uses just one additional
primitive - the MINE operator.

Query Optimizer to compile M-SQL queries into ef-
ficient execution plans.

Application Programming Interface (API) with M-
SQL embedded into C++ host programming lan-
guage

Both in the query language as well as in the applica-
tion programming interface, a single rzlle, and a set of
rzlles are the basic objects which are manipulated and
queried. Rules are defined as in (Agrawal, Imielinski,
& Swami 1993). A rule is an expression of the form:

Body --J Consequent
where Body is a conjunction of descriptors and con-

sequent is a descriptor. A descriptor is a pair (At-
tribute, Value), and is satisfied by those tuples in the
database for which Attribute equals Value. (When the
domain of Ai is continuous we also allow ranges of val-
ues to also appear as descriptors. Thus, for example,
(Age IN < 30,40 >) is a legal descriptor as well). At-
tributes could &her e-&t, in the database nrieinallv --.----- ---o-----J
or could be a user defined method, in which case the
evaluation for the method is done at run time.

Additionally, each rule is specified by two parame-
ters: support and confidence. The support of the rule
is defined as a number of tuples which satisfy the body
of the rule. The confidence is defined as the ratio of
the number of all tuples which satisfy both the body
and the consequent to the number of all tuples which
satisfy just the body of the rule.

Eager Evaluation: Since rule queries may possibly
take a very long time to execute and in addition, may
return very large rule sets, (the rule generation
problem is in general of exponential worst case
rnmnl~vi~v in tmma nf nm-nhnr nf at.t.rihrrt.m invnlvd~ .dv”.&w*Y1Y’J IY ““AI..” VI a...IA*Y..* ..* . ..YY~.YU”“” ‘“““‘U,
we have implemented a new mode of query evaluation
in which the first few rules are generated as soon as
possible, and then a certain steady rate of rule
production is ensured. This enables the system to
keep users interested and let the user cognitively
process the returned rules while other rules are
generated.
n---l - n-- ~~~~ v ~~ mule query mmguage: The rule query ianguage,
M-SQL, (the M stands for Mining) is built as an
extension of SQL by including a small set of
primitives for data mining. A typical M-SQL query is
of the form:

Select
From Mine(C)

Where
D-CONDITION
si (support < $2
cl < Confidence < c2

C can be a persistent class or a table defined by a
“Mine-Free” SQL expression. Mine(C) returns the set
of all rules as defined above, which are true in C.
This set could be very large, but in the presence of
constraints and D-Conditions (defined below), an
nr\t;m:nnA c,lnr\r:thm ,,PT.~,- os.t..nll.. rramaratr\o cl.., "~"'~AA'YUA Cll~"LI"LIIII 111;."Gil ab"uarrJ gwmxorr;~ "IICZ

whole set. Thus, Mine is viewed as a logical operator.
Let MUST, MAY and TARGET be sets of
descriptors. D-CONDITION is defined as a
disjunction of atoms of the following form:

(MUST c Body 2 MAY)
AND (Consequent IN TARGET)

This allows specification of conditions imposed on the
bodies as well as on consequents of target rules.
For example, the query: “Find all rules in Table T
involving the Attributes(methods) Disease, Age and
ClaimAmt, which have a confidence of at least 50%”
might be expressed as:

select *
from Mine(T) R
where

R.Bodp < C(Disease=*),(Age=*),(ClaimAmt=*))
and {I < R.Body
and R.Consequent II

~(Disease=*),(Age=*),(ClaimAmt=*))
end R.Confidence > 0.5

The “from” line in the query allows substitution of
Mine(T) for R, for notation simplicity. The above
query explicitly disallows rules with empty bodies.
However, a rule with an empty body does state a fact
about the database, for example, a rule like 0 *
(Sex = ‘Male’) (30%, 239) merely states that out
of the database of 239 objects, 30 percent are males.
Queries are compiled and executed using an efficient
algorithm for rule generation (in the case when the
data mining mode is used). We describe below the
two lines of development we have chosen for the
system, i.e. Free Form Querying, and Embedded
querying, which complement each other and are each
useful in their own ways.

Free Form Querying
Free form querying works in two modes: data mining
mode and rule mining modt. First, the user
formulates a rule query. The rule query is specified in
M-SQL described above and describes the conditions
which the rule should satisfy in order to be included

sYstem.5 for Mining Large Databases 257

in the answer. The airrent prototype ii;ilphients
only the graphical “query by example” style version
of the language. Then, If a query is processed in the
data mining mode, it is evaluated on the top of the
original database and the requested rules are
generated from data in the run time of the query. In
the rzsle mining mode, it is assumed that rules have
been generated earlier and are stored in a rule base.
In this case query behaves like a pattern against
which existing rules are matched and retrieved from
the rulebase.

Data Mining Mode This mode forms the core of
the mining engine, which is responsible for
transforming the query into an optimized algorithm
for rule generation depending on the search space
requested by the user. If the user has some
understanding of the data set, he can exercise greater
control over the mining process by specifying a user
defined discretization function to be applied to
continuous attributes (or one of the several builtin
choices), and for instance, restricting the rules from
containing redundant information by specifying
dependencies that exist among the attributes. On the
other hand, for a novice user, who is trying to gain an
understanding of the data set, the mining engine can
run in a highly interactive mode, where a graphical
interface is constantly updated with progress
information from the system (see “Exploratory
Mining Scenario” later in this paper), and the user
can query the ruiebase as it is being generated,
narrow his preferences about what he wants, and
--..-- Lh, -..--.. 11l. ,.-“,.A &LA ,....4......“. -..-A p’uuc CUC: ““~IQII Lulr;-~prx.r; u&G JyJbI;III UlUBb

generate. Figure 1 shows a screen snapshot of this
mode.

Rule Mining Mode The rule mining mode helps
to browse through the vast numbers of rules which
can be generated from a database. In addition to
being just a retriever/browser, this mode contains a
builtin applications suite or “Macros” (described in
more detail later) which run on top of the rulebase,
and can help the user query the rulebase in a very
effective manner It also lets the user shuflle back and --_------e ~. ~~~~
forth between the rulebase and database asking for
tuples that satisfied or violated a given rule and
vice-versa. Figure 2 shows one of the screen shots of
this mode.

Embedded Querying: API

We demonstrate a number of pilot knowledge
discovery applications which were developed using the
proposed API, like classification, typicality and
“characteristic of’ applications. Using these

Figure 1: DataMine system in online-mining mode.

Figure 2: Rule Manger - query based mining.

258 KDD-96

applications one can find the “moat typical” heart
patients, the moat characteristic features of smokers
from New Jersey or the beat candidates for life
insurance in a given population sub-category. One
can also “mine around a rule”, when a user can look
for rules which are similar but stronger than a given
one.The key aspect of DataMine is that it provides
application programming interface to develop new
discovery applications.
Our API design mirrors the design of C++ with SQL
calls, using standard host language/SQL interface
involving cursors. We plan to offer a similar interface
between C++ and M-SQL. This requires adding an
extra class of rules and binding cursor variables which
range through rule sets to that rule class. The rule
class will be a generic library class with methods
directly corresponding to the specific rule attributes.
In addition, several visualization primitives are
provided which to graphically display the rules, or to
display a bar graph based on a certain attribute, or
the confidence and support of a set of rules.

Scenarios of Use
In this section we briefly describe what you will see in
the Demo of the existing prototype and some of the
features which will be added very soon. The first four
scenarios are fully supported, the fifth is currently
“under construction”.
Scenario 1: Mining around a rule
User starts from a specific rule which he wants to
check/verify against the data. DataMine system
additionally offers a possibility of mining around a
ruZe, that is not only verifying whether the original
rule holds but also suggesting other, perhaps stronger
rules which are “close” to the original rule which the
user wanted to verify.
Scenario 2: Rule Querying
User can query and obtain all rules having certain
body, consequent, support, confidence, or a mixture
of one of more the above criteria. Once the rules are
generated, the user can pick a rule and further mine
around it, as in the previous scenario. Alternately,
(s)he can obtain all the records in the database which
satisfy(violate) the rule, select a subset of these
records, look for further rules there etc. This process
crosses the border between the rulebase and the
A,C,l-..,“” -rJnrr G-n” ..,A :, h:nhlrr ;n+nrw.+;.ra ualro”cuG lUClUJ “LL~,xx3 ouu AU Uu16Y’J IU”~Icab”A.~.
Scenario 3: Exploratory Mining
This mode is intended for the user who knows very
little about the data, probably not enough to even
formulate a query. In this mode, the system looks for
all rules between all attributes in the database. This
is computationally expensive, but we have

implemented this process in a very incremental way
to keep the user interested. Such a user will see the
database with tuples (records) changing colors, while
mining process is taking place. The colors reflect how
many rules, discovered so far, a given record in the
database satisfies. The “hottest” (red color) tuples
satisfy most of the rules and attract user’s interest.
The user can then click on such a record and see all
the rules which such a record satisfies. In addition, a
scatter plot of the confidence vs. support of the rules
(see fig. 1) is also constantly updated. The user can
zoom a section of this plot and see the rules contained
in that confidence and support range. These queries
can further lead to mining around a rule if some rule
looks particularly interesting to the user.
Scenario 4: Typicality and Atypicality
This is an application which we have built using our
API as a proof of concept. Prom the user specified
subset of records it selects the moat “typical” and the
moat “atypical” records. Typical records are the
records which satisfy moat of the rules, atypical
records violate moat of the rules. Coloring is used
again to make a distinction between typical and
atypical records (atypical are blue, typical are red).
This application helps in identifying database
irregularities and can be useful, for example, in fraud
detection.
Scenario 5: Application Development
User constructs a new application on the top of the
set of rules generated by a rule query. The graphical
API helps the user to write a C program which uses
rules as first class objects.

System Platform
The DataMine prototype has been built keeping in
mind the above features. It currently generates
propositional rules matching a specified set of
patterns (The patterns could be wildcard, in which
case it generates all rules). The mining engine has
been implemented in C (about 15,000 lines of code),
and the front and back end GUI has been developed
using Tel-Tk (about 20,000 lines of code). It can read
data from Ascii files or from a database directly,
without any need for preprocessing by the user. The
database system used currently is Sybase 10.2, but
the design ensures a “loos&coupling” between the
I..L^l....“” --A Al.” --,:-, I^ Lh^L ,l..,A,, :.. -..~..l.., Ut&bb”bJt: allu cut: twguq B” CUQL y’ugljug 1u IU”UUIc;I)
for other database systems is very straightforward.
The systems comes with a smart browser which can
let a user query rules by example, perform mining
‘ar~nd” a first guess, and a pilot suite of
applications which treat rules as first class objects,
and we believe should be part of core M-SQL.

systems for Mining Large Databases 259

Currently, the system runs on Solaris 2.5 on an
UltraSparc 170E, but in the near future, we hope to
-__- _ ---- 1,-11--J --^--I-- -r IL:- -,,“-:Lh- ^.. . run a paranenzeu very1011 “1 arms argvrlrnm on Q
cluster of 6 UltraSparcs connected via a gigabit
switch.

Performance
The DataMine engine can be run in either a
“Memory Saver Mode” when it uses more economical
data structures (at the coat of time) which conserve
memory (less swapping), or a “Performance Mode”
where it uses slightly more memory intensive data
structures! but performs much better. The idea is
that if the data is relatively small (see fig 3 below),
then it makes sense to make full use of memory
available. The graph below was obtained by mining
different fractions of a 1.2 million record database
containing seven attributes in both modes, and
comparing the performance. The steep rise in the
time taken by performance mode (from 50% to 100%
of data size) is explained by the fact that extensive
swapping began at that point.

Figure 3: Performance comparison in two modes of
operation.

Comparison with Relevant Systems
Systems which are compatible in scope include the
DBMiner system (Han et al. 1996b) which is built on
top of DMQL (H an et al. 1996a), another query
laneilnm for rule eenaration -----o---o- --- --_- o---------*
However, our system is somewhat different in
language design by providing a specific language
primitive “Mine” as an extension to SQL. Besides, a
query expressed in our language can work in rule
generation (data-mining) mode as well as rule
retrieval (rule-mining) mode.
In addition, this is, to our knowledge the first
prototype of a system which provides an API to
facilitate building complex data mining applications.

Conclusions
We believe that a “Query Based” approach is
particulariy suited for the data mining with human in
the loop, where the human actively participates in
the data mining process by changing and modifying
the data mining requests. It makes an effective tool
to provide users with precise specification of their
mining interests, and also helps to deal with
potentially very large results of data mining.
There is a wide variety of applications which are
using knowledge discovery techniques today.
Typically, each application is handled by a specialized
“stand alone” svstem which is develoned from L<---------- ..------ -~ ~~~ -m-r ~- ------
“scratch”. The objective of our API design is to
provide a platform which will make the knowledge
discovery application development faster and easier.
SQL and relational APIs increased programmer’s
productivity for business applications, DataMine will
offer similar advantages for knowledge discovery
application developers.

References
Agrawal, R., and Srikant, R. 1994. Fast algorithms

----- ^.
for mining association ruies. in VlfUSY4.

Agrawal, R.; Ghosh, S.; Imielinski, T.; Iyer, B.; and
Swami, A. 1992. An interval classifier for database
mining applications. In VZDB-$2, 560-573.

Agrawal, R.; Imielinski, T.; and Swami, A. 1993.
Mining associations rules between sets of items in
large databases. In SIGMOD-$3.

Han, J., and Fu, Y. 1995. Discovery of multiple level
association rules from large databases. In V&D&95,
420-431.

Han, J.; Fu, Y.; Koperski, K.; Wang, W.; and
Zaiane, 0. 1996a. DMQL: A data mining query
language for relational databases. In DMKD-96
(SIGMOD-96 Workshop on KDD).
Han, J.; Fu, Y.; Wang, W.; Chiang, J.; Gong, W.;
Koperski, K.; and Li, D. 1996b. DBMiner: A system
for mining knowledge in large relational databases.
to appear in KDD-96.

Imielinski, T., and Hirsh, H. 1993. Query based
-------L L- l----,-J-- -II--- -_^-__ m”“h-:“e.l -^-^-L app’“acIl Ir” Iuluwleugt: ulac”“txy. .LCc;llUl~;iu rayon,
Rutgers University, NJ.

Kero, B.; Russell, L.; and Tsur, S. 1995. An
overview of database mining techniques. Technical
report, Argonne National Laboratory, Argonne,
Illinois.
Mannila, II.; Toivonen, H.; and Verkamo, A. I. 1994.
Efficient algorithms for discovering association rules.
In KDD-94.

260 KDD-96

Piatetsky-Shapiro, G., and Frawley, W. J. 1991.
h h hT/MTCP iinowiedge Discoveq in DatiibiSe~. 1+fi211/ &v&L L

Press.

Quinlan, J, R. 1986. Induction of decision trees.
Machine Learning 1(1):81-106.

R.Agrawal; Imielinski, T.; and Swami, A. 1993.
Database mining: A performance perspective. In
IEEE Transactions on Knowledge and Data
Engineering, Special Issue on Learning and
Discovery in Knowledge-Based Databases.

Systems for Mining Large

