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Abstract 

We study the spatial data mining problem of 
how to extract a special type of proximity 
relationship-namely that of distinguishing two 
clusters of points based on the types of their 
neighbouring features. The points in the clusters 
may represent houses on a map, and the features 
may represent spatial entities such as schools, 
parks, golf courses, etc. Classes of features are 
organized into concept hierarchies. We develop 
algorithm GenDis which uses concept general- 
ization to identify the distinguishing features or 
concepts which serve as discriminators. Further- 
more, we study the issue of which discriminators 
axe “better” than others by introducing the no- 
tion of maximal discriminators, and by using a 
ranking system to quantitatively weigh maximal 
discriminators from different concept hierarchies. 

Introduction 
In recent years, there has been considerable research in 
detecting patterns hidden in data (Agrawal et al. 1992; 
Agrawal, Imielinski, & Swami 1993; Borgida & Brach- 
man 1993). A reasonable and rather popular ap- 
proach to spatial data mining is the use of cluster- 
ing techniques to analyze the spatial distribution of 
data (Ng & Han 1994; Ester, Kriegel, & Xu 1995; 
Zhang, Ramakrishnan, & Livny 1996). While such 
techniques are effective and efficient in identifying spa- 
tial clusters, they do not support further analysis and 
discovery of the properties of the clusters. To this end, 
we have developed an approximate, but efficient, algo- 
rithm (Knorr 1995) to discover knowledge about the 
clusters by analyzing the features that are in close 
proximity to the clusters. More specifically, given a 
spatial cluster GE, the algorithm finds the top-L fea- 
tures that are closest to Cl in an aggregate sense. An 
aggregate notion of proximity is needed because the 
distribution of points in a cluster may not be uniform. 
For example, a particular golf course may appear in a 
cluster’s top-10 list if the golf course is relatively close 

to many of the houses in the cluster. On the other 
hand, a particular shopping centre which is actually 
closer to the cluster (in terms of feature boundary to 
cluster boundary distance) may not appear in the top- 
10 list if few houses are relatively close to the shopping 
centre. 

It is also important to identify common classes of 
features which are in close proximity to most (or all) 
of the input clusters (Knorr & Ng 1996). This no- 
tion of commonality extraction is important because, 
for example, it is often unlikely that one particular 
golf course is close to every cluster, even though each 
cluster may have some golf course close to it-though 
not necessarily the same one. If such is the case, then a 
generalized statement can be made concerning the fact 
that the clusters tend to be near golf courses. Such 
statements can be useful in terms of knowledge dis- 
covery because they describe generic types of features 
common to multiple clusters. 

While aggregate proximity relationships and com- 
monality extraction can be quite valuable, we are also 
interested in determining the distinguishing features 
(or classes of features) between two clusters. For exam- 
ple, if an expensive housing cluster and a poor housing 
cluster are given as input, we may find that concepts 
such as “golf courses”, “private schools”, and “social 
services centres” are discriminators, in which the ex- 
pensive housing cluster is close to a golf course or a pri- 
vate school, but the poor housing cluster is not; and, 
the poor housing cluster is close to a social services 
centre, whereas the expensive housing cluster is not. 

In this paper, we describe an algorithm called 
GenDis, which finds “discriminating” classes of fea- 
tures that serve to distinguish one cluster from an- 
other. We use concept generalization to extract the 
discriminators. Attribute-oriented concept generaliza- 
tion (Han, Cai, & Cercone 1992; Lu, Han, & Ooi 1993) 
has been shown to be quite useful in guiding the discov- 
ery of general patterns. The work in this paper differs 
from the attribute-oriented approach in a number of 

Spatial, Temporal, Csr Multimedia Data Mining 347 

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



esrb esrb 
1 2 

esuj 
1 

esuj 
2 

Figure 1: Educational Institutions Concept Hierarchy 

Parks (P> 
75 

Playgrounds (p) 25 5 Trails (t) 

ppl PP2 P$ Pt2 

Figure 2: Parks Concept Hierarchy 

ways. First, to identify discriminating patterns, we do 
not use set differences and thresholds. Second, our no- 
tion of maximal discriminators is unique. Finally, we 
introduce a way of ranking the discriminating concepts. 

Concept Hierarchies 
In a GIS context, we define a feature as a natural or 
man-made place of interest. Natural features may in- 
clude mountains, lakes, islands, etc., and man-made 
features may be schools, parks, golf courses, shopping 
centres, etc. We define a concept to be a class of fea- 
tures. Each concept is part of some hierarchy. The 
trees shown in Figures 1 and 2 are two concept hier- 
archies, to which we will refer throughout this paper. 
In the educational institutions hierarchy, one subclass 
of educational institutions (shorthand “e”) is grade 
schools (“s”). Grade schools in turn are classified into 
private (“r”) and public (“u”) schools, which can be 
further sub-classified into less general concepts. Spe- 
cific instances of schools appear at the leaf level. The 
leaves are considered to be trivial concepts. We use 
shorthand notation to identify any node in a tree. For 
example, in Figure 1, the feature esrbl is a boys’ pri- 
vate grade school, and the feature el is an educational 
institution that is not a grade school (e.g., art school, 
university, technical college). The cardinalities of the 

concepts are also listed. In our example, there are 
175 educational institutions, 150 of which are grade 
schools. Of those 150 grade schools, 14 are private 
grade schools-and of those 14, 5 are exclusively for 
boys, 6 are exclusively for girls, and 3 are co-ed (not 
shown). For simplicity, only those concepts that are 
relevant to our discussion are shown-namely those 
concepts relating to specific features which appear in 
at least one of the original top-lc lists. Recall that a 
top-lc list for a given cluster contains the Ic features 
“nearest” the cluster-nearest in an aggregate sense. 

Algorithm GenDis: Extraction of 
Maximal Discriminators 

Motivation and Definition 
Due to lim ited space, we lim it our discussion to the 
extraction of patterns for “dissimilar” clusters. More 
specifically, given two clusters as input, we aim to find 
discriminating features, or simply discrima’nators, that 
distinguish one cluster from the other. 

A natural way of detecting discriminators is to use 
set differences on the two lists. (This is the underly- 
ing principle used in the attribute-oriented approach.) 
Consider the concept hierarchies in Figures 1 and 2, 
and: 

suppose the top-/c list associated with an expensive 
housing cluster CZ, contains e&l, esrgl , and ppl 
(plus a number of features that are found in the top- 
k list of a poor housing cluster Cl,) 

suppose the top-k list associated with Cl, contains 
ptl and esuj, (plus a number of features common to 
CL> 
Set differences on these two lists yield all 5 men- 

tioned features as discriminators. The presence of 
es&, esrgl, or ppl distinguishes CE, from Cl,--and 
the presence of ptl or esu j2 distinguishes Cl, from Cl,. 
While this approach of using set differences is easy to 
compute, drawing distinctions based solely on individ- 
ual features can be somewhat lim iting. For example, 
closer scrutiny of these 5 features and the clusters to 
which they belong reveals that private schools are close 
to the expensive cluster, but not to the poor cluster; 
and that a public school is close to the poor cluster, 
but not to the expensive cluster. Thus, while es& 
and esujz are both educational institutions, and ppl 
and ptl are both parks, a key question is: how dif- 
ferent is esrbl from esujz, and ppl from ptl? This 
question motivates our study of maximal discrimina- 
tors, defined below. 

Concept generalization can help answer the “how 
different” question by highlighting the differences be- 
tween features. For example, the difference between 
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esujz and esrbr is that the former is a junior high pub- 
lic school, whereas the latter is a boys’ private school. 
This observation can be obtained by generalizing esujs 
to esuj, and by generalizing esrbr to esrb. This leads 
to two questions. First, in ascending the concept hier- 
archy, how many levels of generalization are most ap- 
propriate? We defer the answer to the next paragraph. 
Second, is this kind of highlighting by generalization al- 
ways possible? To answer this question, suppose in our 
example that esujz were esrbz instead. Although esrbr 
and esrbz are distinct entities, generalizing both fea- 
tures yields the same class of boys’ private schools. In 
effect, rather than highlighting the differences, gener- 
alization in this case underscores the similarities or the 
lack of differences between the features. Thus, in eval- 
uating the differences between features, concept gener- 
alization is useful in both highlighting the differences 
and identifying the lack of differences, whatever the 
case may be. 

To capture the essence of the above discussion, and 
to determine the appropriate number of levels of gen- 
eralization, we use the notion of the smallest common 
ancestor of a set of nodes in a tree. More formally, 
if Fr,... , F, are all features in the same concept hi- 
erarchy, the smallest common ancestor of Fl, . . . , FU, 
denoted by scu({F~, . . . , F,}), is the root of the small- 
est subtree containing FI , . . . , F,. Now, suppose F and 
G are two sets of features from the same concept hier- 
archy. We define the maximal discrime’nator of F and 
G, denoted by md(F, G), as follows: 

If the subtree rooted at sea(F) contains sea(G), or if 
the subtree rooted at sea(G) contains sea(F), then 
md(F, G) is NULL. 

Otherwise, let F’ be the child of sca(FUG) such that 
the subtree rooted at that child contains scu(F), and 
let G’ be the child of scu(F U G) such that the sub- 
tree rooted at that child contains scu(G). Then, 
md(F, G) is the pair (F’, G’). 

For example, consider Figure 1 and the sets F = 
{esrbl, esrgr) and G = {esujr,esuj2). By definition, 
scu(F) is esr, scu(G) is esuj, and scu(F U G) is es. 
Furthermore, F’ is esr and G’ is esu. Thus, the max- 
imal discriminator is (esr, esu), which corresponds to 
private schools and public schools-the observation we 
want, as discussed above. 

Consider md({esrbl), {esujl,esrbz}) as another ex- 
ample. This time scu({esujr, esrba}) is es, whose sub- 
tree contains esrbl = scu({esrbl}). Thus, the maximal 
discriminator in this case is NULL, indicating that the 
sets {esrbl) and {esujr,esrbs} are not considered to 
be sufficiently different. 

I 
2 
2.1 

2.2 

2.3 
2.3.1 
2.4 
2.4.1 

2.5 
2.5.1 
2.5.2 

Initialize answer set S to empty set 
For each concept hierarchy 

Let F be the set of features from 
this hierarchy for one cluster 

Let G be the set of features from 
this hierarchy for the other cluster 

If both F and G are empty 
goto 2.6 

If either F or G is empty 
add <C,nil> to S, where C is 

the root of the concept hierarchy 
else 

compute md(F,G) as defined 
if md(F,G) is not null 

2.5.2.1 add md(F.G) to S 
2.6 End-for 
3 Compute and report the final rankings of 

the discriminators in S 

Figure 3: Algorithm GenDis for Extracting Maximal 

One may wonder what the word “maximal” in max- 
imal discriminator means. It is used to describe the 
situation in which the sets F and G are generalized 
to the fullest possible extent. Any further generaliza- 
tion will render the sets identical (corresponding to 
scu(F U G)). Thus, the maximal discriminator reports 
the broadest difference between two sets. In our first 
example, the broadest difference is simply the distinc- 
tion between private and public schools-as indicated 
by md(F, G) = (esr, esu). 

A useful by-product of the notion of smallest com- 
mon ancestors and maximal discriminators is the abil- 
ity to report more specific information. In general, by 
following the path from F’ to scu(F), and by follow- 
ing the path from G’ to scu(G), we get more specific 
levels of distinction. The most specific level of distinc- 
tion occurs with the pair (scu(F), scu(G)); however, in 
practice, if scu(F) (or scu(G)) is a leaf, then it may 
make more sense to report the parent of the leaf. For 
example, suppose F = {esrbl} and G = {esujs), and 
suppose “St. George’s School” is the name of feature 
esrbl and “Pierre Elliot Trudeau School” is the name 
of feature esujs. A user who is unfamiliar with these 
feature names may prefer to see a more general level of 
distinction-namely, the distinction of a boys’ private 
school versus a junior high public school. We leave the 
desired level of distinction as an application issue, but 
mention it for completeness. 

Algorithm GenDis 
Figure 3 presents the outline of Algorithm GenDis for 
extracting maximal discriminators for two clusters, us- 
ing multiple concept hierarchies. Let us apply the 
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algorithm on clusters CZ, = {esrbl, esrgl,ppl} and 
Cl, = {ptl, esujs}. Suppose the first iteration of the 
for-loop considers the educational institutions hierar- 
chy, in which F = {esrbl,esrgl} and G = {esujs}. In 
Step 2.5.2.1, md(F,G) is the pair (esr,esu), which is 
added to the answer set S. The pair corresponds to 
private schools and public schools, which highlight the 
distinction (in terms of kinds of features) between the 
two clusters. In the next iteration, the parks hierarchy 
is used, in which F = {ppr} and G = {ptl}. From Fig- 
ure 2, md(F, G) is the pair (pp,pt), which corresponds 
to playgrounds and trails. Thus, (pp,pt) is added to 
S, yielding a second discriminating class of features. 

Like the situation for identifying and quantifying 
commonalities (Knorr & Ng 1996), maximal discrim- 
inators from different concept hierarchies should be 
ranked (i) to give an idea of how strong the discrimina- 
tors are, and (ii) to take into account the varying cardi- 
nalities of different concepts and hierarchies. This can 
be done as follows. Given the pair (F’, G’) as a max- 
imal discriminator, the score is defined by the maxi- 
mum of the cardinalities of F’ and G’, normalized by 
the total cardinality of the concept hierarchy. These 
scores are then ranked. For example, from Figures 1 
and 2, we see that the score for (esr,esu) is 136/175 
(approximately 0.78), and the score for (pp,pt) is 25/75 
(approximately 0.33). Although the scores depend on 
the cardinalities and granularities of the various con- 
cept hierarchies, smaller scores are generally favoured 
since they often reflect the fact that different types of 
discriminating features having relatively low probabil- 
ities of occurrence appear in both clusters. 

The score for (C, niE), where C is the root of a con- 
cept hierarchy (e.g., (e,niZ)) is 1 because, as shown in 
Step 2.4.1 of Algorithm GenDis, this corresponds to a 
situation where concepts from the hierarchy rooted at 
C appear in one of the two top& lists, but not both. 
Of course, those cases where md(F,G) is NULL are 
not included in the list of discriminators-and hence, 
the rankings-since F and G are not considered to be 
sufficiently different. 

From a complexity standpoint, smallest common an- 
cestors can be computed in O(1) time, with 0(n) 
pre-processing time, where n is the total number of 
nodes (Hare1 & Tarjan 1984). It is easy to see that 
the complexity of computing maximal discriminators 
is equally low. 

Future Work 
In future work, we will investigate how to general- 
ize the extraction of maximal discriminators from two 
clusters to n clusters, in an efficient manner. In other 
words, given n clusters and their n top-k lists, we aim 

to distinguish cluster Cli from the remaining n - 1 
clusters, for all i E (1,. . . , n}. 
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