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Abstract 

Most data mining systems to date have used variants 
of traditional machine-learning algorithms to tackle 
the task of directed knowledge discovery. This paper 
presents an approach which, as well as being useful for 
such directed data mining, can also be applied to the 
further tasks of undirected data mining and hypothesis 
refinement. This approach exploits parallel genetic al- 
gorithms as the search mechanism and seeks to evolve 
explicit “rules” for maximum comprehensibility. Ex- 
ample rules found in real commercial datasets are pre- 
sented. 

Introduction 
Genetic algorithms (Holland, 1975) have been used 
successfully in a variety of search and optimisation 
problems. Work on genetic algorithm-based learning 
has traditionally been grouped into one of two general 
approaches. The Pitt approach (Smith, 1980) uses a 
traditional genetic algorithm in which each entity in 
the population is a set of rules representing a complete 
solution to the learning problem. The Michiggan ap- 
proach (Holland, 1986) has generally used a distinctly 
different evolutionary mechanism in which the popula- 
tion consists of individual rules, each of which repre- 
sents a partial solution to the overall learning task. 

The system we present here - GA-MINER - is a 
general pattern search tool supporting several pattern 
forms and capable of functioning with varying levels of 
user supervision. Although the system may be used for 
traditional classification tasks, the emphasis has been 
placed more on pattern discovery. The authors have 
sought to divide data mining into three types or levels 
as follows: 

l Undirected or Pure Data Mining. Here the concept 
is that the user asks of the data miner: “Tell me 
something interesting about my data”. The key 
point is that the user is not specifying what kind 
of rule is desired. The system is left relatively un- 
constrained and is therefore given the greatest “free- 

dom” to discover patterns in the data free of prej- 
udices from the user. It seems likely that in these 
circumstances there is the greatest scope for finding 
completely unexpected patterns in the data, which 
has been one of the “promises” of data mining. 

Directed data mining. The user asks something 
much more specific, such as: “Characterise my high 
spending customers”. Here a much stronger “steer” 
is being given to the system and the problem usually 
changes from a general pattern-detection problem to 
a rather better defined induction problem. 

Hypothesis testing and refinement. The user concep- 
tually says: “I think that there is a positive corre- 
lation between sales of peaches and sales of cream: 
am I right?“. Now the idea is that the system first 
evaluates the hypothesis but then-if the evidence 
for it is not strong-seeks to refine it. Depending 
on what scope for variation the system is allowed, 
this may make the task even more directed than 
“directed data mining”, or almost as open as “undi- 
rected data mining”. 

GA-MINER is unusual in being applicable to all 
three kinds of data mining. It is undirected data min- 
ing that has been our defining goal, but we have de- 
liberately built a system which allows directed data 
mining and hypothesis refinement also to be tackled. 
Directed data mining is achieved by fixing certain parts 
of the pattern over the course of the run, and hypothe- 
sis refinement is achieved by “seeding” the system with 
the hypothesis but then allowing some or all parts of 
it to vary. 

Related Work on Genetic 
Algorithm-Based Learning 
An early example of a genetic algorithm-based machine 
learning system is LS-1 (Smith, 1980, 1984)) which in- 
troduced a structured representation based on the se- 
mantics of the problem domain with genetic operators 
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working at each level. GABIL (DeJong et al., 1993) 
uses the Pitt approach for evolving concept descrip- 
tions, which are defined as a collection of possibly 
overlapping classification rules. COGIN (Greene & 
Smith, 1993, 1994) addresses multi-class problem do- 
mains by introducing competition for coverage of train- 
ing examples, encouraging the population to work to- 
gether to solve the concept learning task. Another re- 
cent example is REGAL (Neri & Giordana, 1995; Gior- 
dana et al., 1994) which also uses a coverage-based 
approach for multi-concept learning and introduces a 
new Universal Suflrage selection operator to encour- 
age cooperation between population members. Augier 
et al. (1995) present an algorithm, SIAOl, for learning 
first order logic rules with a genetic algorithm. Domain 
knowledge may be introduced in the form of domain 
hierarchies and the algorithm uses a covering technique 
to ensure that all examples are covered by some rule. 

Related Work on Data Mining 
GA-MINER has also drawn ideas from a number of 
non-genetic data mining tools, particularly regard- 
ing pattern forms. EXPLORA (Kloesgen, 1994) is 
an interactive statistical analysis tool for discovery in 
databases. A number of statement types (or patterns) 
are defined, and users may select the most appropri- 
ate for their particular analysis purposes. Forty-Niner 
(Zytkow & Baker, 1991; Zytkow & Zembowicz, 1993) 
searches for regularities in databases, that is, a pattern 
and the range within which it holds. The representa- 
tion of a range is as a conjunction of attribute/value- 
sets, while a pattern is either a function (an equation 
relating the attributes) or a contingency table. 

The Reproductive Plan Language 
Fast and flexible development of GA-MINER was 
made possible by its implementation in the Reproduc- 
tive Plan Language RPL2 (Surry & Radcliffe, 199413, 
1994a). RPL2 is an extensible language, inter- 
preter and run-time system for the implementation of 
stochastic search algorithms, with a special emphasis 
on evolutionary algorithms such as genetic algorithms. 
The main features of RPL2 pertinent to GA-MINER 
are automatic parallelism, support for arbitrary rep- 
resentations (important in the current context as the 
rule forms are structured and not string-like), and its 
large library of functions which has allowed almost the 
entire project to be devoted to an exploration of data 
mining itself, rather than merely coding up ideas. 

Pattern Representation 
GA-MINER includes a variety of pattern forms, draw- 
ing on ideas from EXPLORA and Forty-Niner, includ- 

ing explicit rule patterns, distribution shift patterns 
and correlation patterns. The basis for all supported 
patterns is subset description. 

Subset descriptions are clauses which are used to 
select subsets of the database, and form the main heri- 
table units which are manipulated by the genetic algo- 
rithm. A subset description consists of a disjunction of 
conjunctions of attribute-value or attribute-range con- 
straints, shown in Be&us-Naur form below: 

Subset Description ::= Clause [ or Clause ] 
Clause ::= Term [ and Term ] 
Term ::= Attribute in Value Set 

1 Attribute in Range 

Patterns are then constructed as higher level inter- 
pretations of a number of these subsets. For example, 
an explicit rule pattern may use two subset descrip- 
tions, G and P to represent the condition and predic- 
tion respectively of a rule: “if C then P”. Note that ” 
the interpretation of a collection of subset descriptions 
as a particular form of pattern is defined entirely by 
the chosen evaluation function. For example, a rule 
“when S, if C then P” can be constructed from three 
subset descriptions, S, C and P respectively, combined 
with an appropriate evaluation function. 

In a similar manner, a distribution shift pattern may 
be formed from two subset descriptions together with 
a hypothesis variable, which is simply a field from the 
database to which the pattern refers. In this case the 
subset descriptions C and P and the hypothesis vari- 
able A are interpreted as a pattern of the form: 

The distribution of A when C and P 
is significantly different from the distribution of A 
when C. 

Finally, correlation patterns express a relationship 
which holds between two hypothesis variables within a 
particular subset of the database. i.e. patterns of the 
form: 

when C, the variables A and B are correlated. 

Since the same underlying representation is used for 
all pattern forms, the same genetic algorithm may be 
used to manipulate all these patterns. 

Pattern Templates 
Pattern templates are used to constrain the system 
to particular forms of patterns, and allow extensive 
control over a number of features including the high- 
level pattern form as described above, the database 
fields permitted to appear in each of the subset de- 
scriptions, the maximum numbers of disjunctions and 
conjunctions permitted in each subset description and 
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any clauses, terms or fields which must be included as 
part of a subset description. 

The component parts of the pattern template are 
marked as either initi&ed or fixed. Fixed parts of the 
template are inherited by every pattern in the popula- 
tion and are never modified by crossover or mutation. 
Initialised parts of the template appear in all newly 
generated patterns but may be modified during the 
search. 

Undirected data mining may be performed by us- 
ing a minimal template, and directed data mining by 
restricting the pattern form more tightly. Hypothe- 
sis refinement is achieved by seeding the initial pop- 
ulation of the genetic algorithm with patterns based 
on the template but with additional randomly gener- 
ated components, and the search is permitted to mod- 
ify these patterns subject to the constraints specified 
by the template. 

Pattern Evaluation 
A number of evaluation functions for estimating pat- 
tern interest have been used during the course of this 
work, mainly based on statistical measures. For ex- 
ample, for rule patterns we have used, among others, 
information gain (see Frawley, 1991) the J-measure 
@myth & Goodman, 1991) and the form suggested in 
Piatetsky-Shapiro (1991). Our experience has shown 
that many of these evaluation mechanisms give quali- 
tatively similar results (Flockhart & Radcliffe, 1995). 

While falling short of providing fully satisfactory def- 
initions of interesting patterns, the evaluation func- 
tions have been sufficiently successful for the system 
to discover several useful patterns in the databases 
provided by our industrial collaborators, GMAP Ltd 
and Barclays Bank plc. Although the system still pro- 
duces some non-interesting rules, tautologies are gen- 
erally discarded early in the search and the pattern 
templates may be used to steer the system away from 
obvious domain knowledge. 

The Genetic Algorithm 
The genetic algorithm in GA-MINER uses a structured 
population model in which each genome’s reproduc- 
tive partner is selected from within its local neighbour- 
hood (using tournament selection). This helps prolong 
diversity within the population and encourages local 
niching, which tends to result in exploration of several 
areas of the search space and matches well with the 
goal of finding several patterns in a single run. 

The crossover operator is defined at a variety of lev- 
els, reflecting the structure of the representation. Dis- 
junct clauses, clauses, terms and attribute values each 
comprise a single gene at the appropriate level. Within 

subset descriptions, crossover at the disjunct clause 
level is based on uniform crossover and enforces posi- 
tional alignment of component clauses. Both uniform 
and single-point crossover are used at the clause level, 
while crossover at the term level is again based on uni- 
form crossover. Mutation is also defined at a variety of 
levels, with separate probabilities specified for mutat- 
ing each of the component parts. Clauses, terms and 
values are added or deleted with specified probabili- 
ties and can be regarded as distinct specialisation and 
generalisation operators. 

GA-MINER collects sets of patterns during the run 
of the algorithm for presentation to the user. A sim- 
ple heuristic is used for updating the set, based on a 
strategy of continually replacing either the lowest fit- 
ness rule or the most similar rule (if the similarity is 
over a given threshold) by a higher fitness rule. 

Examples of Discovered Patterns 
Many patterns of varying strength were discovered 
within the data provided by our industrial collabora- 
tors, however, we restrict ourselves to just two repre- 
sentative examples of the kinds of patterns discovered. 
Both were found by using the system in “undirected” 
mode with a minimal pattern template. 

Explicit Rule Pattern 
if 

and 

Proportion of households with 1 child 2 0.12 
(Approximate percentiles 36% - 100%) 
(true: 1618 false: 939 unique false: 272) 

Number of Ford Dealers > 0 
(Approximate percentiles 62% - 100%) 
(true: 936 false: 1621 unique false: 809) 

and 
Proportion of households with 3+ cars in 0.01 . 0.07 
(Approximate percentiles 4% - 86%) 
(true: 2038 false: 519 unique false: 108) 

then 
Ford market share segment F (Sierra) in 0.06 ., 0.75 
(Approximate percentiles 30% - 100%) 
(true: 1770 false: 787 unique false: 787) 

Left hand side matches 19% of the database 
Right hand side matches 69% of the database 

Expected Actual 
Accuracy: 69% 93% 
Coverage: 20% 27% 

The rule above states that there is a 93% probabil- 
ity that Ford market share of segment F (Sierra) is 
between 0.06 and 0.75 in postal districts where there 
is at least one Ford dealer, the proportion of house- 
holds with 1 child is relatively high (in the top 64% 
of the distribution) and the proportion of households 
with 3 or more cars is neither very high nor very low. 
This compares to an expected probability of 69%, un- 
der the assumption of no relationship between the left 
and right hand sides of the rule. The true and false 
count for each clause show the number of times that 
clause is true and false respectively, while the unique 
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be dependent more on scalable data warehouse systems 
than on explicitly parallel algorithms. 
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false count shows the number of times the clause is 
false when all the others are true. This gives some 
indication of the relative importance of the terms. 

Distribution Shift Pattern 
The distribution of “Ford market share of segment D (Escort)” 
when Proportion of households - Council 2 0.20 

(Approximate percentiles 62% - 10%) 
(true: 929 false: 1628 unique false: 123) 

and 

and 

Proportion of households with 2 children 2 0.11 
(Approximate percentiles 26% - 100%) 
(true: 1854 false: 703 unique false: 233) 

and 

Proportion of unemployed in population 2 0.04 
(Approximate percentiles 52% - 100%) 
(true: 1183 false: 1374 unique false: 48) 

Proportion of households with 0 cars 2 0.31 
(Approximate percentiles 60% - 100%) 
(true: 1015 false: 1542 unique false: 89) 

has median 0.28 and is significantly shifted 
from the overall distribution which has median value 0.20. 

The distribution shift rule above says that Ford mar- 
ket share in segment D is 8% higher in postal districts 
with a high proportion of council houses, relatively 
high unemployment, a high proportion of households 
with no car and relatively few households with 2 chil- 
dren. 

Conclusions and Future Work 
GA-MINER has demonstrated that genetic algorithms 
may be used successfully for a variety of pattern dis- 
covery tasks in addition to their traditional use in clas- 
sification and concept learning. Genetic algorithms ap- 
pear well suited to undirected data mining, given their 
limited need for user direction and user interaction, 
however we have also demonstrated that they may be 
used for more directed forms of data mining through 
the use of pattern templates. In particular, the authors 
believe that the system’s use for hypothesis refinement 
holds much promise. The scrutibility of the patterns 
generated by the system also make results more un- 
derstandable than those produced by many other un- 
supervised methods such as neural networks, an essen- 
tial component for any system which is to be widely 
used by non-experts. 

The system would undoubtedly benefit from in- 
creased used of domain knowledge, perhaps in the form 
of domain hierarchies. Further work to allow some de- 
gree of fuzziness in the form of pattern templates would 
also be useful. 

Finally, although GA-MINER has been successfully 
parallelised and is scalable on main memory databases, 
it is becoming increasingly apparent that commercial 
data mining systems will require to access volumes of 
data far in excess of available main memory. This is 
likely to mean that effective data mining systems will 
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