
Efficient Specific-to-General Rule Induction

Pedro Domingos
Department of Information and Computer Science

University of California, Irvine
Irvine, California 92717, U.S.A.

nnAcnA(iilien 11,-i m-l,* ~CI..nI”U\=l.+U.UUI.wAU
http://www.ics.uci.edu/“pedrod

Abstract

RISE (Domingos 1995; in press) is a rule induc-
tion algorithm that proceeds by gradually gen-
eralizing rules, starting with one rule per exam-
ple. This has several advantages compared to the
more common strategy of gradually specializing
initially null rules, and has been shown to lead
to significant accuracy gains over algorithms like
CGRULES and CN2 in a large number of appli-
cation domains. However, RISE’s running time
(like that of other rule induction algorithms) is
quadratic in the number of examples, making it
-.-,... :r..l.L. A-..” . .._ ̂-^-- :.., ., ^..., l,..,, sl,+..l.,,,, UIIJulba,“lG I”1 yr”LG;uJurF, “ClJ raqyG UQtJIL”rWG;U.
This paper introduces a method for reducing
RISE’s running time based on partitioning the
training set, evaluating rules from one partition
on examples from another, and combining the
final results at classification time. Partitioning
guarantees a learning time that is linear in the
number of examples, even in the presence of nu-
meric attributes and high noise. Windowing, a
well-known speedup method, is also studied as
applied to RISE. In low-noise conditions, both
methods are successful in reducing running time
whilst maintaining accuracy (partitioning some-
times improves it significantly). In noisy condi-
tions, the performance of windowing deteriorates,
while that of partitioning remains stable.

introduction and Previous -Work
Rule induction is one of the major technologies under-
lying data mining. Given a number of classified ex-
amples represented by vectors of symbolic and/or nu-
meric attributes, algorithms like C4.5RULES (Quinlan
1993) and CN2 (Clark & Niblett 1989) produce sets
of “if . . . then . ..” rules that allow us to predict the
classes of new examples by performing tests on their
attributes. However! the running time of these algo-
rithms is typically quadratic or worse in the number
of examples, making it difficult to apply them to the
very large databases that are now common in many
fields. In C4.5RULES, noise can lead to a cubic run-
ning time (Cohen 1995). While some fester variants
of rule induction have been proposed (Fiirnkranz &
WiAmm. ~QCIA. f?!nhm lOOr;) nnnaa ~phi,wc. the irleal 7.1U111”I A”“*) V”1I”II A”““,, 1LV1.U U”II.U.Y “II” A..“_

goal of linear time. An alternative approach, and
the one that is followed in this paper, is to employ
some form of sampling, like windowing (Catlett 1991;
Quinlan 1993), peepholing (Catlett 1991), or partition-
ing (Chan & Stolfo 1995). While often (though not
always) reducing running time, sampling techniques
can sometimes substantially reduce accuracy, and there
may be a trade-off between the two. A reduced-
accuracy rule set is preferable to a more-accurate one
that is never reached due to lack of time; ideally, how-
ever, the loss in accuracy should be as small as possible,
given the available time.

RISE (Domingos 1995; in press) is a rule induction
algorithm that searches for rules in a specific-to-general
direction, instead of the general-to-specific one used
by most rule learners. This has several advantages,
among them the ability to detect with confidence a
higher level of detail in the databases, and a reduction
of sensitivity to the fragmentation (Pagallo & Haussler
1990) and small disjuncts problems (Holte, Acker, &
Porter 1989). In a study comparing RISE with several
induction algorithms (including C4.5RULES and CN2)
on 30 databases from the UC1 repository (Murphy &
Aha 1995), RISE was found to be more accurate than
each of the other algorithms in about two-thirds of
the databases, in each case with a confidence of 98%
or better according to a Wilcoxon signed-ranks test
(DeGroot 1986). RISE also had the highest average
accuracy and highest rank.

RISE’s running time, like that of previous algo-
rithms, is quadratic in the number of examples, and
thus the question arises of whether it is possible to
reduce this time to linear without compromising accu-
racy. This paper proposes, describes and evaluates the
application of windowing and partitioning to RISE; in
both cases, this raises issues and opportumties that are
not present in general-to-specific systems.

The next three sections of the paper describe pure
RISE, RISE with windowing, and RISE with partition-
ing. This is followed by an empirical study comparing
the t.hree anrl Aicrnasinn nf t.he rea11t.a yaav y’a-y”, _... y.I”yII*-~~ VA “A.- -“.,...“.,.

Rule Induction Q Decision Tree Induction 319

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

The RISE Algorithm
RISE searches for “good” rules in a specific-to-general
fashion, starting with a rule set that is the training
set of examples itself. RISE looks at each rule in turn,
finds the nearest example of the same class that it does
not already cover, and attempts to minimally general-
ize the rule to cover it, by dropping conditions (in the
case of differing symbolic attributes) and/or expand-
ing intervals (for numeric attributes). If the change’s
effect on the rule set’s leave-one-out accuracy on the
training set is positive or null, it is retained; otherwise
it is discarded. This procedure is repeated until, for
each rule, attempted generalization fails.

At performance time, classification of each test ex-
ample is performed by finding the nearest rule to it,
and assigning the example to the rule’s class. The dis-
tance measure used is a combination of Euclidean dis-
tance for numeric attributes, and a simplified version
of Stanfill and Waltz’s value difference metric for sym-
bolic attributes (Stanfill & Waltz 1986). When two or
more rules are equally close to a test example, the rule
that was most accurate on the training set wins. So as
to not unduly favor more specific rules, the Laplace
corrected accuracy is used (Niblett 1987).

Windowing
Windowing is applied to RISE in a fashion broadly
similar to C4.5’~ (Quinlan 1993), and proceeds as fol-
lows. Initially, only 2fi examples randomly extracted
from the training set are used for learning. This sample
is stratified (i.e., it contains approximately equal pro-
portions of all classes); this makes it possible to still
learn classes that have few representatives in the orig-
inal training set. If the remaining training examples
are correctly classified by the resulting rule set, this
set is output. Otherwise, the misclassified examples
are added to the initial example set, and this process
repeats until it produces no improvement in accuracy
on two successive expansions, or a maximum number
of expansions is reached (5 by default).

Partitioning
In the partitioning approach (Chan & Stolfo 1995), the
training data is divided into a number of disjoint sub-
sets, and the learning algorithm is applied to each in
turn. The results of each run are combined in some
fashion, either at learning or at classification time.
In RISE, partitioning is applied by pre-determining a
maximum number of examples emoz to which the algo-
rithm can be applied at once (100 by default). When 11 . tms number is exceeded, the training set is randomiy
divided into [e/e,,,1 app roximately equal-sized parti-
tions, where e is the total number of training examples.
RISE is then run on each partition separately, but with
an important difference relative to a direct application:
the rules grown from the examples in partition p are
not evaluated on the examples in that partition but on

the examples in partition p+ 1 (modulo the number of
partitions). This should help combat overfitting, and
the resulting improvement in accuracy may partly off-
set the degradation potentially caused by using smaller
training sets. It is not possible in general-to-specific
algorithms, where there is no connection between a
specific rule and a specific example.

Because the number of partitions grows linearly with
the number of training examples, and RISE’s quadratic
factor is confined to the examples within each parti-
tion and thus cannot exceed a given maximum (e.g.,
1002 if e,,, = loo), the algorithm with partitioning
is guaranteed a linear worst-case running time. How-
ever, depending on ema*, the multiplicative constants
can become quite large.

Two methods of combining the results of induction
on the individual partitions have been implemented
and empirically compared. In the first, all the rule sets
produced are simply merged into one, which is output
by the learning phase. In the second, the rule sets are
kept separate until the performance phase, and each
partition classifies the test instance independently. A
winning class is then assigned to the example by voting
among the partitions, with each partition’s weight be
ing t,he Laplace acclJr&cy Qf t,he rule the&t won within it,
(see section on RISE). The second method was found
to achieve consistently better results, and was there-
fore adopted. More sophisticated combination meth-
ods based on Bayesian theory are currently being stud-
ied, but have so far yielded inferior results. Many other
combination schemes are possible (e.g., (Chan & Stolfo
1995)).

Empirical Evaluation
The two speedup methods were tested on seven of
the UC1 repository’s largest databases (Murphy &
Aha 1995) (in increasing order of size: credit screen-
ing (Australian), Pima diabetes, annealing, chess
endgames (kr-vs-kp), hypothyroid, splice junctions,
and mushroom). Partitioning was tested with emaz =
100, 200, and 500. Ten runs were carried out for each
database, in each run randomly dividing the data into
two-thirds for training and one-third for testing. The
averaged results are shown in Tables 1 (running times)
and 2 (accuracies).

Both speedup methods are effective in reducing
RISE’s running time, generally without seriously af-
fecting accuracy (chess and annealing with partition-
ing, and diabetes with windowing, are the exceptions).
Windowing often has practically no effect on accuracy.
Thus, overall this method appears to be more useful in
TITclrl LL--- :- 3.-:,t-.- I.-- :-J---L:-- /a--II-LL ,nn,\ nm11r bnan III aeclblon Lree 1uaucLlou (ballebb IYYLJ.

This may be due to several factors, including RISE’s
lower sensitivity to the global proportions of different
classes, and its higher resistance to the fragmentation
problem, which enables it to correctly approximate
class frontiers using fewer examples.

The effect of partitioning on accuracy is more vari-

320 Technology Spotlight

Table 1: Experimental results: running times (in minutes and seconds).

Database RISE Windowing Partitioning
e man = 100 emam =200 emos = 500

, Credrt , 4:31 , 3121 1:37 1:ll 4:38
Pima diabetes 4:15 6:20
Annealing 4:26 2~44
Chess 33:26 10:40
Hypothyroid 105:23 14:46
&lice junctions 110:39 51:28

1:32 1:13 2~47
1:43 2~33 2:17
3:lO 6:04 12:06
5:os 10:42 24:06
5122 12:45 25~48

Mushroom 1 70:07 1 10:07 1 5:55 7:26 14:32

Table 2:

Database

Credit
Pima diabetes
Annealing
Chess
Hypothyroid
Splice junctions
Mushroom

Experimental

RISE

82.6f1.5
71.6f2.5

t-l

97.5f0.9
98.4f0.6
97.9zto.2
92.5f0.8

100.OfO.O

I results: accuracies and standard deviations.

Wmdowmg Partitioning
Inn emar = I”” rrnrl em** = L”” emas = 500

83.6f1.5 86.4f1.9 86.4f1.5 82.6f1.6
70.6f2.7 74.4f2.1 73.6f3.3 72.8f2.6
98.0fl.O 93.6f1.6 96.1f1.6 96.5fl.l
98.4f0.7 94.5f0.5 95.2f0.6 96.6f0.9
97.5f0.5 97.0f0.3 97.5f0.3 97.9fO.4
92.8f0.7 95.04x0.7 94.6f0.7 94.7f0.6

100.OfO.O 98.9fO.l 99.5f0.3 99.8fO.l

able than that of windowing. In some domains a
trade-oif between partition size and accuracy is ob-
served; however, only in the chess domain does in-
creasing emax from 200 to 500 substantially increase
accuracy. More interestingly, in the credit, diabetes
and splice junctions domains the opposite trend is
observed (i.e., partitioning increases accuracy, and
smaller partitions more so than larger ones); this
may be attributed to the reduction in overfitting de-
rived from inducing and testing rules on different
partitions, to the increase in accuracy that can re-
sult from combining multiple models (Wolpert 1992;
Breiman in press), and possibly to other factors. In
practice, the best partition size should be determined
by experimentation on the specific database RISE is
being applied to, starting with smaller (and therefore
faster) values.

To test the algorithms on a larger problem, and ob-
tain a clearer view of the growth rate of their running
times, experiments were conducted on NASA’s space
shuttle database. This database contains 43500 train-
ing examples from one shuttle flight, and 14500 test
examples from a different flight. Each example is de-
scribed by nine numeric attributes obtained from sen-
sor readings, and there are seven possible classes, cor-
responding to states of the shuttle’s radiators (Catlett
1991). The goal is to predict these states with very
high accuracy (99-99.9%), using rules that can be
taught to a human operator.

The learning time curves obtained for RISE, RISE
with windowing and RISE with partitioning (using

100 ma0 moo 100000
No. examples

Figure 1: Learning times for the shuttle database.

emaz = 100) are shown in Figure 1 using a log-log scale.
Approximate asymptotes are also shown. Windowing
reduces running time, but its growth appears to remain
roughly quadratic; partitioning reduces it to linear, as
expected. The accuracy curves (not shown) are very
similar for all systems, converging rapidly to very high
values (99% by e = 1000, etc.), with partitioning lag-
ging slightly behind the other two.

The shuttle data is known to be relatively noise-
free. To investigate the effect of noise, the three algo-
rithms (pure RISE, windowing and partitioning) were
also applied after corrupting the training data with

Rule Induction &Z Decision Tree Induction 321

References
le+O6

1OOOOO

2 ~oooo

8 1000

100

10

RISE -
Widowing -t---

100 1000 10000 lOOOO0
No. examples

Figure 2: Learning times for the shuttle database with
20% noise.

20% class noise (i.e., each class had a 20% probability
of being changed to a random class, including itself).
The learning t&m cl.wves ~~t&,ir?ed_ are &~wn in Fig- -__- _--
ure 2. The time performance of windowing degrades
markedly, even with the pre-imposed limit on the num-
ber of window expansions, becoming a liability for all
e > 500. In contrast, partitioning remains almost en-
tirely unaffected. Noise reduces the accuracy of pure
RISE and windowing by 3 - 8%, with the smaller dif-
ferences occurring for larger training set sizes. (Recall
that noise was added only to the training set.) The ac-
curacy of partitioning is barely affected, making it con-
sistently more accurate than pure RISE at this noise
level. Thus partitioning appears to be the speedup
method of choice for noisy databases.

Conclusions and Future Work
This paper studied the application to the RISE rule
induction system of two speedup methods, window-
ing and partitioning. With noise-free data, both were
found to effectively reduce running time while main-
taining accuracy, but only partitioning reduced the
growth rate to linear; in noisy conditions, the use of
windowing has a negative effect, while partitioning re-
mains unaffected.

Directions for future research include testing and
developing more sophisticated methods of combining
the outputs of the individual partitions (e.g., (Chan
& Stolfo 1995)) automating the selection of partition
size, testing windowing and partitioning on a larger
variety of larger databases, and introducing further
speedup techniques to RISE.

Acknowledgments
This work was parly supported by a JNICT/PRAXIS
XXI schoiarship.

Breiman, L. Bagging predictors. Machine Learning.
In press.
Catlett, J. 1991. Megainduction: Machine Learning
on Very Large Databases. Ph.D. Dissertation, Basser
Department of Computer Science, University of Syd-
ney, Sydney, Australia.
Chan, P. K., and Stolfo, S. J. 1995. Learning arbiter
and combiner trees from partitioned data for scaling
machine learning. In Proceedings of the First Interna-
tional Conference on Knowledge Discovery and Data
Mining, 39-44. Montreal, Canada: AAAI Press.
Clark, P., and Niblett, T. 1989. The CN2 induction
algorithm. Machine Learning 3:261-283.
Cohen, W. W. 1995. Fast effective rule induction.
In Proceedings of the Twelfth International Confer-
ence on Machine Learning, 115-123. Tahoe City, CA:
Morgan Kaufmann.
DeGroot, M. H. 1986. Probability and Statistics.
Reading, MA: Addison-Wesley, 2nd edition.
Domingos, P. 1995. Rule induction and instance-
haa4 Lnvninn. A nn3L-l annrncarh ill 1 rubbburruyo Pwn”nnll;m “L. v-vu ‘“U’L’U’b. .L UIAIIIUU cuyy’““uL.
of the Fourteenth International Joint Conference on
A&$&I Intelligence, 1226-1232. Montreal, Canada:
Morgan Kaufmann.
Domingos, P. Unifying instance-based and rule-based
induction. Machine Learning. In press.
Fiirnkranz, J., and Widmer, G. 1994. Incremental
reduced error pruning. In Proceedings of the Eleventh
International Conference on Machine Learning, 70-
77. New Brunswick, NJ: Morgan Kaufmann.
Holte, R. C.; Acker, L. E.; and Porter, B. W. 1989.
f-?,,,,,, l .mmkm ~nrl tha n,r,hlom nf m--I’ A~&.~~~+~ ..Jv..vuy ‘VU”““~ CUAIU “ALb yL”uIbIII “I ullla I uruJuLrt2uu.
In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, 813-818. De-
troit, MI: Morgan Kaufmann.
Murphy, P. M., and Aha, D. W. 1995. UCI
repository of machine learning databases. Machine-
readable data repository, Department of Information
and Computer Science, University of California at
Irvine, Irvine, CA.
Niblett, T. 1987. Constructing decision trees in
noisy domains. In Proceedings of the Second Euro-
.rwnm W&izn S~crinm nn T..rnmimnn (37-78. &d, Y-A= c-“” ” J ----_ -,I -,” -“.“. .‘-*“&.j) Y.
goslavia: Sigma.
Pagallo, G., and Haussler, D. 1990. Boolean fea
ture discovery in empirical learning. Machine Learn-
ing 3:71-99.
Quinlan, J. R. 1993. C4.5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.
Stanfill, C., and Waltz, D. 1986. Toward memory-
based reasoning. Communications of the ACM
29:1213-1228.
Wolpert, D. 1992. Stacked generalization. Neural
1T..J.....,l- C.QA1 ocn I”c“w”r~~ .J.lrl-LiJJ.

322 Technology Spotlight

