
Developing Tightly-Coupled Data Mining Applications on a
Relational Database System

---_--^ 1 __ _1 l7 ---- ---l- CILZ-- RZikdl Agrawau ana nyuseoK 3mm
IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120

Abstract

We present a methodology for tightly coupling data
mining applications to database systems to build
high-performance applicatioF, without requiring any
change to the database software.

Introduction
MQ& of the current data mininu annlicaizinna have a -_ I-- ------d --J- ------I p - ==--- -__--- --.- -

loose connection with databases. A majority of them
treat database simply as a container from which data
is extracted to populate main memory data structures
before the main execution begins. This approach limits
the amount of data the application can handle effec-
tively.

The more database-aware applications use loosely-
coupled SQL to fetch data records as needed by the
mining algorithm. The front-end of the application is
implemented in a host programming language, with
embedded SQL statements in it. The appiication uses
a SQL select statement to retrieve the set of records
of interest from the database. A loop in the applica-
tion program copies records in the result set one-by-
one from the database address space to the applica-
tion address space, where computation is performed
on them. This approach has two performance prob-
lems: i) copying of records from the database address
space to the application address space, and ii) process
context switching for each record retrieved, which is
costly in a database system built on top of an oper-
ating system such as UNIX. The resultant poor per-
formance is often the deterrent in using databases in
these applications.

We present a methodology for tightly-coupled inte-
gration of data mining applications with a relational
database system. Instead of bringing the records of
database into the application program, we selectively
push parts of the application program that perform
computation on retrieved records into the database
“..a.^- Al...” ^_.^ :a:,, AL.. dL,----- A---^A-L:^- ysrcxr, bUl.lJ a”“Lurug cllc: per1ou111ur;r; uegrauaclvn

cited above. Our approach is based on a novel way
of using the user-defined functions in SQL statements.
A maior attraction of our methodolo~v is that it dnea ~~ --~.-- ~~~ ----- ------~J -- J--1 -2 ---”

not require changes to the database software. We val-
idated our methodology by tightly-coupling the prob-
lem of mining association rules (Agrawal, Imielinski,
& Swami 1993) on IBM DBZ/CS relational database
system (Chamberlin 1996). Empirical evaluation us-
ing real-life data shows nearly two-fold performance
advantage for tight-coupling over loose-coupling. The
programming effort in converting the loosely-coupled
application to a tightly-coupled one was minimal.

Related Work The idea of realizing performance
gains by executing user-specified computations within
the database system rather than in the applications has
manifested in several systems. Research in database
programming languages, object-oriented database sys-
tems, and the integration of abstract data types in re-
lational systems has been partially driven by the same
motivation. Stored procedures in commercial database
products have been designed for the same purpose. For
example, Oracle provides a facility to create and store
procedures written in PL/SQL as named objects in the
database to reduce the amount of information sent over
a network. Alternatively, an application can send an
unnamed PL/SQL block to the server, which in turn
complies the block and executes it. The Illustra DBMS
also provides a facility for user-defined aggregations to
be performed within the DBMS.

Our methodology for developing tightly-coupled appli-
cations has the following components:

l Employ two classes of user-defined functions:
- those that are executed a few times (usually once)

independent of the number of records in the table;
- those that are executed once for each selected

------1 JXG”Kl .

Data Mining: Integration Q Application 287

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

The former are used for allocating and deallocating
work-area in the address space of the database sys-
tem and copying results from the database address
to the application address space. The latter do com-
putations on the selected records in the database
address space, using the work-area allocated earlier.

To execute a user-defined function once, reference it
in the select list of a SQL select statement over
a one-record table. In DBZ/CS, create this tempo-
rary one-record dynamically by using the construct
(value(i)) as onerecord in the from clause.

To execute a user-defined function udf() once for
each selected record without ping-ponging between
the database and application address spaces, have
the function return 0. Define the SQL select state-
ment over the table whose records are to be pro-
cessed, and add a condition of the form udf() = 1
in the where clause. If there are other conditions
* CL, ..~a..- el,..,, +hnan m.,,.l;,;,,, -.,a+ l-w, m,al,,- iii uucz wwa.w u~uws, VIIVDC ~~~~VIVUD IAAUYV uu UIUAU-

ated first because the user-defined function must be
applied only on the selected records.

If a computation involves using user-defined func-
tions in multiple SQL select statements, they share
data-structures by creating handles in the work-area
initially created.

Specifically, our approach consists of the following
steps:

l Allocate work-area in the database address space
utilizing a user-defined function in a SQL select
statement over a one-record table. A handle to
this work-area is returned in the application address
space using the into clause.

l Setup iteration over the table containing data
records and reference the user-defined function en-
capsulating the desired computation in the where
clause of the select statement as discussed above.
Pass the handle to the work-area as an input ar-
gument to this user-defined function. If the com-
putation requires more than one user-defined func-
tion (and hence multiple select statements), have
the previous one leave a handle to the desired data
structures in the work-area.

l Copy the results from the work-area in the database
address space into the application address space us-
ing another user-defined function in a SQL select
statement over a one-record table.

l Use another user-defined function over a one-record
table in a SQL select statement to deallocate the
work-area.

288 Technology Spotlight

We can cast our approach in the object-oriented pro-
gramming paradigm. We can think of the function to
allocate space as a constructor for an object whose data
members store the state of the application program in
the address space of database system. A collection of
member functions generate, save, and query the state
of the application program. The function to deallo-
cate space can be thought of as the destructor for the
object.

A Case Study
To validate our methodology, we tightly-coupled the
data mining application of discovering association rules
to IBM DBZ/CS. Given a set of transactions, where
each transaction is a set of items, an association rule
is an expression of the from X =+ Y, where X and
Y are sets of items. An example of an association rule
is: “30% of transactions that contain beer also con-
tain diapers; 2% of all transactions contain both of
these items”. iiere 30”. is called the con~deela~5 of the
rule, and 2% the support of the rule. The problem is to
find all association rules that satisfy user-specified min-
imum support and minimum confidence constraints.

A transaction is represented as a set of consecutive
records in the database. A record consists of a trans-
action id and an item id; all the items belonging to the
same transaction id represent a transaction. The input
data comes naturally sorted by transaction id.

Overview of the Apriori Algorithm
Our case study uses the Apriori algorithm for mining
association rules (Agrawal & Srikant 1994). The prob-
lem of mining association rules is decomposed into two
subproblems: i) find all frequent itemsets that occur
in a specified minimum number of transaction, called
min-support; ii) use the frequent itemsets to generate
the desired rules. We only consider the first subprob-
lem as the database is only accessed during this phase.

The Apriori algorithm for finding all frequent item-
sets is given in Figure 1. It makes multiple passes over
the database. In the first pass, the algorithm simply
counts item occurrences to determine the frequent l-
itemsets (itemsets with 1 item). A subsequent pass,
say pass k, consists of two phases. First, the frequent
itemsets Lk-1 (the set of all frequent (k-l)-itemsets)
found in the (k- 1)th pass are used to generate the
candidate itemsets Ck, using the aptiori-gen() func-
tion, This function first joins Lk-1 with L&r, the
joining condition being that the lexicographically or-
dered first k - 2 items are the same. Next, it deletes
all those itemsets from the join result who have some
(k - 1)-subset that is not in &k-l, yielding ck. For
example, let LB be ({l 2 3}, (1 2 41, (1 3 4}, (1 3 51,

gz;dure AprioriAlg()

1. L1 := {frequent l-itemsets};
2. for (k := 2; Lk-1 # 8; k++) do (.
3. ck := 8ptioti-gm(Lk-1); // New candidates
4. forall transactions t E ZJ do (

2
forall candidates c E Ck contained in t do

c.couut++;
7. I

i:)
Lk := {c E ck 1 c.coullt 2 mbsupport}

10. Answer := U, Lki
end

Figure 1: Apriori Algorithm

(2 3 4)). After the join step, Cd will be {{12 3 43, {l
3 4 5) }. The prune step will delete the itemset {l 3
4 5) because the itemset (1 4 5) is not in L3. We will
then be left with only (1 2 3 4) in C,.

The algorithm now scans the database. For each
transaction, it determines which of the candidates in
ck are contained in the transaction using a hash-tree
data structure and increments their count. At the end
of the pass, ck is examined to determine which of the
r~nrlirlat~a a.n= frmrwnt vialdinu LL. The &orithm YWII-IIVI .w*- ---xN. -4, J -------0 --IL. o---------
terminates when Lk becomes empty.

Loosely Coupled Integration

Figure 2 shows the sketch of a loosely-coupled imple-
mentation of the Apriori algorithm. Lines 4 through
13 determine the frequent 1-itemsets corresponding to
line 1 in Figure 1. We open a cursor over the sales
table, fetch one record at a time from the database
tr. +h* ~~mlLmt;nn nrndrnm 21714 inpr~m~nf: frm+, fnr “V “SAti o~pI”uY’“Y p,“b.““lA, -u A1*-*.d1.*-&.” -v-I” -..a

items found in each record. The count array is main-
tained in the application program. Note that there is
one context switch for every record in the saEes table.
At the end of the loop, the count array is scanned to
determine the frequent 1-itemsets.

Lines 14 through 33 contain processing for subse-
quent passes. These lines correspond to lines 2 through
9 in Figure 1. In line 15, we generate candidates in the
application program. The database is now scanned to
determine the count for each of the candidates. We
open a cursor over the sales table and fetch one record
at a time from the database process to the applica-
tion process. After all the records corresponding to a
transaction have been retrieved, we determine which
of the candidates are contained in the transaction and
increment their counts. Finally, we determine in the
application which of the candidates are frequent.

procedure LoosleyCoupledApriori() :
begin
1.
2.

3.
4.

ii:
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20
21.
22.
23.
24.
25.
26.
27.

i::
30.
31.
32.

exec sql close cur;
Lk := {c E ck 1 c.comt 2 irksupport)

1 33. J
34. hwer := uk Lk;
end

Figure 2: Loosely-coupled Apriori Algorithm

Tightly Coupled Integration

We give a tightly-coupled implementation of the Apri-
ori algorithm in Figure 3 using our methodology. The
statement in line 2 creates work-area in the database
address space for intermediate results. The handle to
this work-area is returned in the host variable blob.
The statement in line 3 iterates over all the records
in the database. However, by making the user-defined
function GenLl() always return 0, we force the func-
tion GenLl () to be executed in the database process for
every record, avoiding copying and context switching.
Line 3 corresponds to the first pass of the algorithm in
which frequency of each item is counted and l-frequent
itemsets are determined. GenLl () receives the handle
for the work-area as an input argument and it saves
a handle to the l-frequent itemsets in the work-area

Data Mining: Integration br Application 289

exec sql connect to database;
exec sql declare cur cursor for

select TID, ITEMID from sales
for read oniy;

exec sql open cur;
notDone := true;
while notDone do {

exec sql fetch cur into :tid, :itemid;
if (sqlcode # endOfRec) then

update counts for each itemid;
else

notDone := false
I
exec sql close cur;
L1 := {frequent l-items&s};
for (k := 2; Lh-1 # & k-j-+ 1 do (

ck := apriori-gen(&-1); // New candidates
exec sql open cur;
t := 0; prevTid := -1; notDone := true;
while notDone do (

exec sql fetch cur into :tid, :itemid,
if (sqlcode # endOfF&ec then) {

if (tid # prevTid and t # 6) then {
forall candidates c E ck contained in t do

c.count++;
t := 0; prevTid := tid;

I
t := t U itemid

i
else

notDone := false;

Procedure TightlyCoupledApriori() :
begin
1. exec sql connect to database;
2. exec sql select allocSpace() into :blob

from onerecord; -.
3. exec sql select *

from sales
where Ge&(:blob, TID, ITEMID) = 1;

4. notDone := true;
5. while notDone do (
6. exec sql select aprioriGen(:blob) into :blob

frnm onerecord: ------ -- ““““---,
7. exec sql select *

from sales
where itemCount(:blob, TID, ITEMID) = 1;

8. exec sqi select Gen&(:blob) into :notDone
from onerecord;

9. 1
10. exec sql select getResult(:blob) into :resultBlob

from onerecord;
11. exec sql select deallocSpace(:blob)

from onerecord;
12. Compute Answer using rest&Blob;
end

Figure 3: Tightly-coupled Apriori Algorithm

before it returns.
Lines 4 through 9 correspond to subsequent passes.

First the candidates are generated in the address space
of the database process by the the user-defined func-
tion apr&+Gen(). We accomplish this by referencing
this function in the select list of the SQL statement
over onerecord table (hence ensuring that it is executed
once) and providing the handle to the frequent itemsets
needed for generating candidates as input argument to
the function. The handle to candidates generated is
saved in the work-area.

Statement on line 7 iterates over the database.
Again, by making the function itemCount() return 0,
we ensure that this function is applied to each record,
but within the database process. Handle to the can-
didates is available in the work-area provided as input
argument to itemCount() and this function counts the
the support of candidates. This statement corresponds
to the statements in line 16-31 in Figure 2.

Next, the function GenLk () is invoked in the ad- ” _
dress space of the database process by referencing it
in the SQL statement in line 9 over onerecord table.
In the Icth pass, this function generates frequent item-
sets with Ic items and returns a boolean to indicate
whether the size of current Lk is empty or not. This
value is copied into the host variable notDone to de-
termine loop termination in the application program.
After the loop exits, the function getResult copies out
L1 -..-.,A P---- Lt. 3-L-l”““” _______ :““I.- LL” L--L ““̂ _: sne resu16 rrom tne aataouse process me0 cne nosh varr-

able resuEtBlob in the application process. Finally, the
function deaZlocSpace() frees up the work-area in the
database address space.

Performance
To assess the effectiveness of our approach, we em-
pirically compared the performance of tightly-coupled
and loosely-coupled implementations of the Apriori al-
gorithm. Six real-life customer datasets were used in
the experiment. These datasets were obtained from
department stores, supermarkets, and mail-order com-
panies. We observed that in all cases, tight-coupling
gives more than two fold performance advantage over
loose-coupling. See (Agrawal & Shim 1995) for de-
tails of the performance experiments and results. We
would like to mention that work is underway to im-
prove the performance of the implementation of the
user-defined functions in DB2/CS. The tightly-coupled
implementation would directly benefit from any perfor-
mance gains from this effort.

Acknowledgments Experiments by Andreas Ar-
ing, Toni Bollinger, and Ramakrishnan Srikant
brought to our attention the performance penalty of
iooseiy-coupied integration. John McPherson, Pat
Selinger, and Don Haderle pointed us to the user-
defined functions as a possible way of attacking the
performance problem. Don Chamberlin, Guy Lohman,
Hamid Pirahesh, Berthold Reinwald, Amit Somani,
and Geroge Wilson explained several subtleties of
the user-defined functions and stored procedures in
DB2/CS. Bob Yost helped us in obtaining the latest
versions of DBZ/CS. Finally, the generous help and
suggestions of Ramakrishnan Srikant were invaluable.

References
Agrawal, R., and Shim, K. 1995. Developing
tightly-coupled applications on IBM DBZ/CS rela-
+;--i ,4,+eh,,, oTra+Am. nd.+hnAAifitirr ,,a ~V~~+;pn.-~ “IvIIaI uavaua.uc UJIOUCIIU. I.~x.UII”U”I”~JI ouu ~*~.AIQ.AI.+~.
Research Report RJ 10005 (89094), IBM Almaden
Research Center, San Jose, California. Available from
http://www.almaden.ibm.com/cs/quest.
Agrawal, R., and Srikant, R. 1994. Fast Algorithms
for Mining Association Rules. In Proc. of the 20th
r-+n #-i--L-“-“- ^- TT”̂ -.. T---.. n-r”.L”.-“” IT&‘ I ~“nJcra~bGc or* “wy uwryc: uu‘u”u8ea.

Agrawal, R.; Imielinski, T.; and Swami, A. 1993.
Mining association rules between sets of items in large
databases. In Proc. of the ACM SIGMOD Conference
on Management of Data, 207-216.
Chamberlin, D. 1996. Using the New DBZ: IBM’s
Object-Relational Database System. Morgan Kauf-
mar-m.

290 Technology Spotlight

