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Abstract 

When using machine learning techniques for knowl- 
edee discoverv. outnut that is commehensi’ble to a hu- 
m& is as im&ta& as predictive accuracy. We intro- 
duce a new algorithm, SET-GEN, that improves the 
comprehensibility of decision trees grown by standard 
C4.5 without reducing accuracy. It does this by US- 
ing genetic search to select the” set of input features 
C4.5 is allowed to use to build its tree. We test SET- 
GEN on a wide variety of real-world datasets and show 
that SET-GEN trees are significantly smaller and ref- 
erence significantly fewer features than trees grown by 
C4.5 without using SET-GEN. Statistical significance 
tests show that the accuracies of SET-GEN’S trees are 
either not distinguishable from or are more accurate 
than those of the original C4.5 trees on all ten datasets 
tested. 

Introduction 
One approach to knowledge discovery in databases 
(DBs) is to apply inductive learning algorithms to de- 
rive models of interesting aspects of the data. The 
predictive accuracy of such a mode1 is obviously impor- 
tant. However, human comprehensibility of the learned 
model is equally vital so that we can add the knowl- 
edge it captures to our understanding of the domain 
or validate the model for critical applications. 

To address the issue of human comprehensibility, we 
introduce SET-GEN, a new algorithmic approach to 
knowledge discovery that improves the comprehensi- 
bility of decision trees grown by a state-of-the-art tree 
induction algorithm, C4.5 (Quinlan 1993), without re- 
ducing tree accuracy. SET-GEN takes a DB of labeled 
examples (vectors of feature-value pairs) and selects a 
subset of the available features for training C4.5. Its 
goal is to choose a set of features that results in 

Predictive accuracy at least as good as that of run- 
ning C4.5 without SET-GEN 

Significantly smaller decision trees 

Significantly fewer unique input features referenced 

Reducing tree size makes it easier to understand 
the relationships contained in the tree, and referenc- 
ing fewer features focuses attention on the most im- 
portant information. We demonstrate SET-GEN on 

a wide variety of real-world prediction problems and 
show empirically that it meets our stated goals. 

The SET-Gen Algorithm 
SET-GEN performs feature-subset selection for 
decision-tree induction. Table 1 gives pseudocode for 
the algorithm. SET-GEN applies a genetic algorithm 
(GA; Goldberg 1989) with a wrapper-style evaluation 
function (John, Kohavi, & Pfleger 1994) to search 
many candidate feature subsets. It uses ten-fold cross 
validation on the training examples to estimate the 
quality, or fitness, of each candidate. That is, the train- 
ing data is partitioned into ten equal-sized sets, each 
of which serves as an unseen validation set used to es- 
timate the accuracy of a C4.5 decision tree trained on 
the remaining nine sets using just the candidate fea- 
tures. Fitness is a function of the number of candidate 
features, the average size of the ten trees, and the av- 
erage tree accuracy on the validation sets. 

SET-GEN maintains a population of the best fea- 
ture subsets it has found. New subsets are created by 
applying genetic operators to population members. If 
a new subset is more fit than the worst member of 
the population, it replaces that member; otherwise the 
new subset is discarded. After completing the desired 
number of subset evaluations, SET-GEN uses the en- 
tire training set to grow a single C4.5 tree using only 
the features in the best subset it has found. It outputs 
this final tree and the corresponding feature subset. 

SET-Gen’s Genome 
SET-GEN represents a feature subset as a fixed-length 
vector called a genome. Each genome entry may either 
contain a feature or be empty. The genome in Figure 1 
represents a subset comprised of features fi, f7, and 
fi5. A feature may occur multiple times and in any po- 
sition, making SET-GEN’S genome somewhat unusual 
among GAS. An indicator bit vector with one entry per 
input feature would be more traditional. Our justifica- 
tion for SET-GEN’S genome style is twofold. First, the 
fact that features can appear multiple times potentially 
slows the loss of diversity that tends to occur during 
genetic search (Forrest & Mitchell 1993) and allows 
better features to proliferate. Second, unlike the bit- 
vector genome, SET-GEN’S genome length does not 
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Table 1: SET-GEN pseudocode, 

Algorithm SET-Gen 
Input labeled training examples, program parameters 
Choose pruning level via lo-fold cross validation 

on training data (builds 10 decision. trees) 
While perform more evaluations? 

If pop. is not full, Child = fill genome randomly 
Else 

Op = choose genetic operator randomly 
Parents = choose parent(s) randomly from 

population proportional to fitness 
Child = Apply( Op, Parents) 

End If 
Evaluate Child fitness via lo-fold cross validation 

on training data (builds 10 decision trees) 
If population is not full, add Child to population 
Else 

Worst = population member with worst fitness 
If Fitness( Child) > Fitness( Worst) 

replace Worst with Child in population 
Else discard Child 

End If 
End While 
FinalFeatures = features present in best pop. member 
Final’lYee = grow decision tree from all training data 

using only features in FinalFeatures 
Output FinalIPree, FinalFeatures 

End Algorithm SET-Gen 

I f7 I f7 I fz I I f7 I I fl5 f2 
Figure 1: An example SET-GEN genome, representing the 
feature subset {fi, f7, fa}. 

depend on the number of input features. By default, 
SET-GEN’S genome size is the same as the number 
of available features, but if desired one can choose a 
larger or smaller genome. Smaller genomes bias SET- 
GEN toward smaller feature subsets and simpler trees. 
Because trees can be grown faster when there are fewer 
features to test as splits, this also reduces evaluation 
time, making the algorithm tractable for larger DBs. 

SET-Gen’s Genetic Operators 
SET-GEN’S genetic operators are Crossover, Mutate, 
and Delete Feature. Each uses one or two parent fea- 
ture subsets to create a new child subset for evaluation. 

The Crossover operator is a variant of a uniform 
crossover, and produces a single child from a primary 
and a secondary parent. First, the genome of one par- 
ent is rotated a random distance. Then each entry 
of the child is filled by copying the corresponding en- 
try of the primary parent with probability 1 - P, and 
that of the secondary parent with probability P, (the 
crossover rate). In our experiments, we set P, to 0.10, 
so a typical child receives approximately 90% of its 
genome from the primary parent. 

We chose a uniform crossover with a low crossover 
rate instead of a one-point crossover because we felt 
that small “tweaks” would more likely improve a cur- 
rent solution than the larger jumps one-point crossover 
tends to make. This is only an intuition; we have 

not yet compared the performance of this crossover 
to a one-point crossover. SET-GEN’S low crossover 
rate hopefully results in low disruption across genera- 
tions of high-order schemata involving many features 
(cf. Goldberg 1989). However, a one-point crossover 
might take better advantage of lower-level “building 
blocks” (Goldberg 1989) as individual features could 
assemble themselves in spatially adjacent fashion to 
increase their chances of being exchanged as a unit. 

SET-GEN’S Mutate operator uses one parent. Each 
entry of the child is copied from the parent with prob- 
ability 1 - Pm. With probability Pm (the mutation 
rate), it is filled randomly thus: 50% of the time, fill 
with a feature chosen equiprobably from among all in- 
put features; the other 50% of the time, leave the entry 
empty. P,,, is 0.10 for the experiments. 

Delete Feature uses one parent to produce a child 
that is identical except that all occurrences of one 
(equiprobably chosen) feature in the parent are re- 
moved from the child. This operator directly biases 
SET-GEN toward smaller feature subsets, and thus 
toward simpler, more comprehensible decision trees. 

The initial population members are created by Mu- 
tate with a temporary mutation rate of 1.00. From 
then on, each new feature subset is produced by apply- 
ing one of the genetic operators, chosen equiprobably, 
to parent(s) picked randomly from the current popu- 
lation proportional to their fitness (Goldberg 1989). 

SET-Gen’s Fitness Function 
The core of SET-GEN is its fitness function, which 
evaluates feature subsets in terms of the accuracy and 
simplicity of their resulting treesi: 

Fitness = $A + i (1 - y) 

where A is the average validation-set accuracy of the 
trees SET-GEN builds on the training data; S is the 
average size of these trees, normalized by dividing by 
the average number of training examples they were 
built from; and F is the number of features in the sub- 
set being evaluated, normalized by the total number of 
available features. We define F as the number of fea- 
tures present, instead of the average number of features 
the trees reference, to create a fitness distinction be- 
tween representations containing the same referenced 
features but different numbers of extra, unreferenced 
ones. Without this, there would be no selective pres- 
sure to eliminate unused features from the representa- 
tions. We could instead simply delete all unused fea- 
tures immediately, but this would dramatically reduce 
the internal diversity of individuals early in the search, 
before it is apparent whether the unused features would 
prove valuable under different subset recombinations. 

SET-GEN’S fitness function is a linear combina- 
tion of an accuracy term, A, and a simplicity term, 

‘The fitness variables are motivated by our previous 
work on representation Sufficiency, Economy, and Trans- 
parency (“SET”; Cherkauer & Shavlik 1996). 
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Table 2: Summary of datasets used: number of examples, 
classes, and features (discrete, continuous). 

Dataset . Exs 
Auto Import@ 205 
Credit Approval” 690 
Heart Diseasea 303 
Hepatitis0 155 
Lung Cancera 32 
Lymphography” 148 
Magellan-SAR 611 
Promoters 468 
Ribosome Binding 1,877 
Splice Junctions? 3,190 

Cls 1 l&s (Ds, Cn 

-pJ-yij 

“Available publicly (Murphy & Aha 1994). 

(1 - v). We weight the accuracy term more heavily 
to encourage SET-GEN to maintain the original accu- 
racy level. All coefficients in the fitness function were 
chosen prior to running any experiments. Note that 
A and F (normalized) vary in the range [0, 11. The 
normalization used for S attempts to put it on an ap- 
proximately equivalent [0, l] scale so that the weights 
in the fitness function are meaningful to a human. It is 
simply a heuristic that uses the number of training ex- 
amples as a rough upper bound for expected tree size. 
The result is that the simplicity term ranges roughly 
over [0, l] to match the range of the accuracy term, 
and S and F (tree size and number of features) are of 
about equal importance in the simplicity term. 

Empirical Evaluation 
We test SET-GEN on ten real-world problems from 
business, medicine, biology, and vision. These prob- 
lems vary widely in the number and types of avail- 
able input features and the number of examples in the 
DB. The datasets are summarized in Table 2. The 
Magellan-SAR data consists of features derived from 
small patches of radar images of the planet Venus, and 
the task is to determine if a patch contains a volcano 
(Burl et aE. 1994). P romoter, Ribosome Binding, and 
Splice Junction are all problems of detecting differ- 
ent types of biologically significant sites on strands of 
DNA. Most of the DBs are publicly available through 
Murphy and Aha (1994). We chose these problems be- 
cause of their diversity and interest to scientists in their 
respective fields. We did not preselect these datasets 
to favor SET-GEN in any way; these are all ten of the 
datasets we have tested it on to date. 

Experimental Methodology 
We evaluate SET-GEN and C4.5 by ten-fold cross val- 
idation on each problem’s entire DB of examples and 
report average results over the ten folds, or trials. Ac- 
curacies are measured on the ten unseen test sets of 
the cross validation. (SET-GEN itself uses cross vali- 
dation internally on the training examples to evaluate 
feature subsets, but this occurs inside the SET-GEN 

Table 3: SET-GEN parameter settings used (defaults). 
) Parameter I Value I 
] Population size 100 

“black box” and has no bearing on the external cross 
validation used to assess algorithm performance.) 

The amount of tree pruning is a crucial parameter 
because it greatly affects accuracy, tree size, and num- 
ber of features referenced. For each trial, both SET- 
GEN and C4.5 chose the pruning level by doing an ini- 
tial, internal ten-fold cross-validation of standard C4.5 
using only the training examples. The pruning level 
was chosen from among ten equally spaced confidence 
levels: 5%, 15%, 25%, . . . . 95% (Quinlan 1993), and 
the one yielding the most accurate trees on the valida- 
tion sets was then used to train on the entire training 
set for the remainder of the trial. (Thus, choosing the 
pruning level is part of SET-GEN and C4.5 training. 
This process is identical for the two algorithms.) 

We fixed all other SET-GEN and C4.5 parameters 
at their default values. SET-GEN’S parameter defaults 
are summarized in Table 3, and were chosen before run- 
ning it on any of the datasets used in the experiments. 
C4.5’~ parameters are described in Quinlan (1993). 

Experimental Results 
We compare the average test-set accuracy, tree size, 
and number of features referenced for the ten pruned 
trees of C4.5 versus SET-GEN using two-tailed, 
matched-pair t-tests to check for statistically signifi- 
cant differences at the 0.05 significance level. The un- 
pruned trees give qualitatively similar results, but tend 
to be larger and thus of less interest from a comprehen- 
sibility standpoint, so we do not include those results. 

Figure 2 shows the average percent error on the 
ten unseen test sets of the final pruned trees for each 
problem. The C4.5 and SET-GEN error rates only 
differ statistically significantly on the Ribosome Bind- 
ing problem, where SET-GEN has a lower error rate. 
SET-GEN thus meets our goal of retaining the accu- 
racy level of standard C4.5. 

Figure 3 shows the average number of (internal plus 
leaf) nodes in the final pruned trees. The size dif- 
ferences between C4.5 and SET-GEN are statistically 
significant for all datasets except Lung Cancer,2 and 
in all ten cases the SET-GEN trees are smaller, fre- 
quently by a factor of two or more. Hence, SET-GEN 
meets our goal of reducing tree size. 

Figure 4 shows the average number of unique fea- 
tures referenced by the final pruned trees. The C4.5 

‘Lung Cancer has only 32 available examples (Table 2), 
so variance is quite high. 
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Figure 2: Average test-set error rates of final pruned trees. 
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Figure 3: Average number of nodes in final pruned trees. 
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Figure 4: Average number of unique features referenced 
by final pruned trees. 

versus SET-GEN differences are again statistically sig- 
nificant for all datasets except Lung Cancer, and in all 
ten cases the SET-GEN trees reference fewer features. 
SET-GEN’S advantage over C4.5 here is almost always 
at least two to one. It thus meets our goal of reducing 
the number  of features referenced. 

In summary, these experiments show that SET- 
GEN simultaneously fulfills all three criteria we set for 
improving human comprehensibil ity without accuracy 
loss on a  wide variety of real-world learning problems. 

Related Work 
The most closely related prior work is by Skalak 
(1994) and John, Kohavi, and Pfleger (1994). Skalak 
uses stochastic hill climbing to reduce nearest-neighbor 
mode l size, thus lowering computational cost, while re- 

taming accuracy. However, his ma in thrust is selecting 
prototypical subsets of examples, rather than features. 
John et al. apply greedy feature selection to reduce 
C4.5 tree size without losing accuracy. In contrast to 
these systems, SET-GEN’S genetic search is not greedy 
and thus can escape local optima. SET-GEN also fo- 
cuses more strongly on  human comprehensibil ity than 
John et al. by specifically seeking mode l simplicity. 

Conclusions 
Our goal is to induce more comprehensible decision 
trees to facilitate knowledge discovery, without reduc- 
ing predictive accuracy. To  achieve this, we introduced 
the SET-GEN feature-selection system and tested it on  
a  wide variety of real-world problems, demonstrat ing 
emp irically that it meets our goal. SET-GEN dramat- 
ically reduced the complexity of induced trees com- 
pared to C4.5, both in size and number  of features 
referenced. Moreover, it did so without significantly 
reducing tree accuracy for any dataset, and in one case 
it even improved significantly on  C4.5’~ accuracy. We  
hope SET-GEN will aid experts in better understand- 
ing these and other important problems. Our future 
work will compare SET-GEN to other feature selec- 
tors on  the comprehensibil ity dimension and evaluate 
its current representational assumptions. 
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