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Abstract 

RISE (Domingos 1995; in press) is a rule induc- 
tion algorithm that proceeds by gradually gen- 
eralizing rules, starting with one rule per exam- 
ple. This has several advantages compared to the 
more common strategy of gradually specializing 
initially null rules, and has been shown to lead 
to significant accuracy gains over algorithms like 
CGRULES and CN2 in a large number of appli- 
cation domains. However, RISE’s running time 
(like that of other rule induction algorithms) is 
quadratic in the number of examples, making it 
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This paper introduces a method for reducing 
RISE’s running time based on partitioning the 
training set, evaluating rules from one partition 
on examples from another, and combining the 
final results at classification time. Partitioning 
guarantees a learning time that is linear in the 
number of examples, even in the presence of nu- 
meric attributes and high noise. Windowing, a 
well-known speedup method, is also studied as 
applied to RISE. In low-noise conditions, both 
methods are successful in reducing running time 
whilst maintaining accuracy (partitioning some- 
times improves it significantly). In noisy condi- 
tions, the performance of windowing deteriorates, 
while that of partitioning remains stable. 

introduction and Previous -Work 
Rule induction is one of the major technologies under- 
lying data mining. Given a number of classified ex- 
amples represented by vectors of symbolic and/or nu- 
meric attributes, algorithms like C4.5RULES (Quinlan 
1993) and CN2 (Clark & Niblett 1989) produce sets 
of “if . . . then . ..” rules that allow us to predict the 
classes of new examples by performing tests on their 
attributes. However! the running time of these algo- 
rithms is typically quadratic or worse in the number 
of examples, making it difficult to apply them to the 
very large databases that are now common in many 
fields. In C4.5RULES, noise can lead to a cubic run- 
ning time (Cohen 1995). While some fester variants 
of rule induction have been proposed (Fiirnkranz & 
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goal of linear time. An alternative approach, and 
the one that is followed in this paper, is to employ 
some form of sampling, like windowing (Catlett 1991; 
Quinlan 1993), peepholing (Catlett 1991), or partition- 
ing (Chan & Stolfo 1995). While often (though not 
always) reducing running time, sampling techniques 
can sometimes substantially reduce accuracy, and there 
may be a trade-off between the two. A reduced- 
accuracy rule set is preferable to a more-accurate one 
that is never reached due to lack of time; ideally, how- 
ever, the loss in accuracy should be as small as possible, 
given the available time. 

RISE (Domingos 1995; in press) is a rule induction 
algorithm that searches for rules in a specific-to-general 
direction, instead of the general-to-specific one used 
by most rule learners. This has several advantages, 
among them the ability to detect with confidence a 
higher level of detail in the databases, and a reduction 
of sensitivity to the fragmentation (Pagallo & Haussler 
1990) and small disjuncts problems (Holte, Acker, & 
Porter 1989). In a study comparing RISE with several 
induction algorithms (including C4.5RULES and CN2) 
on 30 databases from the UC1 repository (Murphy & 
Aha 1995), RISE was found to be more accurate than 
each of the other algorithms in about two-thirds of 
the databases, in each case with a confidence of 98% 
or better according to a Wilcoxon signed-ranks test 
(DeGroot 1986). RISE also had the highest average 
accuracy and highest rank. 

RISE’s running time, like that of previous algo- 
rithms, is quadratic in the number of examples, and 
thus the question arises of whether it is possible to 
reduce this time to linear without compromising accu- 
racy. This paper proposes, describes and evaluates the 
application of windowing and partitioning to RISE; in 
both cases, this raises issues and opportumties that are 
not present in general-to-specific systems. 

The next three sections of the paper describe pure 
RISE, RISE with windowing, and RISE with partition- 
ing. This is followed by an empirical study comparing 
the t.hree anrl Aicrnasinn nf t.he rea11t.a yaav y’a-y”, _... y.I”yII*-~~ VA “A.- -“.,...“.,. 
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The RISE Algorithm 
RISE searches for “good” rules in a specific-to-general 
fashion, starting with a rule set that is the training 
set of examples itself. RISE looks at each rule in turn, 
finds the nearest example of the same class that it does 
not already cover, and attempts to minimally general- 
ize the rule to cover it, by dropping conditions (in the 
case of differing symbolic attributes) and/or expand- 
ing intervals (for numeric attributes). If the change’s 
effect on the rule set’s leave-one-out accuracy on the 
training set is positive or null, it is retained; otherwise 
it is discarded. This procedure is repeated until, for 
each rule, attempted generalization fails. 

At performance time, classification of each test ex- 
ample is performed by finding the nearest rule to it, 
and assigning the example to the rule’s class. The dis- 
tance measure used is a combination of Euclidean dis- 
tance for numeric attributes, and a simplified version 
of Stanfill and Waltz’s value difference metric for sym- 
bolic attributes (Stanfill & Waltz 1986). When two or 
more rules are equally close to a test example, the rule 
that was most accurate on the training set wins. So as 
to not unduly favor more specific rules, the Laplace 
corrected accuracy is used (Niblett 1987). 

Windowing 
Windowing is applied to RISE in a fashion broadly 
similar to C4.5’~ (Quinlan 1993), and proceeds as fol- 
lows. Initially, only 2fi examples randomly extracted 
from the training set are used for learning. This sample 
is stratified (i.e., it contains approximately equal pro- 
portions of all classes); this makes it possible to still 
learn classes that have few representatives in the orig- 
inal training set. If the remaining training examples 
are correctly classified by the resulting rule set, this 
set is output. Otherwise, the misclassified examples 
are added to the initial example set, and this process 
repeats until it produces no improvement in accuracy 
on two successive expansions, or a maximum number 
of expansions is reached (5 by default). 

Partitioning 
In the partitioning approach (Chan & Stolfo 1995), the 
training data is divided into a number of disjoint sub- 
sets, and the learning algorithm is applied to each in 
turn. The results of each run are combined in some 
fashion, either at learning or at classification time. 
In RISE, partitioning is applied by pre-determining a 
maximum number of examples emoz to which the algo- 
rithm can be applied at once (100 by default). When 11 . tms number is exceeded, the training set is randomiy 
divided into [e/e,,,1 app roximately equal-sized parti- 
tions, where e is the total number of training examples. 
RISE is then run on each partition separately, but with 
an important difference relative to a direct application: 
the rules grown from the examples in partition p are 
not evaluated on the examples in that partition but on 

the examples in partition p+ 1 (modulo the number of 
partitions). This should help combat overfitting, and 
the resulting improvement in accuracy may partly off- 
set the degradation potentially caused by using smaller 
training sets. It is not possible in general-to-specific 
algorithms, where there is no connection between a 
specific rule and a specific example. 

Because the number of partitions grows linearly with 
the number of training examples, and RISE’s quadratic 
factor is confined to the examples within each parti- 
tion and thus cannot exceed a given maximum (e.g., 
1002 if e,,, = loo), the algorithm with partitioning 
is guaranteed a linear worst-case running time. How- 
ever, depending on ema*, the multiplicative constants 
can become quite large. 

Two methods of combining the results of induction 
on the individual partitions have been implemented 
and empirically compared. In the first, all the rule sets 
produced are simply merged into one, which is output 
by the learning phase. In the second, the rule sets are 
kept separate until the performance phase, and each 
partition classifies the test instance independently. A 
winning class is then assigned to the example by voting 
among the partitions, with each partition’s weight be 
ing t,he Laplace acclJr&cy Qf t,he rule the&t won within it, 
(see section on RISE). The second method was found 
to achieve consistently better results, and was there- 
fore adopted. More sophisticated combination meth- 
ods based on Bayesian theory are currently being stud- 
ied, but have so far yielded inferior results. Many other 
combination schemes are possible (e.g., (Chan & Stolfo 
1995)). 

Empirical Evaluation 
The two speedup methods were tested on seven of 
the UC1 repository’s largest databases (Murphy & 
Aha 1995) (in increasing order of size: credit screen- 
ing (Australian), Pima diabetes, annealing, chess 
endgames (kr-vs-kp), hypothyroid, splice junctions, 
and mushroom). Partitioning was tested with emaz = 
100, 200, and 500. Ten runs were carried out for each 
database, in each run randomly dividing the data into 
two-thirds for training and one-third for testing. The 
averaged results are shown in Tables 1 (running times) 
and 2 (accuracies). 

Both speedup methods are effective in reducing 
RISE’s running time, generally without seriously af- 
fecting accuracy (chess and annealing with partition- 
ing, and diabetes with windowing, are the exceptions). 
Windowing often has practically no effect on accuracy. 
Thus, overall this method appears to be more useful in 
TITclrl LL--- :- 3.-:,t-.- I.-- :-J---L:-- /a--II-LL ,nn,\ nm11r bnan III aeclblon Lree 1uaucLlou (ballebb IYYLJ. 

This may be due to several factors, including RISE’s 
lower sensitivity to the global proportions of different 
classes, and its higher resistance to the fragmentation 
problem, which enables it to correctly approximate 
class frontiers using fewer examples. 

The effect of partitioning on accuracy is more vari- 
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Table 1: Experimental results: running times (in minutes and seconds). 

Database RISE Windowing Partitioning 
e man = 100 emam =200 emos = 500 

, Credrt , 4:31 , 3121 1:37 1:ll 4:38 
Pima diabetes 4:15 6:20 
Annealing 4:26 2~44 
Chess 33:26 10:40 
Hypothyroid 105:23 14:46 
&lice junctions 110:39 51:28 

1:32 1:13 2~47 
1:43 2~33 2:17 
3:lO 6:04 12:06 
5:os 10:42 24:06 
5122 12:45 25~48 

Mushroom 1 70:07 1 10:07 1 5:55 7:26 14:32 

Table 2: 

Database 

Credit 
Pima diabetes 
Annealing 
Chess 
Hypothyroid 
Splice junctions 
Mushroom 

Experimental 

RISE 

82.6f1.5 
71.6f2.5 

t-l 

97.5f0.9 
98.4f0.6 
97.9zto.2 
92.5f0.8 

100.OfO.O 

I results: accuracies and standard deviations. 

Wmdowmg Partitioning 
Inn emar = I”” rrnrl em** = L”” emas = 500 

83.6f1.5 86.4f1.9 86.4f1.5 82.6f1.6 
70.6f2.7 74.4f2.1 73.6f3.3 72.8f2.6 
98.0fl.O 93.6f1.6 96.1f1.6 96.5fl.l 
98.4f0.7 94.5f0.5 95.2f0.6 96.6f0.9 
97.5f0.5 97.0f0.3 97.5f0.3 97.9fO.4 
92.8f0.7 95.04x0.7 94.6f0.7 94.7f0.6 

100.OfO.O 98.9fO.l 99.5f0.3 99.8fO.l 

able than that of windowing. In some domains a 
trade-oif between partition size and accuracy is ob- 
served; however, only in the chess domain does in- 
creasing emax from 200 to 500 substantially increase 
accuracy. More interestingly, in the credit, diabetes 
and splice junctions domains the opposite trend is 
observed (i.e., partitioning increases accuracy, and 
smaller partitions more so than larger ones); this 
may be attributed to the reduction in overfitting de- 
rived from inducing and testing rules on different 
partitions, to the increase in accuracy that can re- 
sult from combining multiple models (Wolpert 1992; 
Breiman in press), and possibly to other factors. In 
practice, the best partition size should be determined 
by experimentation on the specific database RISE is 
being applied to, starting with smaller (and therefore 
faster) values. 

To test the algorithms on a larger problem, and ob- 
tain a clearer view of the growth rate of their running 
times, experiments were conducted on NASA’s space 
shuttle database. This database contains 43500 train- 
ing examples from one shuttle flight, and 14500 test 
examples from a different flight. Each example is de- 
scribed by nine numeric attributes obtained from sen- 
sor readings, and there are seven possible classes, cor- 
responding to states of the shuttle’s radiators (Catlett 
1991). The goal is to predict these states with very 
high accuracy (99-99.9%), using rules that can be 
taught to a human operator. 

The learning time curves obtained for RISE, RISE 
with windowing and RISE with partitioning (using 

100 ma0 moo 100000 
No. examples 

Figure 1: Learning times for the shuttle database. 

emaz = 100) are shown in Figure 1 using a log-log scale. 
Approximate asymptotes are also shown. Windowing 
reduces running time, but its growth appears to remain 
roughly quadratic; partitioning reduces it to linear, as 
expected. The accuracy curves (not shown) are very 
similar for all systems, converging rapidly to very high 
values (99% by e = 1000, etc.), with partitioning lag- 
ging slightly behind the other two. 

The shuttle data is known to be relatively noise- 
free. To investigate the effect of noise, the three algo- 
rithms (pure RISE, windowing and partitioning) were 
also applied after corrupting the training data with 
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Figure 2: Learning times for the shuttle database with 
20% noise. 

20% class noise (i.e., each class had a 20% probability 
of being changed to a random class, including itself). 
The learning t&m cl.wves ~~t&,ir?ed_ are &~wn in Fig- -__- _-- 
ure 2. The time performance of windowing degrades 
markedly, even with the pre-imposed limit on the num- 
ber of window expansions, becoming a liability for all 
e > 500. In contrast, partitioning remains almost en- 
tirely unaffected. Noise reduces the accuracy of pure 
RISE and windowing by 3 - 8%, with the smaller dif- 
ferences occurring for larger training set sizes. (Recall 
that noise was added only to the training set.) The ac- 
curacy of partitioning is barely affected, making it con- 
sistently more accurate than pure RISE at this noise 
level. Thus partitioning appears to be the speedup 
method of choice for noisy databases. 

Conclusions and Future Work 
This paper studied the application to the RISE rule 
induction system of two speedup methods, window- 
ing and partitioning. With noise-free data, both were 
found to effectively reduce running time while main- 
taining accuracy, but only partitioning reduced the 
growth rate to linear; in noisy conditions, the use of 
windowing has a negative effect, while partitioning re- 
mains unaffected. 

Directions for future research include testing and 
developing more sophisticated methods of combining 
the outputs of the individual partitions (e.g., (Chan 
& Stolfo 1995)) automating the selection of partition 
size, testing windowing and partitioning on a larger 
variety of larger databases, and introducing further 
speedup techniques to RISE. 
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