
(1,

I,

.I,::, ,‘L,
/,!,I ,. / ,,), .l ,, -

I” ,, ,1
:.,,N ,,,, ‘,a j,,l ,’ ,,t
q (/ ,i ,/ T” ,,
“(:f,: ,:i, ‘1 ,,, ,/,[,, ,_
,I,,‘. ,,,, IN’ ‘/I ,I

Growing Simpler Decision Trees to Facilitate Knowledge

Kevin J. Cherkauer Jude W. Shavlik
Department of Computer Sciences

University of Wisconsin
1210 West Dayton Street
Madison, WI 53706, USA

cherkauer@cs.wisc.edu, shavlik@cs.wisc.edu

Abstract

When using machine learning techniques for knowl-
edee discoverv. outnut that is commehensi’ble to a hu-
m& is as im&ta& as predictive accuracy. We intro-
duce a new algorithm, SET-GEN, that improves the
comprehensibility of decision trees grown by standard
C4.5 without reducing accuracy. It does this by US-
ing genetic search to select the” set of input features
C4.5 is allowed to use to build its tree. We test SET-
GEN on a wide variety of real-world datasets and show
that SET-GEN trees are significantly smaller and ref-
erence significantly fewer features than trees grown by
C4.5 without using SET-GEN. Statistical significance
tests show that the accuracies of SET-GEN’S trees are
either not distinguishable from or are more accurate
than those of the original C4.5 trees on all ten datasets
tested.

Introduction
One approach to knowledge discovery in databases
(DBs) is to apply inductive learning algorithms to de-
rive models of interesting aspects of the data. The
predictive accuracy of such a mode1 is obviously impor-
tant. However, human comprehensibility of the learned
model is equally vital so that we can add the knowl-
edge it captures to our understanding of the domain
or validate the model for critical applications.

To address the issue of human comprehensibility, we
introduce SET-GEN, a new algorithmic approach to
knowledge discovery that improves the comprehensi-
bility of decision trees grown by a state-of-the-art tree
induction algorithm, C4.5 (Quinlan 1993), without re-
ducing tree accuracy. SET-GEN takes a DB of labeled
examples (vectors of feature-value pairs) and selects a
subset of the available features for training C4.5. Its
goal is to choose a set of features that results in

Predictive accuracy at least as good as that of run-
ning C4.5 without SET-GEN

Significantly smaller decision trees

Significantly fewer unique input features referenced

Reducing tree size makes it easier to understand
the relationships contained in the tree, and referenc-
ing fewer features focuses attention on the most im-
portant information. We demonstrate SET-GEN on

a wide variety of real-world prediction problems and
show empirically that it meets our stated goals.

The SET-Gen Algorithm
SET-GEN performs feature-subset selection for
decision-tree induction. Table 1 gives pseudocode for
the algorithm. SET-GEN applies a genetic algorithm
(GA; Goldberg 1989) with a wrapper-style evaluation
function (John, Kohavi, & Pfleger 1994) to search
many candidate feature subsets. It uses ten-fold cross
validation on the training examples to estimate the
quality, or fitness, of each candidate. That is, the train-
ing data is partitioned into ten equal-sized sets, each
of which serves as an unseen validation set used to es-
timate the accuracy of a C4.5 decision tree trained on
the remaining nine sets using just the candidate fea-
tures. Fitness is a function of the number of candidate
features, the average size of the ten trees, and the av-
erage tree accuracy on the validation sets.

SET-GEN maintains a population of the best fea-
ture subsets it has found. New subsets are created by
applying genetic operators to population members. If
a new subset is more fit than the worst member of
the population, it replaces that member; otherwise the
new subset is discarded. After completing the desired
number of subset evaluations, SET-GEN uses the en-
tire training set to grow a single C4.5 tree using only
the features in the best subset it has found. It outputs
this final tree and the corresponding feature subset.

SET-Gen’s Genome
SET-GEN represents a feature subset as a fixed-length
vector called a genome. Each genome entry may either
contain a feature or be empty. The genome in Figure 1
represents a subset comprised of features fi, f7, and
fi5. A feature may occur multiple times and in any po-
sition, making SET-GEN’S genome somewhat unusual
among GAS. An indicator bit vector with one entry per
input feature would be more traditional. Our justifica-
tion for SET-GEN’S genome style is twofold. First, the
fact that features can appear multiple times potentially
slows the loss of diversity that tends to occur during
genetic search (Forrest & Mitchell 1993) and allows
better features to proliferate. Second, unlike the bit-
vector genome, SET-GEN’S genome length does not

Rule Induction & Decision Tree Induction 315

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Table 1: SET-GEN pseudocode,

Algorithm SET-Gen
Input labeled training examples, program parameters
Choose pruning level via lo-fold cross validation

on training data (builds 10 decision. trees)
While perform more evaluations?

If pop. is not full, Child = fill genome randomly
Else

Op = choose genetic operator randomly
Parents = choose parent(s) randomly from

population proportional to fitness
Child = Apply(Op, Parents)

End If
Evaluate Child fitness via lo-fold cross validation

on training data (builds 10 decision trees)
If population is not full, add Child to population
Else

Worst = population member with worst fitness
If Fitness(Child) > Fitness(Worst)

replace Worst with Child in population
Else discard Child

End If
End While
FinalFeatures = features present in best pop. member
Final’lYee = grow decision tree from all training data

using only features in FinalFeatures
Output FinalIPree, FinalFeatures

End Algorithm SET-Gen

I f7 I f7 I fz I I f7 I I fl5 f2
Figure 1: An example SET-GEN genome, representing the
feature subset {fi, f7, fa}.

depend on the number of input features. By default,
SET-GEN’S genome size is the same as the number
of available features, but if desired one can choose a
larger or smaller genome. Smaller genomes bias SET-
GEN toward smaller feature subsets and simpler trees.
Because trees can be grown faster when there are fewer
features to test as splits, this also reduces evaluation
time, making the algorithm tractable for larger DBs.

SET-Gen’s Genetic Operators
SET-GEN’S genetic operators are Crossover, Mutate,
and Delete Feature. Each uses one or two parent fea-
ture subsets to create a new child subset for evaluation.

The Crossover operator is a variant of a uniform
crossover, and produces a single child from a primary
and a secondary parent. First, the genome of one par-
ent is rotated a random distance. Then each entry
of the child is filled by copying the corresponding en-
try of the primary parent with probability 1 - P, and
that of the secondary parent with probability P, (the
crossover rate). In our experiments, we set P, to 0.10,
so a typical child receives approximately 90% of its
genome from the primary parent.

We chose a uniform crossover with a low crossover
rate instead of a one-point crossover because we felt
that small “tweaks” would more likely improve a cur-
rent solution than the larger jumps one-point crossover
tends to make. This is only an intuition; we have

not yet compared the performance of this crossover
to a one-point crossover. SET-GEN’S low crossover
rate hopefully results in low disruption across genera-
tions of high-order schemata involving many features
(cf. Goldberg 1989). However, a one-point crossover
might take better advantage of lower-level “building
blocks” (Goldberg 1989) as individual features could
assemble themselves in spatially adjacent fashion to
increase their chances of being exchanged as a unit.

SET-GEN’S Mutate operator uses one parent. Each
entry of the child is copied from the parent with prob-
ability 1 - Pm. With probability Pm (the mutation
rate), it is filled randomly thus: 50% of the time, fill
with a feature chosen equiprobably from among all in-
put features; the other 50% of the time, leave the entry
empty. P,,, is 0.10 for the experiments.

Delete Feature uses one parent to produce a child
that is identical except that all occurrences of one
(equiprobably chosen) feature in the parent are re-
moved from the child. This operator directly biases
SET-GEN toward smaller feature subsets, and thus
toward simpler, more comprehensible decision trees.

The initial population members are created by Mu-
tate with a temporary mutation rate of 1.00. From
then on, each new feature subset is produced by apply-
ing one of the genetic operators, chosen equiprobably,
to parent(s) picked randomly from the current popu-
lation proportional to their fitness (Goldberg 1989).

SET-Gen’s Fitness Function
The core of SET-GEN is its fitness function, which
evaluates feature subsets in terms of the accuracy and
simplicity of their resulting treesi:

Fitness = $A + i (1 - y)

where A is the average validation-set accuracy of the
trees SET-GEN builds on the training data; S is the
average size of these trees, normalized by dividing by
the average number of training examples they were
built from; and F is the number of features in the sub-
set being evaluated, normalized by the total number of
available features. We define F as the number of fea-
tures present, instead of the average number of features
the trees reference, to create a fitness distinction be-
tween representations containing the same referenced
features but different numbers of extra, unreferenced
ones. Without this, there would be no selective pres-
sure to eliminate unused features from the representa-
tions. We could instead simply delete all unused fea-
tures immediately, but this would dramatically reduce
the internal diversity of individuals early in the search,
before it is apparent whether the unused features would
prove valuable under different subset recombinations.

SET-GEN’S fitness function is a linear combina-
tion of an accuracy term, A, and a simplicity term,

‘The fitness variables are motivated by our previous
work on representation Sufficiency, Economy, and Trans-
parency (“SET”; Cherkauer & Shavlik 1996).

316 Techqology Spotlight

Table 2: Summary of datasets used: number of examples,
classes, and features (discrete, continuous).

Dataset . Exs
Auto Import@ 205
Credit Approval” 690
Heart Diseasea 303
Hepatitis0 155
Lung Cancera 32
Lymphography” 148
Magellan-SAR 611
Promoters 468
Ribosome Binding 1,877
Splice Junctions? 3,190

Cls 1 l&s (Ds, Cn

-pJ-yij

“Available publicly (Murphy & Aha 1994).

(1 - v). We weight the accuracy term more heavily
to encourage SET-GEN to maintain the original accu-
racy level. All coefficients in the fitness function were
chosen prior to running any experiments. Note that
A and F (normalized) vary in the range [0, 11. The
normalization used for S attempts to put it on an ap-
proximately equivalent [0, l] scale so that the weights
in the fitness function are meaningful to a human. It is
simply a heuristic that uses the number of training ex-
amples as a rough upper bound for expected tree size.
The result is that the simplicity term ranges roughly
over [0, l] to match the range of the accuracy term,
and S and F (tree size and number of features) are of
about equal importance in the simplicity term.

Empirical Evaluation
We test SET-GEN on ten real-world problems from
business, medicine, biology, and vision. These prob-
lems vary widely in the number and types of avail-
able input features and the number of examples in the
DB. The datasets are summarized in Table 2. The
Magellan-SAR data consists of features derived from
small patches of radar images of the planet Venus, and
the task is to determine if a patch contains a volcano
(Burl et aE. 1994). P romoter, Ribosome Binding, and
Splice Junction are all problems of detecting differ-
ent types of biologically significant sites on strands of
DNA. Most of the DBs are publicly available through
Murphy and Aha (1994). We chose these problems be-
cause of their diversity and interest to scientists in their
respective fields. We did not preselect these datasets
to favor SET-GEN in any way; these are all ten of the
datasets we have tested it on to date.

Experimental Methodology
We evaluate SET-GEN and C4.5 by ten-fold cross val-
idation on each problem’s entire DB of examples and
report average results over the ten folds, or trials. Ac-
curacies are measured on the ten unseen test sets of
the cross validation. (SET-GEN itself uses cross vali-
dation internally on the training examples to evaluate
feature subsets, but this occurs inside the SET-GEN

Table 3: SET-GEN parameter settings used (defaults).
) Parameter I Value I
] Population size 100

“black box” and has no bearing on the external cross
validation used to assess algorithm performance.)

The amount of tree pruning is a crucial parameter
because it greatly affects accuracy, tree size, and num-
ber of features referenced. For each trial, both SET-
GEN and C4.5 chose the pruning level by doing an ini-
tial, internal ten-fold cross-validation of standard C4.5
using only the training examples. The pruning level
was chosen from among ten equally spaced confidence
levels: 5%, 15%, 25%, 95% (Quinlan 1993), and
the one yielding the most accurate trees on the valida-
tion sets was then used to train on the entire training
set for the remainder of the trial. (Thus, choosing the
pruning level is part of SET-GEN and C4.5 training.
This process is identical for the two algorithms.)

We fixed all other SET-GEN and C4.5 parameters
at their default values. SET-GEN’S parameter defaults
are summarized in Table 3, and were chosen before run-
ning it on any of the datasets used in the experiments.
C4.5’~ parameters are described in Quinlan (1993).

Experimental Results
We compare the average test-set accuracy, tree size,
and number of features referenced for the ten pruned
trees of C4.5 versus SET-GEN using two-tailed,
matched-pair t-tests to check for statistically signifi-
cant differences at the 0.05 significance level. The un-
pruned trees give qualitatively similar results, but tend
to be larger and thus of less interest from a comprehen-
sibility standpoint, so we do not include those results.

Figure 2 shows the average percent error on the
ten unseen test sets of the final pruned trees for each
problem. The C4.5 and SET-GEN error rates only
differ statistically significantly on the Ribosome Bind-
ing problem, where SET-GEN has a lower error rate.
SET-GEN thus meets our goal of retaining the accu-
racy level of standard C4.5.

Figure 3 shows the average number of (internal plus
leaf) nodes in the final pruned trees. The size dif-
ferences between C4.5 and SET-GEN are statistically
significant for all datasets except Lung Cancer,2 and
in all ten cases the SET-GEN trees are smaller, fre-
quently by a factor of two or more. Hence, SET-GEN
meets our goal of reducing tree size.

Figure 4 shows the average number of unique fea-
tures referenced by the final pruned trees. The C4.5

‘Lung Cancer has only 32 available examples (Table 2),
so variance is quite high.

Rule Induction 6r Decision Tree Induction 317

50 50

40 40

i 30 34
w
r;
g 20 20
a

10 10

0
Auto Credit Heart Hep Lung Lymp Ma@ Prmt Rbsm Splice

0

Figure 2: Average test-set error rates of final pruned trees.

70

60

M 50
3
8 40
i:
%
$
s 30
I
Z

20

10

Au10 Credit Heart Hep Lung Lymp Magn Prmt Rbsm Splice

Figure 3: Average number of nodes in final pruned trees.

I e 20 20
e
82

fj 10 10

1
& at il 0

Auto Credit Heart Hep Lung Lymp Magn Prmt Rbsm Splice

Figure 4: Average number of unique features referenced
by final pruned trees.

versus SET-GEN differences are again statistically sig-
nificant for all datasets except Lung Cancer, and in all
ten cases the SET-GEN trees reference fewer features.
SET-GEN’S advantage over C4.5 here is almost always
at least two to one. It thus meets our goal of reducing
the number of features referenced.

In summary, these experiments show that SET-
GEN simultaneously fulfills all three criteria we set for
improving human comprehensibil ity without accuracy
loss on a wide variety of real-world learning problems.

Related Work
The most closely related prior work is by Skalak
(1994) and John, Kohavi, and Pfleger (1994). Skalak
uses stochastic hill climbing to reduce nearest-neighbor
mode l size, thus lowering computational cost, while re-

taming accuracy. However, his ma in thrust is selecting
prototypical subsets of examples, rather than features.
John et al. apply greedy feature selection to reduce
C4.5 tree size without losing accuracy. In contrast to
these systems, SET-GEN’S genetic search is not greedy
and thus can escape local optima. SET-GEN also fo-
cuses more strongly on human comprehensibil ity than
John et al. by specifically seeking mode l simplicity.

Conclusions
Our goal is to induce more comprehensible decision
trees to facilitate knowledge discovery, without reduc-
ing predictive accuracy. To achieve this, we introduced
the SET-GEN feature-selection system and tested it on
a wide variety of real-world problems, demonstrat ing
emp irically that it meets our goal. SET-GEN dramat-
ically reduced the complexity of induced trees com-
pared to C4.5, both in size and number of features
referenced. Moreover, it did so without significantly
reducing tree accuracy for any dataset, and in one case
it even improved significantly on C4.5’~ accuracy. We
hope SET-GEN will aid experts in better understand-
ing these and other important problems. Our future
work will compare SET-GEN to other feature selec-
tors on the comprehensibil ity dimension and evaluate
its current representational assumptions.

Acknowledgements
Thanks to U. Fayyad and P. Smyth for their aid in creat-
ing the Magellan-SAR dataset, R. Detrano (Heart Disease
data), and M. Zwitter and M. Soklic (Lymphography data).
This work was supported in part by a NASA GSRP fellow-
ship held by KJC and ONR grant N00014-93-1-0998.

References
Burl, M.; Fayyad, U.; Perona, P.; Smyth, P.; and Burl,
M. 1994. Automating the hunt for volcanoes on Venus.
In IEEE C’omp Sot Conf Comp Vision d Pat Ret: Proc.
IEEE Computer Society Press.
Cherkauer, K., and Shavlik, J. 1996. Rapid quality es-
timation of neural network input representations. In Ad-
vances in Neural Info Proc Sys 8. MIT Press.
Forrest, S., and Mitchell, M. 1993. What makes a problem
hard for a genetic algorithm? some anomalous results and
their explanation. Machine Learning 13:285-319.
Goldberg, D. 1989. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Reading, MA: Addison-
Wesley.
John, G.; Kohavi, R.; and Pfleger, K. 1994. Irrelevant
features and the subset selection problem. In Mach Learn:
Proc 11th Intl Conf, 121-129. Morgan Kaufmann.
Murphy, P., and Aha, D. 1994. Univ. California
Irvine repository of machine learning databases. At
http://www.ics.uci.edu/“mEearn/MLRepository.html.
Quinlan, J. 1993. C&5: Programs for Machine Learning.
San Mateo, CA: Morgan Kaufmann.
Skalak, D. 1994. Prototype and feature selection by sam-
pling and random mutation hill climbing algorithms. In
Mach Learn: Proc 11th Intl Conf, 293-301. Morgan Kauf-
mann.

318 Technology Spotlight

