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Abstract 

We present a methodology for tightly coupling data 
mining applications to database systems to build 
high-performance applicatioF, without requiring any 
change to the database software. 

Introduction 
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loose connection with databases. A majority of them 
treat database simply as a container from which data 
is extracted to populate main memory data structures 
before the main execution begins. This approach limits 
the amount of data the application can handle effec- 
tively. 

The more database-aware applications use loosely- 
coupled SQL to fetch data records as needed by the 
mining algorithm. The front-end of the application is 
implemented in a host programming language, with 
embedded SQL statements in it. The appiication uses 
a SQL select statement to retrieve the set of records 
of interest from the database. A loop in the applica- 
tion program copies records in the result set one-by- 
one from the database address space to the applica- 
tion address space, where computation is performed 
on them. This approach has two performance prob- 
lems: i) copying of records from the database address 
space to the application address space, and ii) process 
context switching for each record retrieved, which is 
costly in a database system built on top of an oper- 
ating system such as UNIX. The resultant poor per- 
formance is often the deterrent in using databases in 
these applications. 

We present a methodology for tightly-coupled inte- 
gration of data mining applications with a relational 
database system. Instead of bringing the records of 
database into the application program, we selectively 
push parts of the application program that perform 
computation on retrieved records into the database 
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cited above. Our approach is based on a novel way 
of using the user-defined functions in SQL statements. 
A maior attraction of our methodolo~v is that it dnea ~~ --~.-- ~~~ ----- ------~J -- J--1 -2 ---” 

not require changes to the database software. We val- 
idated our methodology by tightly-coupling the prob- 
lem of mining association rules (Agrawal, Imielinski, 
& Swami 1993) on IBM DBZ/CS relational database 
system (Chamberlin 1996). Empirical evaluation us- 
ing real-life data shows nearly two-fold performance 
advantage for tight-coupling over loose-coupling. The 
programming effort in converting the loosely-coupled 
application to a tightly-coupled one was minimal. 

Related Work The idea of realizing performance 
gains by executing user-specified computations within 
the database system rather than in the applications has 
manifested in several systems. Research in database 
programming languages, object-oriented database sys- 
tems, and the integration of abstract data types in re- 
lational systems has been partially driven by the same 
motivation. Stored procedures in commercial database 
products have been designed for the same purpose. For 
example, Oracle provides a facility to create and store 
procedures written in PL/SQL as named objects in the 
database to reduce the amount of information sent over 
a network. Alternatively, an application can send an 
unnamed PL/SQL block to the server, which in turn 
complies the block and executes it. The Illustra DBMS 
also provides a facility for user-defined aggregations to 
be performed within the DBMS. 

Our methodology for developing tightly-coupled appli- 
cations has the following components: 

l Employ two classes of user-defined functions: 
- those that are executed a few times (usually once) 

independent of the number of records in the table; 
- those that are executed once for each selected 
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The former are used for allocating and deallocating 
work-area in the address space of the database sys- 
tem and copying results from the database address 
to the application address space. The latter do com- 
putations on the selected records in the database 
address space, using the work-area allocated earlier. 

To execute a user-defined function once, reference it 
in the select list of a SQL select statement over 
a one-record table. In DBZ/CS, create this tempo- 
rary one-record dynamically by using the construct 
(value(i)) as onerecord in the from clause. 

To execute a user-defined function udf() once for 
each selected record without ping-ponging between 
the database and application address spaces, have 
the function return 0. Define the SQL select state- 
ment over the table whose records are to be pro- 
cessed, and add a condition of the form udf() = 1 
in the where clause. If there are other conditions 
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ated first because the user-defined function must be 
applied only on the selected records. 

If a computation involves using user-defined func- 
tions in multiple SQL select statements, they share 
data-structures by creating handles in the work-area 
initially created. 

Specifically, our approach consists of the following 
steps: 

l Allocate work-area in the database address space 
utilizing a user-defined function in a SQL select 
statement over a one-record table. A handle to 
this work-area is returned in the application address 
space using the into clause. 

l Setup iteration over the table containing data 
records and reference the user-defined function en- 
capsulating the desired computation in the where 
clause of the select statement as discussed above. 
Pass the handle to the work-area as an input ar- 
gument to this user-defined function. If the com- 
putation requires more than one user-defined func- 
tion (and hence multiple select statements), have 
the previous one leave a handle to the desired data 
structures in the work-area. 

l Copy the results from the work-area in the database 
address space into the application address space us- 
ing another user-defined function in a SQL select 
statement over a one-record table. 

l Use another user-defined function over a one-record 
table in a SQL select statement to deallocate the 
work-area. 
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We can cast our approach in the object-oriented pro- 
gramming paradigm. We can think of the function to 
allocate space as a constructor for an object whose data 
members store the state of the application program in 
the address space of database system. A collection of 
member functions generate, save, and query the state 
of the application program. The function to deallo- 
cate space can be thought of as the destructor for the 
object. 

A Case Study 
To validate our methodology, we tightly-coupled the 
data mining application of discovering association rules 
to IBM DBZ/CS. Given a set of transactions, where 
each transaction is a set of items, an association rule 
is an expression of the from X =+ Y, where X and 
Y are sets of items. An example of an association rule 
is: “30% of transactions that contain beer also con- 
tain diapers; 2% of all transactions contain both of 
these items”. iiere 30”. is called the con~deela~5 of the 
rule, and 2% the support of the rule. The problem is to 
find all association rules that satisfy user-specified min- 
imum support and minimum confidence constraints. 

A transaction is represented as a set of consecutive 
records in the database. A record consists of a trans- 
action id and an item id; all the items belonging to the 
same transaction id represent a transaction. The input 
data comes naturally sorted by transaction id. 

Overview of the Apriori Algorithm 
Our case study uses the Apriori algorithm for mining 
association rules (Agrawal & Srikant 1994). The prob- 
lem of mining association rules is decomposed into two 
subproblems: i) find all frequent itemsets that occur 
in a specified minimum number of transaction, called 
min-support; ii) use the frequent itemsets to generate 
the desired rules. We only consider the first subprob- 
lem as the database is only accessed during this phase. 

The Apriori algorithm for finding all frequent item- 
sets is given in Figure 1. It makes multiple passes over 
the database. In the first pass, the algorithm simply 
counts item occurrences to determine the frequent l- 
itemsets (itemsets with 1 item). A subsequent pass, 
say pass k, consists of two phases. First, the frequent 
itemsets Lk-1 (the set of all frequent (k-l)-itemsets) 
found in the (k- 1)th pass are used to generate the 
candidate itemsets Ck, using the aptiori-gen() func- 
tion, This function first joins Lk-1 with L&r, the 
joining condition being that the lexicographically or- 
dered first k - 2 items are the same. Next, it deletes 
all those itemsets from the join result who have some 
(k - 1)-subset that is not in &k-l, yielding ck. For 
example, let LB be ({l 2 3}, (1 2 41, (1 3 4}, (1 3 51, 



gz;dure AprioriAlg() 

1. L1 := {frequent l-itemsets}; 
2. for ( k := 2; Lk-1 # 8; k++ ) do (. 
3. ck := 8ptioti-gm(Lk-1); // New candidates 
4. forall transactions t E ZJ do ( 

2 
forall candidates c E Ck contained in t do 

c.couut++; 
7. I 

i: ) 
Lk := {c E ck 1 c.coullt 2 mbsupport} 

10. Answer := U, Lki 
end 

Figure 1: Apriori Algorithm 

(2 3 4)). After the join step, Cd will be {{12 3 43, {l 
3 4 5) }. The prune step will delete the itemset {l 3 
4 5) because the itemset (1 4 5) is not in L3. We will 
then be left with only (1 2 3 4) in C,. 

The algorithm now scans the database. For each 
transaction, it determines which of the candidates in 
ck are contained in the transaction using a hash-tree 
data structure and increments their count. At the end 
of the pass, ck is examined to determine which of the 
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terminates when Lk becomes empty. 

Loosely Coupled Integration 

Figure 2 shows the sketch of a loosely-coupled imple- 
mentation of the Apriori algorithm. Lines 4 through 
13 determine the frequent 1-itemsets corresponding to 
line 1 in Figure 1. We open a cursor over the sales 
table, fetch one record at a time from the database 
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items found in each record. The count array is main- 
tained in the application program. Note that there is 
one context switch for every record in the saEes table. 
At the end of the loop, the count array is scanned to 
determine the frequent 1-itemsets. 

Lines 14 through 33 contain processing for subse- 
quent passes. These lines correspond to lines 2 through 
9 in Figure 1. In line 15, we generate candidates in the 
application program. The database is now scanned to 
determine the count for each of the candidates. We 
open a cursor over the sales table and fetch one record 
at a time from the database process to the applica- 
tion process. After all the records corresponding to a 
transaction have been retrieved, we determine which 
of the candidates are contained in the transaction and 
increment their counts. Finally, we determine in the 
application which of the candidates are frequent. 

procedure LoosleyCoupledApriori() : 
begin 
1. 
2. 

3. 
4. 

ii: 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20 
21. 
22. 
23. 
24. 
25. 
26. 
27. 

i:: 
30. 
31. 
32. 

exec sql close cur; 
Lk := {c E ck 1 c.comt 2 irksupport) 

1 33. J 
34. hwer := uk Lk; 
end 

Figure 2: Loosely-coupled Apriori Algorithm 

Tightly Coupled Integration 

We give a tightly-coupled implementation of the Apri- 
ori algorithm in Figure 3 using our methodology. The 
statement in line 2 creates work-area in the database 
address space for intermediate results. The handle to 
this work-area is returned in the host variable blob. 
The statement in line 3 iterates over all the records 
in the database. However, by making the user-defined 
function GenLl() always return 0, we force the func- 
tion GenLl () to be executed in the database process for 
every record, avoiding copying and context switching. 
Line 3 corresponds to the first pass of the algorithm in 
which frequency of each item is counted and l-frequent 
itemsets are determined. GenLl () receives the handle 
for the work-area as an input argument and it saves 
a handle to the l-frequent itemsets in the work-area 
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exec sql connect to database; 
exec sql declare cur cursor for 

select TID, ITEMID from sales 
for read oniy; 

exec sql open cur; 
notDone := true; 
while notDone do { 

exec sql fetch cur into :tid, :itemid; 
if (sqlcode # endOfRec) then 

update counts for each itemid; 
else 

notDone := false 
I 
exec sql close cur; 
L1 := {frequent l-items&s}; 
for ( k := 2; Lh-1 # & k-j-+ 1 do ( 

ck := apriori-gen(&-1); // New candidates 
exec sql open cur; 
t := 0; prevTid := -1; notDone := true; 
while notDone do ( 

exec sql fetch cur into :tid, :itemid, 
if (sqlcode # endOfF&ec then) { 

if (tid # prevTid and t # 6) then { 
forall candidates c E ck contained in t do 

c.count++; 
t := 0; prevTid := tid; 

I 
t := t U itemid 

i 
else 

notDone := false; 



Procedure TightlyCoupledApriori() : 
begin 
1. exec sql connect to database; 
2. exec sql select allocSpace() into :blob 

from onerecord; -. 
3. exec sql select * 

from sales 
where Ge&(:blob, TID, ITEMID) = 1; 

4. notDone := true; 
5. while notDone do ( 
6. exec sql select aprioriGen(:blob) into :blob 

frnm onerecord: ------ -- ““““---, 
7. exec sql select * 

from sales 
where itemCount(:blob, TID, ITEMID) = 1; 

8. exec sqi select Gen&(:blob) into :notDone 
from onerecord; 

9. 1 
10. exec sql select getResult(:blob) into :resultBlob 

from onerecord; 
11. exec sql select deallocSpace(:blob) 

from onerecord; 
12. Compute Answer using rest&Blob; 
end 

Figure 3: Tightly-coupled Apriori Algorithm 

before it returns. 
Lines 4 through 9 correspond to subsequent passes. 

First the candidates are generated in the address space 
of the database process by the the user-defined func- 
tion apr&+Gen(). We accomplish this by referencing 
this function in the select list of the SQL statement 
over onerecord table (hence ensuring that it is executed 
once) and providing the handle to the frequent itemsets 
needed for generating candidates as input argument to 
the function. The handle to candidates generated is 
saved in the work-area. 

Statement on line 7 iterates over the database. 
Again, by making the function itemCount() return 0, 
we ensure that this function is applied to each record, 
but within the database process. Handle to the can- 
didates is available in the work-area provided as input 
argument to itemCount() and this function counts the 
the support of candidates. This statement corresponds 
to the statements in line 16-31 in Figure 2. 

Next, the function GenLk () is invoked in the ad- ” _ 
dress space of the database process by referencing it 
in the SQL statement in line 9 over onerecord table. 
In the Icth pass, this function generates frequent item- 
sets with Ic items and returns a boolean to indicate 
whether the size of current Lk is empty or not. This 
value is copied into the host variable notDone to de- 
termine loop termination in the application program. 
After the loop exits, the function getResult copies out 
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able resuEtBlob in the application process. Finally, the 
function deaZlocSpace() frees up the work-area in the 
database address space. 

Performance 
To assess the effectiveness of our approach, we em- 
pirically compared the performance of tightly-coupled 
and loosely-coupled implementations of the Apriori al- 
gorithm. Six real-life customer datasets were used in 
the experiment. These datasets were obtained from 
department stores, supermarkets, and mail-order com- 
panies. We observed that in all cases, tight-coupling 
gives more than two fold performance advantage over 
loose-coupling. See (Agrawal & Shim 1995) for de- 
tails of the performance experiments and results. We 
would like to mention that work is underway to im- 
prove the performance of the implementation of the 
user-defined functions in DB2/CS. The tightly-coupled 
implementation would directly benefit from any perfor- 
mance gains from this effort. 
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