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Abstract 
In this paper we suggest determinations as a repre- 
sentation of knowledge that should be easy to under- 
stand. We briefly review determinations, which can be 
clispiayecl in a tabular format, and their use in preclic- 
tion, which involves a simple matching process. We 
describe CONDET, an algorithm that uses feature se- 
lection to construct determinations from training data, 
augmented by a condensation process that collapses 
rows to produce simpler structures. We report experi- 
ments that show condensation reduces complexity with 
no loss of accuracy, then discuss CONDET’S relation to 
other work and outline directions for future studies. 

ity. After this, we present experimental studies of these 
techniques that evaluate the accuracy and complexity 
of the learned structures. We close with comments on 
related work and directions for future research. 

The Nature of Determinations 

Introduction 
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covery and data mining. Although it is important to 
discover knowledge that is accurate, in many domains 
it is also essential that users find that knowledge easy 
to interpret. Most researchers assume that logical rules 
and decision trees are more understandable than other 
formalisms, such as neural networks or stored cases. 
Although the evidence supporting this belief is mainly 
anecdotal, we will not argue with it here. 

Davies and Russell (1987) introduced determinations 
as a form of background knowledge for use in analogical 
reasoning, but the idea has more general applications. 
Briefly, a determination expresses some functional de- 
pendency between a set of predictor attributes P and 
a set of predicted attributes Q, so that, given P, one 
can infer Q. Of course, such knowledge is useful only if 
one has information about particular combinations of 
those attributes’ values. Davies and Russell proposed 
obtaining this information through anaiogy with stored 
cases. However, one can also envision a knowledge base 
containing a separate rule for each combination of pre- 
dictor values, and we will assume such structures here. 

Rather, we will assume its validity and focus on 
a special class of logical rules, known as determina- 
tions, that we maintain are particularly understand- 
able. This representation differs from other rule frame- 
works in that all rules in the knowledge base refer to the 
same attributes. As a result, they can be graphically 
displayed as a ‘truth table’, with one column for each 
attribute (including the class) and one row for each 
combination of attribute values. We anticipate that 
users will like this regular structure, especially given 
its similarity to widely used spreadsheet formats. 

Such determinations are interesting from the per- 
spective of understandability because they can be dis- 
played in a tabular format. Table 1 shows a determi- 
nation for a simple artificial domain, originally used 
by Quinlan (1993) to illustrate decision trees, that in- 
volves deciding whether to pursue an outdoor activity. 
This domain includes four predictor attributes - OUT- 
LOOK. HIJMTDITY. WINDY, and TEMPERATURE - and I ----.----- -7 
one predicted attribute CLASS, which states whether 
to engage in the activity. This determination includes 
columns for only three of the predictor variables, be- 
cause TEMPERATURE does not help to predict CLASS. 

In the following sections, we review the representa- 
tion of determinations and their use in classification, 
followed by an algorithm for inducing these structures 
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present a technique for condensing induced determina- 
tions, aimed at further improving their understandabil- 

One can use a determination for prediction or infer- 
ence in the same way as any other formalism that in- 
volves logical rules. For a given instance, one finds the 
row (i.e., rule) that specifies a combination of predictor 
values that match the instance, then infers the value 
specified for the predicted attribute(s). For now, we 
will assume that all attributes in a determination are 
discrete, and that any continuous variabies have been 
transformed into discrete ones either by the knowledge 
base’s developer or through some automatic process. 
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Figure 1: Learning curves for for inducing determinations on chess endgames, with and without its condensation 
mechanism, measuring (a) complexity of the learned determinations and (b) accuracy on separate test sets. 

decrease the inherent comprehensibility. For example, 
Quinlan’s (1986) decision-tree encoding of the twelve- 
row determination in Table 1 involves only five termi- 
nal nodes, which is certainly simpler in some respects. 

Fortunately, there exists a compromise that re- 
tains the tabular format but allows simpler structures. 
These condensed determinations still display knowl- 
edge in terms of rows and columns, but they allow 
wildcard symbols to indicate that some rows have been 
collapsed. For example, Table 2 shows a condensed 
determination that makes the same predictions as the 
original table. The new structure includes a wildcard 
‘*, for selected values of HUMIDITY and WINDY, which 
reduces the total number of rows from twelve to five. 

CONDET incorporates a mechanism to condense 
determinations in this manner. The basic operator 
involves combining rules (rows) that differ on only 
one predictive attribute into a rule in which that at- 
tribute’s values have been replaced with a wildcard. 
For tractability’s sake, we restrict this operation in cer- 
tain ways. Rather than focusing on pairs of rules, CON- 
DET combines all rules that share a set of attribute 
values. Also, when the system combines one set of 
rules that share values, it tries to condense all other 
sets that have common values on those attributes. 

Another constraint aims to maintain the predictive 
accuracy of the original determination. Here, CONDET 
combines only sets of rules that predict the same class. 
When all possible rows of the determination are repre- 
sented in the training data, this scheme does not alter 
the deductive closure of the knowledge base. However, 
the closure can change when some rows are missing, 
since the situation they describe may now be covered 
by the condensed rule, which has precedence over the 
majority class. For this reason, CONDET evaluates 
each candidate condensation against the training set, 
retaining it only if it does not hurt the overall accuracy. 

In terms of search organization, CONDET takes a 
greedy approach to condensing its determinations, as it 
does in constructing them. The system tentatively gen- 
erates a new table that results from condensing along 
each attribute, in each case combining all rules that 
differ on that attribute but have the same class. It se- 
lects the condensed table with the highest training set 
accuracy and continues this process, halting when ac- 
curacy decreases. The resulting table may not be con- 
densed in the optimal way, but it provides a reasonable 
compromise given limited computational resources. 

Experiments with Condensation 
Our aim in developing CONDET was to improve the 
comprehensibility of learned determinations without 
decreasing their accuracy. We posit that determina- 
tions with fewer rows will be easier to understand than 
ones with more rows; we have no hard evidence for this 
claim, but it seems intuitively plausible and we will as- 
sume it here. Thus, to evaluate our system’s behavior, 
we needed two dependent measures - the accuracy of 
the induced determinations and the complexity (specif- 
ically, the number of rows) of this knowledge structure. 

We tested CONDET on four domains from the UC1 
repository, focusing on data sets with only nominal at- 
tributes. For each domain, we generated 20 random 
training sets and 20 associated test sets. We ran CON- 
DET on all 20 training sets, measuring accuracy on the 
test sets and complexity of the learned determination, 
then computed average scores. Because we were inter- 
ested in the effects of condensation, we collected the 
same statistics when this process was absent. 

Moreover, we hypothesized that differences between 
the condensed and uncondensed determinations would 
increase with greater numbers of training cases, be- 
cause the data would tend to encourage the inclusion 
of more attributes and thus increase the number of un- 
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compressed rows. For this reason, we collected learn- 
ing curves, which measure system behavior as one in- 
creases the number of training cases. We expected that 
their accuracies would remain the same throughout the 
course of learning, while their complexities would di- 
verge for larger numbers of training instances. 

Figure 1 shows the comparative learning curves for 
the domain of chess endgames, which involves two 
classes and 36 attributes. The results were consistent 
with our predictions; Figure 1 (a) indicates that, later 
in the learning curve, condensation consistently leads 
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veals that this process does not reduce accuracy. We 
observed similar results (which we do not have room 
to report here) on domains involving mushroom clas- 
sification and Congressional voting records, with con- 
densation not affecting accuracy but simplifying the 
determinations. Here the size reduction was smaller, 
since feature selection left only a few tabular rows to 
condense. We also tested our algorithm on DNA pro- 
moters, a domain that typically gives trouble to induc- 
tion methods that create axis-parallel splits. Yet the 
predicted effect occurred even here; condensation led 
to simpler determinations without reducing accuracy. 

Recall that our experiments were not designed to 
show that CONDET is a particularly effective induc- 
tion algorithm. Other implementations of the same ba- 
sic approach may produce simpler determinations and 
higher accuracies, though the accuracies for CONDET 
and C4.5 were nearly identical on the domains used 
in our studies. Rather, our aim was to illustrate that 
determinations are a viable representation for use in 
knowledge discovery, that feature selection combined 
with a simple counting procedure can produce accu- 
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that a straightforward condensation process can sim- 
plify (and make more understandable) these knowledge 
structures with no loss in accuracy. 

Related and Future Work 
The approach to induction described in this paper has 
clear relations to earlier research. We have noted its 
strong debt to work on feature selection; nor are we the 
first to study methods for learning determinations from 
data, as Schlimmer (1993), Langley and Sage (1994), 
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and, in some cases, very similar methods. 

At first glance, the condensation process appears 
more novel, but it holds features in common with com- 
pression techniques intended to reduce matching costs 
and with postpruning methods designed to avoid over- 
fitting. An even stronger connection exists with work 
in the rough sets community, which often uses tabular 
representations of knowledge. Shan, Ziarko, Hamilton, 
and Cercone (1995) report an operation called value 
reduction that reduces the rows in a table by replacing 
values with wildcards. Their algorithm differs from the 
one used in CONDET, but the spirit is much the same. 

We have made no claims that our particular ap- 
proaches to the induction and simplification of deter- 
minations are the best possible. Rather, this paper’s 
contribution has been to highlight determinations as a 
promising representation of discovered knowledge, to 
note that algorithms exist for inducing such descrip- 
tions, and to show there are methods that can increase 
their understandability with no loss in accuracy. 

We believe that the most important direction for fu- 
ture work on this topic lies not in developing more re- 
fined algorithms, but in testing our predictions about I.- ---- -I- ~---1.--..~~1*~ ~~ 1-~--l I-‘~ tne ease 01 unaerstanamg conaensea aeserminations 
relative to other formalisms. This will require exper- 
iments with human subjects, including measures of 
their ability to understand knowledge bases, before we 
can draw firm conclusions about alternative notations. 
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