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Abstract 

The identification of relevant attributes is an impor- 
tant and difficult task in data m ining applications 
where induction is used as the primary tool for knowl- 
edge extraction. This paper introduces a new rule in- 
duction algorithm , RITIO, which elim inates attributes 
iu order of decreasing irrelevancy. The rules produced 
by RITIO are shown to be largely based on only the 
most relevant attributes. Experimental results, with 
and without feature selection preprocessing, confirm  
that RITIO achieves high levels of predictive accuracy. 

Introduction 
The pervasive use of sensor and information technology 
in all aspects of our life has resulted in the generation 
of vast amounts of digital data. Converting raw sensor 
data into useful information for human decision mak- 
ers is one of the driving forces behind research into 
applications of data m ining. 

Inductive learning is the primary method for dis- 
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concept descriptions which are able to generalize. The 
two major forms of representation used in inductive 
learning are the decision tree (DT) and the rule struc- 
ture. DTs are known to cause fragmentation of the 
database whenever a high-arity attribute is tested at 
a node (Pagllo & Haussler 1990) and also have a ten- 
dency to repeat subtrees when expressing disjunctive 
concepts. As a consequence of these two problems DTs 
tend to grow very large in most realistic problem do- 
mains, and they are usually decompiled into a set of 
rules. Rule-like structures are a more convenient form  
to express knowledge. Rules are sim ilar to the way hu- 
man experts express their expertise and human users 
are comfortable with this way of expressing newly ex- 
tracted knowledge. Algorithms directly inducing a set 
of rules are therefore at a distinct advantage as they 
immediately create the rule set. 

Hypothesis generation in induction involves search- 
ing through a vast (possibly infinite) space of concept 
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descriptions. Practical systems constrain the search 
space through the use of bias (Utgoff 1986). One 
such bias, which has not been given much attention 
is to m inim ize the number of features in the con- 
cept description. We propose a rule induction algo- 
rithm , RITIO (Rule Induction Two In One), which 
prefers hypothesis spaces containing fewer attributes, 
generalizing by removing irrelevant attributes. We 
show that this form  of attribute based induction can 
very efficiently provide syntactically simple concept de- 
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environments. We provide an empirical evaluation 
of RITIO with C4.5 (Quinlan 1993), C4.5rules and 
HCV (Wu 1995). 

In the next section we describe the RITIO algorithm , 
and we follow this with the results of an empirical in- 
vestigation. Two sets of results are presented. The 
first set is of RITIO without any feature selection (FS) 
preprocessing and the second set uses FS preprocess- 
ing. An algorithm  called Classer, reported elsewhere 
(Urpani & Sykes 1995) is used for this purpose. Classer 
uses genetic search to identify a subset of features that 
result in identical or improved classification rates on a 
nearest neighbour classifier. 

RITIO - Rule Induction, Two in One 
RITIO carries out a data driven, specific-to-general 
search for a consistent set of rules which describes the 
different classes in the data. Like IDblike algorithms, 
RITIO makes use of the entropy measure albeit in a 
different way as a means of constraining the hypoth- 
esis search space but unlike ID3-iike aigorithms the 
hypotheses language is the rule structure. IDS-like al- 
gorithms including ID3 and C4.5 need a decompiler 
(such as C4.5rules) to transform  decision trees into 
rules, whereby RITIO carries out rule induction with- 
out decision tree construction. 

Initially the rule set is a copy of the training set 
representing a set of maximally specific generalizations 
referred to as the rule matrix (RM). In the initial RM, 
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which is the rule matrix at level L = 0, a rule exists for 
each training instance. Each level L refers to one stage 
in the induction process, with higher levels denoting 
increasing rule generalization. There are a maximum 
of N - 1 levels where N is the number of attributes in 
the database. 

RITIO examines each attribute in the training set 
at each level L, and selects the least relevant. The 
heuristic used to identify relevancy is the information 
theoretic function designed by Shannon (Shannon & 
Weaver 1949) and popularized in Quinlan’s ID3 (Quin- 
lan 1986). In contrast to ID3 the heuristic used in 
RITIO selects the attribute providing the lowest infor- 
mation gain. The entropy of an attribute A, E(A) is 
the information required to classify an instance based 
on the information in that attribute. It is defined as 
follows: 

E(A) = &RdFregj x Inf’) 
j=l 

where V is the total number of distinct values in at- 
tribute A, and 

RelFreqj = PjIT 

with Pj being the number of occurrences of value j 
in attribute A and T being the number of training 
instances, 

Infj = -fJPj,/Pj X lOgZ(Pj,/Pj)], 
k=O 

with Pj, being the number of occurrences of value j in 
attribute A belonging to class k and C the number of 
classes in the training set. 

E(A) is calculated for each attribute in the database. 
In ID3 the attribute with the minimum entropy is se- 
lected at a decision tree node to split the tree. RITIO 
chooses the attribute with the maximum entropy as 
the candidate for elimination from the RM. This guar- 
antees that the least relevant attribute (according to 
information theory) is eliminated. The induction pro- 
cess will make a total of N - 1 entropy calculations. 

On identifying the first least relevant attribute, 
RITIO checks against each training instance to see 
whether removal of that attribute results in an incon- 
sistency. An inconsistency is here defined as the oc- 
currence of the same example with different classifica- 
tions after the removal of the least relevant attribute. 
An attribute whose removal from a rule causes no in- 
consistency anywhere in the training set is termed a 
‘removed’ attribute. 

After removal of the least relevant attribute from 
all instances where such removal does not cause an 

inconsistency, a new, more general RM results. The 
RM has now been partitioned into two distinct groups: 
one which still retains the full, initial dimensionality, 
N, the ‘retain’ group, and the other with a reduced 
dimensionality, N - 1, the ‘remove’ group. The RM is 
now at level 1. 

In succeeding rounds of entropy calculations all pre- 
vious ‘least relevant’ attributes are not considered. In 
this case the least relevant attribute from the remain- 
ing, N - 1 attributes across the two existing partitions 
is chosen as the next candidate for elimination. 

Once this attribute has been chosen the next round 
in the RM generalization process commences. While 
checking for consistency the following rules henceforth 
apply when identifying members of the training set to 
be used in the checking process: 

1. If checking a rule belonging to the ‘retain’ group 
all training instances are used. In some cases this 
means checking also against previously eliminated 
attributes. 

2. If checking a rule belonging to the ‘remove’ group 
only training instances belonging to that group are 
used. As before, the current least relevant attribute 
is dropped form those rules which do not cause an 
inconsistency. 

The RM at level L = 2 has now been partitioned into 
four groups (ie retain & retain, remove & retain, retain 
& remove and remove & remove groups). The process 
repeats itself iteratively N - 1 times with new entropy 
calculations, consistency checks and further partition- 
ing of the RM. At any point in the induction process 
the RM will contain a maximum of 2L-1 partitions up 
to a final maximum of 2N-1 different partitions. 

The final RM contains a set of maximally general- 
ized rules guaranteed for consistency. The generalizing 
process results in a reduction in the number of rules 
from the original training set size. This manifests it- 
self by repeating rules which are eliminated in the rule 
extraction process. Another effect of the generalizing 
process is a reduction in the average dimensionality 
of the RM as attributes are progressively eliminated. 
The rules are finally presented as an unordered list in 
conjunctive normal form. 

Real world databases are often noisy, contradictory, 
incomplete and redundant. To be of any practical use 
RITIO needs to be able to generalize in the presence 
of noisy data. RITIO handles noise by a series of pro- 
cesses distributed throughout the induction process. 
These techniques are discussed in detail elsewhere (Ur- 
pani 1996). 
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Experimental Evaluation 
In this section we present the results of an empiri- 
cal investigation into the performance of RITIO (with 
and without feature selection preprocessing), using 
Classer) and compare the results obtained by RITIO 
with those using C4.5, C4.5rules and HCV. 

Throughout the experiments the same default con- 
ditions were used for all the databases. Obviously 
fine tuning different parameters in RITIO would have 
achieved higher accuracy rates. This however would 
have been at the expense of a loss in generality and ap- 
plicability of the conclusions. The default conditions 
used in RITIO were as follows: 

1. The induced rule set was pruned by eliminating 
those rules which had the same class coverage of less 
than 5.0%. 

2. The maximum number of mismatches allowed during 
deduction is the number of attributes minus one. 

Similarly default conditions were adopted for the 
three other programs C4.5, C4.5rules and HCV as rec- 
nmmenrl~Cl hv t.hc=. r~w,ertiv~ ant.hnra ~......“..U”.. ‘J v...d ““~“V’. ,” YI.2I.V.I. 

All databases used were divided randomly into train- 
ing and testing partitions by a 70/30 split of the in- 
stances. This was carried out 10 times to obtain lo- 
fold cross-validation trials. 

The Data 
The data used in our experiments (see Table 1) can 
be divided into three groups. The first group is made 
up of data with 100% nominal attributes. The sec- 
ond group contains data of mixed nominal and con- 
tinuous attributes. Most of these two groups of data 
were obtained from (Murphy & Aha 1995), and are 
available from the HCV software data suite (Wu 1995). 
The third group of data originates from an aluminium 
smelter. Further information on all data sets can be 
found in (Urpani 1996). 

Rule Accuracy 
Tables 2 shows the accuracy results obtained by the 
four programs, HCV (Version 2.0), C4.5, RITIO and 
C4.5rules. The best result for each problem is high- 
lighted with boldface font in the table. Results for 
C4.5 are the pruned ones. The RITIO results are the 
average of ten fold cross-validated results on unseen 
test cases. Aiso inciuded for RITIC is the 95% con- 
fidence interval estimate of the mean of the accuracy 
results. This estimate shows the variance associated 
with the results and is a good indication of the sta- 
bility of the algorithm over different databases. For 8 
databases out of 10 in the first group in Table 2, RITIO 

(with FS) obtained the best results. RITIO (without 
FS) performed just as well relative to the other data 
sets, however its accuracy was nearly always lower than 
that from ClasserSRITIO. 

Out of the 4 databases with continuous data in the 
second group, RITIO obtained the best results on 2 of 
them. RITIO produced a particularly good result on 
the water treatment plant database WTP which is a 
notoriously difficult real world database, significantly 
exceeding the next best. FS preprocessing did not seem 
to particularly improve RITIO’s performance on these 
data sets. 

With the industrial databases shown in the last 
group, RITIO again obtained the best accuracy re- 
sults for 5 out of the 7 databases. Furthermore in 4 
out of 7 cases FS preprocessing obtained a better re- 
sult than when using RITIO without preprocessing. 
In several cases such as the ‘Temperature’ and ‘Pre- 
diction 3’ databases RITIO obtained a very significant 
improvement over the next best result. 

Conclusion 
We have presented a new induction algorithm, RITIO, 
which uses the information theoretic function in a novel 
way to induce directly a set of rules. It is similar to 
HCV (Version 2.0) in its approach of using matrices 
but has stronger noise handling capabilities by elimi- 
nating attributes, starting with the least relevant at- 
tribute. This is in direct contrast to the DT inducer 
in C4.5 which uses the most relevant attribute first to 
branch on. Results also indicate that RITIO’s induc- 
tion accuracy can in many cases be improved through 
the use of a FS preprocessing procedure. 

The algorithm has been shown in the experiments 
carried out on a wide variety of databases to pro- 
duce concept descriptions of consistently high accu- 
racy which perform better in most cases than C4.5, 
C4.5rules or HCV. Future work involves looking at 
different evaluation functions to employ when select- 
ing attributes for elimination. The consistency check 
procedure will also be modified to take a ‘softer’ fuzzy 
approach (Wu & M&hl&r 1995). This ability to toler- 
ate different levels of inconsistency should add to the 
already good noise tolerance of the RITIO algorithm. 
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Database 

Hayes-Hoth 
Monk1 
Monk2 
Monk3 
Tic-tat-toe 
Soybean 
Vote 
Breast Cancer 
Lymphography 
Primary Tumor 
Aus-Credit 
Lab Neg 
Wine 
WTP 
Pot Noise 
UFT 
Temperature 
Pot Difference 
Prediction 1 
Prediction 2 
Prediction 3 

--im-- 
Instances 

160 
556 
601 
554 
958 
683 
435 
286 
148 
339 
690 
56 
178 
523 
542 
407 
321 
195 
721 
721 
616 

Database HCV (Version 2.0) c4.5 
Hayes-Roth 85.70 85.60 
M&k1 100.00 83.30 
Monk2 85.20 69.70 
Monk3 98.10 97.20 
Tic-tat-toe 88.00 94.30 
Soybean 80.20 82.4 
Vote 97.80 97.00 
Breast Cancer 72.3 72.8 
Lymphography 74.30 69.00 
Primary Tumor 38.2 34.00 
Aus-Credit 82.50 91.0 
Lab Neg 76.50 88.2 
Wine 90.40 08.1 
WTP 58.62 60.90 
Pot Noise 94 48 97.80 
UFT 70.37 69.60 
Temperature 48.57 61.90 
Pot Difference 89.23 96.90 
Prediction 1 74.90 68.60 
Prediction 2 67.78 57.9 
Prediction 3 60.50 53.80 

Table 
Attributes 

1: Dat 
Classes 

4 3 
6 2 
6 2 
6 2 
9 2 

35 19 
16 2 
9 2 

18 4 
17 21 
15 2 
16 2 
13 3 
38 13 
22 2 
20 2 
22 3 
22 2 
56 2 
68 2 
68 2 

at )ases Characteristics 
Majority 

Class (%) 
40.60 
50.00 
65.70 
52.00 
65.30 
13.50 
61.40 
70.3 
54.7 
24.8 

56.00 
65.00 
40.00 
52.18 
50.00 
50.00 
33.33 
50.00 
50.00 
50.00 
50.00 

Continuous 
Attributes (%) 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

40.00 
50.00 

100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 

Table 2: Accuracy (%) Results on Discrete Data 

Avg # of Values 
per Attributes 

4.00 
2.80 
2.80 
2.80 
3.00 
2.80 
3.00 
5.80 
3.30 
2.20 
4.56 
2.62 
n/a n/a 
n/a 
nja 
n/a 
n/a 
n/a 
n/a 
n/a 
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.iITIO 95’70 Estimate 
87.92 4.14 
97.37 5.96 
94.97 3.39 
99.45 0.61 
98.32 1.11 
96.80 0.68 
98 97 1.10 
91.26 7.19 
84.90 6.35 
75.07 5.81 
93.22 2.38 
77.16 5.37 
92.37 2.16 
94.77 0.83 
96.00 1.47 
89.11 4.46 
82.71 4.60 
93.38 3.40 
89.58 5.58 
83.71 2.13 
86.63 2.35 

C4.5rules 
71.4 

100.0 
65 3 
96.3 

100.0 
80.6 
93.6 
73.5 
72.4 

33.80 
90 0 
88.2 
08.1 
59.2 
97.2 
72.1 
67.6 

90.90 
75.3 
57.5 
54.6 

Unknown 
Values (%) 

0.00 
0.00 
0.00 
0.00 
0.00 

12.00 
5.00 
0.00 
0.00 
3.00 
0.65 

35.75 
0.00 
2.95 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

Classer+RITIO 
90.4 

100.00 
94.07 
100.00 
94.37 
97.10 
00.06 
92.11 
93.10 
73.10 
89.00 
80.5 

92.70 
94.77 
94.33 
84.40 
81.96 
00.23 
01.00 
85.70 
87.20 
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