From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Maintenance of Discovered Knowledoe : A Case
A8 A LA F ¥V WA NoUA ALV ¥YY 1\4\46\.; T’ CANT N

LVAILLLAUN ALTLRL

[Py

n

* LR AL

Multi-level Association Rules

David W. CheungJr Vincent T. Ngi Benjamin W. Tam f

1 Department of Computer Science, The University of Hong Kong, Hong Kong. Email: {dcheung|wktam}@cs.hku.hk.

¢ Department of Computing, Hong Kong Polytechnic University, Hong Kong. Email: cstyng@comp.polyu.edu.hk.

Abstract

An incremental technique and a fast algo-
rithm FUP have been proposed previously for
the update of discovered single-level association
rules(SLAR). In this study, a more efficient al-
gorithm FUP*, which generates a smaller num-
ber of candidate sets when comparing with FUP,
has been proposed. In addition, we have demon-
strated that the incremental technique in FUP
and FUP* can be generalized to some other kdd
systems. An efficient algorithm MLUp has been
proposed for this purpose for the updating of
discovered multi-level association rules(MLAR).
Our performance study shows that MLUp has
a superior performance over ML-T2 in updating
discovered MLAR.

1 Introduction

An association rule(AR) is a strong rule which im-
plies certain association relationships among a set of
objects in a database. Since finding interesting AR
in databases may disclose some useful patterns for
decision support, marketing analysis, financial fore-
cast, system fault prediction, and many other ap-
plications, it has attracted a lot of attention in re-
cent data mining research (6). Efficient mining of
AR in transaction and/or relational databases has
been studied substantially (1; 2; 8; 10; 12; 7; 11,
13).

In our previous study, we have investigated the
maintenance problem in SLAR discovery (4). An effi-
cient algorithm FUP (Fast Update) has been proposed,
which can incrementally update the AR discovered, if
updates to a database is restricted to insertions of new
transactions. In this paper, we will report two pro-
gresses in our study of the maintenance problem in the
mining of association rules. (1) A faster version FUP*
of FUP has been proposed. The improvement, of FUP*
over FUP is in the candidate set generation procedure.
(2) An algorithm MLUp (stands for Multi-Level asso-
ciation rules Update) has been proposed for the update
of the discovered MLAR in relation databases (7).

The success of the incremental updating technique
used in SLAR and MLAR suggests that, potentially,

the technique could be generalized to solve the update
problem in some other kdd systems. The remaining
of the paper is organized as follows. In Section 2, the
faster version FUP* is proposed. In Section 3, the
problem of updating MLAR. is discussed and the al-
gorithm MLUp for the update of discovered MLAR is
discussed. In Section 4, an in-depth performance study
of MLUp is presented. Section 5 is the discussion and
conclusions.

2 Update of Discovered SLAR

In the following discussion, we use the same notation
as used in (4). We summarize the finding of (4) in
Lemma 1. For a complete description of FUP, please
see (4).

Lemma 1 (4) A k-itemset X not in the original large
k-itemsets Ly, can become a winner, (i.e., become large)
in the updated database DB U db only if X.supporty >
sxd. O

A faster update algorithm FUP¥*

The improvement of FUP* over FUP (4) is in the
candidate set generation mechanism. FUP uses the
Apriori-gen function defined in (2) to establish a set
of candidate sets (4). In fact, it looks for itemsets in
Apriori-gen(L},_,) which does not belong to Lj; but
appear in some transaction(s) in db, whose support
count in db is larger than or equal to s x d, where the
set L, _, is the set of size-(k-1) large itemset in the up-
date database found in the (k-1)-th iteration of FUP.
We find out that the domain in this searching which is
the set Apriori-gen(Lj,_;) can be further reduced to a
smaller set. This finding is supported by the following
result. (A result similar to Lemma 2 for partitioned
databases has been reported in (5)).

Lemma 2 A k-itemset X not in the original large k-
itemsets Ly can become a winner (i.e., become large) in
the updated database DBUdb only if Y.supporty > sxd
for all the subsets Y C X.

Proof. It follows from Lemma 1 that X.supports > sx
d. IfY C X, then Y.supporty > X.supports. Hence,
the condition holds for all the subsets ¥ of X. i

Mining Association Rules 307

From Lemma 2, the candidate sets can be restricted
to the sets in Apriori-gen(Lj_,), where L} _, are the
itemsets in L}, _,, whose support counts in db are larger
than or equal to s x d. In general, L}_, is smaller
than L}_,, and hence the number of candidate sets
in Apriori-gen(L}_,) is smaller than that in Apriori-
gen(L},_;). In the following, we will use Example 1
to illustrate the execution of FUP*. In particular, the
example will show that FUP* can reduce significantly
the number of candidate sets.

Example 1 A database DB is updated with an in-
crement db such that D = 1000, d = 100 and s = 3%.
X,Y,Z, and W are four items and the size-1 and size-
2 large itemsets in DB are Ly = {X,Y,Z} and Ly =
{XY,Y Z}, respectively. Also XY.supportp = 32 and
Y Z.supportp = 31. Suppose FUP* has completed
the first iteration and found the *new” size-1 itemsets
Ly = {X,Y,W}. Moreover, assuming that the sup-
port counts of X, Y, and W found in db are 2, 4 and
5, respectively. This example illustrates how FUP*
will find out L% in the second iteration, and also its
effectiveness in reducing the number of candidate sets.

FUP* first filters out losers from L. Note that Z €
Ly — L, i.e., Z has become a loser; therefore, the set
Y Z € L, must also be a loser and is filtered out. For
the remaining set XY € Lo, FUP* scans db to update
its support count. Assume that XY.supportsy = 2.
Since XY.supportyp = (2+32) > 3%x 1100, therefore,
XY is large in DB U db and is stored in L5.

Secondly, FUP* needs to find out the "new” large
itemsets from db. For this purpose, FUP* has to find
out the set L] from L}, which contains the itemsets
in L] that have enough support counts in db. Since
X.supporty = 2 < 3% x 100, X ¢ L3, i.e., even though
X is a winner in the 1st iteration, it will not be used to
generate the size-2 candidate sets. On the other hand,
both the support counts of Y and W in db are larger
than the threshold 3% x 100; therefore they will be used
to generate the size-2 candidate sets, i.e., LT = {Y, W}.
Following that, FUP* applies Apriori-gen on L} and
generates the candidate set Cy = {YW}. Note that in
FUP, Apriori-gen is applied on L} = {X,Y, W} instead
of L7, and the set of candidate sets generated will have
three itemsets which is three times larger than what is
generated in FUP* in this example. This illustrates
that FUP* can significantly and effectively reduce the
number of candidate sets when comparing with FUP.

Suppose Y W.supports = 4 > 3% x 100. It follows
from Lemma 1 that YW will not be pruned and remain
in Cs. Following the pruning of the candidate sets
in Cs, FUP* has to update the remaining candidate
sets in C against the original database DB. Suppose
Y W.supportp = 29. Since Y W.supportyp = 29+ 4 >
3% x 1100, it is a large itemset in the updated database.
Therefore YW is added into L. At the end of the
second iteration, L) = {XY, YW} is returned. nl

308 Technology Spotlight

3 TUpdate of Discovered MLAR

The method used in FUP* (and FUP) could be applied
to many other kdd systems to update the knowledge
discovered. In particular, it can be used in the systems
that are designed to discover various types of associa-
tions between generalized items and events. This in-
cludes the discovery of MLAR, generalized AR, sequen-
tial patterns, episodes, and quantitative AR (7; 12; 3;
9; 13). In the following, we will show that FUP* can be
generalized to solve the update problem for MLAR. For
this purpose, an algorithm MLUp, which is an adap-
tation of FUP*, will be proposed.

Mining of MLAR

In the study of mining MLAR, a series of algorithms
have been proposed to facilitate a top-down, progres-
sive deepening method based on the algorithms for
mining SLAR. The method first finds large data items
at the top-most level and then progressively deepens
the mining process into their large descendants at lower
concept levels. For details on the mining of MLAR,
please refer to (7).

Update of discovered MLAR

The problem of updating the discovered MLAR is the
same as that in the single-level environment. The only
difference is that the rules in all the levels have to be
updated instead of updating the rules in only one level.
Also, the minimum support thresholds at different lev-
els may not be equal. We use s, to denote the mini-
mum support threshold at level m for m > 1.

Since there are several variations of the algorithm
in mining MLAR, the update algorithm should be de-
signed according to the strategy used in the initial min-
ing process. The algorithm MLUp we are proposing
is associated with the representative mining algorithm
ML-T2. The following two results are the bases of
MLUp.

Lemma 3 In a multi-level environment, a level-m 1-
itemset X not in the original large I1-itemsets L[m,1],
(m > 1), can become a winner (i.e., become large) in
the updated database DB U db only if all ancestors of
X are winners.

Proof. This follows from the definition of large itemsets
in the multi-level environment. o

Following Lemma 3, when MLUp scans the incre-
ment db to look for new size-1 winners, it not only has
to ensure a candidate itemset has the required support
count, but must also check that all its ancestors are
large in the updated database. (Because of transitiv-
ity, MLUp only needs to check a candidate’s immediate
ancestor).

Lemma 4 In a multi-level environment, a level-m k-
itemset X not in the original large k-itemsets L{m, k],
(m > 1), can become a winner (i.e., become large) in
the updated database DB U db only if X.supporty >
sm X d and Y.supporty > sp, X d, for all subsetY C X.

Proof. This follows directly from Lemmas 1 and 2. O

The implication of the result in Lemma 4 is that
the candidate set generation mechanism in FUP* can
be applied directly in MLUp for finding new winners
in different levels. In the following, we describe the
main procedure of the update algorithm MLUp. The
input to the algorithm includes the original encoded
transaction database T[1], the increment database db,
and the old large itemsets L[m, k], (m > 1, k > 1),
and their support counts. Following the conventions
in FUP*, the sizes of T[1] and db are denoted by D
and d respectively. Moreover, the minimum support
threshold for different level is denoted by s, (m > 1).
MLUp (main steps) :

1. Translate the increment transaction database db
into an encoded transaction table db[1] according to
the given taxonomy information.

2. At level 1, scan db[1] to update the support counts
of the l-itemsets in L[1,1] to filter out the winners
into L'[1,1]. In the same scan, find all the 1-itemsets
in db[1] which do not belong to L[1, 1], whose support
count in db[1] is larger than or equal to s, x d, and store
these 1-itemsets in the candidate set C;. Subsequently,
scan T[1] to find out the new winners in C; and store
them into L'[1,1]. Following that, TT[1] is filtered by
L'[1,1] to generate the encoded transaction table 7[2].
Similarly, db[1] is filtered to db[2].

Atlevel m, (m > 1), scan db[2] to update the support
counts of the l-itemsets in L[m,1]. An l-itemset in
L[m,1] is a winner only if its immediate ancestor is
large in the updated database and its support counts
in the updated database is larger than or equal to s, %
(D +d).

In the same scan, find all level-m 1-itemsets in db[2]
which do not belong to L[m, 1], whose immediate an-
cestor belongs to L/[m—1,1) and whose support count
in db[2] is larger than or equal to s, x d. Then store
these 1-itemsets in the candidate set C;. Subsequently,
scan T'[2] to find out the new winners in C; and store
them in L'[m, 1].

3. The large k-itemsets, (k > 1), for the updated
database at level m is derived in three steps:

(1) Remove all the k-itemsets in L[m, k] for which
one of its ancestors is not large in the updated
database. Then scan db[2] to update the support
counts of the remaining itemsets in L[m, k] to find out
the winners. (2) Let L*[m,k — 1] be the subsets of
itemsets in L'[m, k — 1] whose support count in db is
larger then or equal to s,, xd. In the same scan on db[2]
performed in (1), find all level-m k-itemsets in Apriori-
gen(L*[m, k—1]) which do not belong to L[m, k], whose
support count in db[2] is larger than or equal to s;, % d,
and store them in the candidate set Cy. (3) Scan DB
to update the support counts of the candidate sets in
C} and find all the level-m size-k winners in Cj, and
store them in L'[m, k].

4. At level m, return the union of L'[m, k] for all the
k’s.

4 Performance Study of MLUp

Extensive experiments have been conducted to assess
the performance of MLUp. It was compared with the
algorithm ML-T2. The experiments were performed on
an AIX system on an RS/6000 workstation with model
410. The result shows that MLUp is much faster than
re-running ML-T2 to update the discovered AR. This
improvement is not surprising given that FUP also has
similar performance in updating SLAR. The databases
used in our experiments are synthetic data generated
using a technique similar to that in (2).

T10.14.0100.d10.x_10_4_1 T10.14.D100.d10.%_10_4_1

500 , oS
P 400 5 o4
5 g 0a
2§ o N £
< o2
Iﬁ 5 o
100 2
T —— g o
0
) 40 50 60 °

30 410 50 60
Support Threshald (laval 1) Suppott Threshaid (level 1)

~—h—ML-T2 —l—MLUp EMLUp/ML-T2

Figure 1: Performance Comparison (level 1)

Qur test environments are denoted by
T10.14.D100.d10.51_87 s3.54, which represents an up-
dated database in which the original database DB has
100 thousands of transactions (D100), the increment
db has 10 thousands of transactions (d10). The trans-
actions on average has 10 items (T10), and the average
size of the large itemsets is 4 (I4). Moreover, there are
four levels in the taxonomy and the minimum supports
are denoted by s;, (1 < ¢ < 4). The performance com-
parison between MLUp and ML-T2 in the update of
the level-1 AR is plotted in Figure 1 against different
minimum support thresholds. Their performance ra-
tios are also presented as bar charts in the same figure.
It can be seen that MLUp is 2-3 times faster than ML-
T2. MLUp also has similar speed-up over ML-T2 in
the updates in the other levels.

As explained before, MLUp reduces substantially
the number of candidate sets generated when compar-
ing with ML-T2. In Figure 2, the number of candi-
date sets generated in MLUp in the same experiment
is compared with that in ML-T2. The ratios in the
comparison are presented as bar charts in the same
figure. The chart shows that the number of candidate
sets generated by MLUp is only about 2-3% of that in
ML-T2.

A series of updates from 10K to 350K were gener-
ated on the databases T10.14.D100, and the execution
times for MLUp and ML-T2 to do the updates on these
increments were compared. A gradually level off of the
speed-up of MLUp over ML-T2 only appears when the
increment size is about 3.5 times the size of the orig-
inal database. The fact that MLUp still exhibits per-
formance gain when the increment is much larger than
the original database shows that it is very efficient.

Mining Association Rules 309

T10.14.0100.d10.x_10_4_1 T10.14.0100.410.x_10_4_1

0.03

0.02

N

£ an 50 60
Suppont Threshold (leve! 1)

0.01

Candidate set sizs.

L3888
|/
Ratio of cancikiata sat size

-]
o 40 50 80
Support Thrashold (level 1)

—A—ML-T2 ——MLUp BMLUp/ML-T2

Figure 2: Reduction of Candidate Sets (level 1)

5 Discussion and Conclusions

We have shown that FUP* is an efficient algorithm
for updating discovered SLAR. It improves the perfor-
mance of FUP by significantly reducing its candidate
sets.

We have also proposed an efficient algorithm MLUp
for updating discovered MLAR. It is an adaptation of
the FUP* algorithm in the multi-level environment.
The algorithm MLUp is implemented and its perfor-
mance is studied and compared with the ML-T2 al-
gorithm . The study shows that MLUp has superior
performance in the multi-level environment. The suc-
cess of the incremental updating technique in both the
SLAR and MLAR suggests that the technique could
be generalized to solve the update problems in some
other knowledge discovery systems.

Currently, both FUP* and MLUp are applicable
only to a database which allow frequent or occasional
updates restricted to insertions of new transactions.
We have also investigated the cases of updates in-
cluding deletions and/or modifications to a transac-
tion database. In FUP* and MLUp, the incremental
updating technique has made use of the fact that new
winners generated in the updating process must ap-
pear and have enough support counts in the increment.
However, this does not hold in general in the cases of
deletion and modification. For example, in the case
of deletion, because the size of the updated database
has decreased, some itemsets which are "small” in the
orginial database DB, could become large in the up-
dated database, even though it is not contained in any
transaction deleted. Consequently, the set of candi-
date sets cannot be limited to those appear in the in-
crement, and potentially, all itemsets in the updated
database have to be considered as candidates. There-
fore, the current incremental technique cannot be ap-
plied directly to the cases of deletion and modification.
However, it is possible to solve the deletion and modi-
fication cases if the initial mining process is enhanced
to retain more informations to support the update.

The extension of our incremental update technique
for the maintenance of other type of knowledge such
as generalized AR, episodes, sequential patterns, and
quantitative AR is an interesting topic for future re-
search. However, as discussed above, a bigger chal-
lenge is to extend this technique to cover the cases of

310 Technology Spotlight

deletion and modification.

References

[1} R. Agrawal, T. Imielinski, and A. Swami. Min-
ing association rules between sets of items in large
databases. In Proc. 1993 ACM-SIGMOD Int. Conf.
Management of Data, pp. 207-216, Washington,
D.C., May 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. In Proc. 1994 Int. Conf.
VLDB, pp. 487-499, Santiago, Chile, Sept. 1994.

[3] R. Agrawal and R. Srikant. Mining sequential pat-
terns. In Proc. 1995 Int. Conf. Data Engineering, pp.
3-14, Taipei, Taiwan, March 1995.

[4] D.W. Cheung, J. Han, V. Ng, and C.Y. Wong.
Maintenance of discovered association rules in large
databases: An incremental updating technique. In
Proc. 1996 Int’l Conf. on Datla Enginecring, New Or-
leans, Louisiana, Feb. 1996.

[6] D.W. Cheung, J. Han, V. Ng, A. Fu and Y. Fu.
A Fast Distributed Algorithm for Mining Association
Rules. Technical Report, Dept. of Computer Science,
The University of Hong Kong, 1996.

[6] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy. Advances in Knowledge Discov-
ery and Data Mining. AAAI/MIT Press, 1996.

[7] J. Han and Y. Fu. Discovery of multiple-level as-
sociation rules from large databases. In Proc. 1995
Int. Conf. VLDB, pp. 420-431, Zurich, Switzerland,
Sept. 1995.

[8] M. Klemettinen, H. Mannila, P. Ronkainen,
H. Toivonen, and A. I. Verkamo. Finding interesting
rules from large sets of discovered association rules. In
Proc. 3rd Int’l Conf. on Information and Knowledge
Management, pp. 401-408, Gaithersburg, Maryland,
Nov. 1994.

[9] H. Mannila, H. Toivonen, and A. I. Verkamo. Dis-
covering Frequent Episodes in Sequences. In Proc. 1st
Int’l Conf. on KDD, pp. 210-215, Montreal, Quebec,
Canada, Aug. 1995.

[10] J.S. Park, M.S. Chen, and P.S. Yu. An effective
hash-based algorithm for mining association rules. In
Proc. 1995 ACM-SIGMOD Int. Conf. Management
of Data, pp. 175~186, San Jose, CA, May 1995.

[11] A. Savasere, E. Omiecinski, and S. Navathe. An
efficient algorithm for mining association rules in large
databases. In Proc. 1995 Int. Conf. VLDB, pp. 432—
443, Zurich, Switzerland, Sept. 1995.

[12] R. Srikant and R. Agrawal. Mining generalized
association rules. In Proc. 1995 Int. Conf. VLDB, pp.
407-419, Zurich, Switzerland, Sept. 1995,

[13] R. Srikant and R. Agrawal. Mining quantita-
tive association rules in large relational tables. In
Proc. 1996 ACM-SIGMOD Int. Conf. Management
of Data, Montreal, Canada, June 1996.

