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Abstract 
The work of Mannila et al. [4] of fmding frequent episodes 
in sequences is extended to finding temporal logic patterns 
in temporal databases. It is argued that temporal logic 
provides an appropriate formalism for expressing temporal 
patterns defined over categorical data. It is also proposed to 
use Temporal Logic Programming as a mechanism for the 
discovery of frequent patterns expressible in temporal logic. 
It is explained in the paper how frequent temporal patterns 
can be discovered by constructing temporal logic programs. 

Introduction 
In this paper, we address the problem of finding 
interesting patterns in temporal databases [1,2] defined 
over categorical (symbolic) data. This is an important 
problem that frequently occurs in various applications 
such as molecular biology (finding patterns in genetic 
sequences), telecommunications (finding patterns in 
network behavior) and financial services (finding patterns 
in analysts’ recommendations of stocks). To address this 
problem, a language for expressing temporal patterns has 
to be defined and mechanisms to discover patterns in 
temporal databases need to be developed. This is a broad 
problem, and it has been addressed before in such fields as 
speech recognition, signal processing, as well as in the 
KDD field itself. For example, Agrawal et al. [3] provide 
a shape de$nifion language, SDL, for expressing shapes 
in sequences. In the context of categorical data, the 
problem has been addressed by Mannila et al. [4] and by 
the string matching research community [5]. 

Mannila et al [4] define temporal patterns in 
sequences of events with episodes, where episodes are 
defined as partially ordered sets of events that can be 
described by directed acyclic graphs. Given a class of such 
episodes they describe an efficient algorithm that finds all 
fi-equent episodes from that class. Their paper presents an 
interesting approach that was tested on 
telecommunications data. However, the episodes defined 
in [4] have a limited expressive power in specifying 
temporal patterns. For example, it is unclear how episodes 
can define such temporal patterns as “event A always 
occurs until event B occurs” or that “either event A or 
event I3 occurs at the same time.” In addition, their 
approach works on sequences, and not on temporal 
databases (i.e. temporalpredicafes changing over time). 

String matching researchers use regular expressions 
to define patterns on strings of alphabets and develop 
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efficient string matching algorithms. Ah0 [5] presents a 
survey of such algorithms. Regular expressions are 
defined over an alphabet, and therefore this approach 
works well with strings of symbols but does not generalize 
to temporal databases, where predicates change over time. 

In this paper we extend the work of Mannila et al. 
[4] (finding frequent patterns in temporal categorical 
data) and propose the use of first-order temporal logic 
(FOTL) [6] to express patterns in temporal databases (the 
propositional case constitutes a special case of the first- 
order case). As an example of how episodes can be 
expressed in Temporal Logic (TL), the partial order of 
symbols “A+B+C”, defining a serial episode of [4], can 
be expressed as “A Before B and B Before C”. In 
addition, TL can also be used to express patterns such 
“Hold(Stock) Unfil Bearish-Market-Sentiment”, where 
Hold is a temporal predicate. Moreover, we propose to use 
TL for discovering temporal patterns by generating 
femporal logicprograms (TLP) [7,8,9] for these patterns. 

TL provides several important advantages as a 
mechanism for the specification and discovery of patterns 
in temporal databases. It is a well-studied, expressive and 
theoretically sound formalism that has been extensively 
used in various fields of computer science for dealing with 
temporal phenomena. TL can be used both for the 
specification of temporal patterns and for their discovery 
in temporal databases (using TLP techniques described 
below). Therefore, TL provides a sound framework for 
integrating the specification and discovery methods. 

Preliminaries 
We use FOTL [6,10] to express temporal patterns. The 
syntax of FOTL is obtained from first-order logic by 
adding temporal operators such as Since, Until, Next (o), 
and Previous (0) and some of the derived operators, such 
as Always (O), Future and Past Sometimes (O,+), Before, 
After and While. In addition, we consider bounded 
temporal operators [9,12] UntiIK, SinceK etc. For example, 
AUntilxB is defined as: 

(Qt) I= A Unt& B iff 3m, t I m 2 t+k, such that 
(D,m) I= B and ‘v’i, t I i < m, (Dj) I= A 

The semantics of FOTL is defined in terms of 
temporal structures, i.e., predicates changing over time 
[lo]. We assume that time is discrete, linear and bounded, 
that temporal predicates define a temporal database [1,2], 
and that temporal relations are represented as event tables 
[13],i.e. tables with a single temporal attribute. 

A temporal paffern is a ground FOTL formula, i.e. a 
FOTL formula containing only ground atoms and no 
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variables and quantifiers. A class of temporal patterns is 
defined by a temporal formula, v, with one or more 
variables in it. An instantiation of all variables in \v with 
specific ground values, defines a temporal pattern. In this 
paper we adopt the convention of using uppercase 
alphabet to represent variables in a temporal formula. 

Temporal Logic Programming. A TLP program 
consists of a set of temporal rules of the form BODY + 
HEAD, where various TLP systems make different 
assumptions about the structure of BODY and HEAD. For 
example, a rule that “Employees who have been fired 
from a firm (worked there sometime in the past, but not 
now) cannot be hired by that firm in the future” can be 
expressed in an extension of TLP system, Templog [7] as: 

+EMPLOY(firm, person) A -EMPLOY(firm, person) 
+ 0 -EMPLOY(firm, person) 

Alternatively, as done in Datalogls [ 141, we can also 
express TLP programs in first-order logic using explicit 
references to time. For example, instead of using the 
temporal predicate EMPLOY (firm, person), we can use its 
FOL equivalent EMPLOY(firm, person, time) specifying 
the employment history of the person over time. 
Moreover, Templog and the corresponding FOL language 
Datalogl s are equivalent in their expressive power [8]. We 
will use an extension of Datalogls to express TLP 
programs. Datalogls will be extended by allowing 
negation both in the body and in the head of a rule, as 
done in doubly negated Datalog’* [ 151, and by allowing 
comparisons between temporal variables (e.g. tl < t2) in 
the body of Datalogls rules. We will call the resulting 
extension eDatalogls. We will adhere to the parallel 
inflationary semantics of Datalog-* [15] when we define 
semantics of eDatalogls. Intuitively, all the eDatalogls 
rules are fired in parallel, and if there are conflicts in 
rnles,program execution terminates, as done in Datalog-*. 

Finding Frequent Temporal Patterns 
In this paper we address the problem of finding frequent 
and most frequent patterns in temporal databases. For 
example, if D is a temporal database, then we may want to 
find all the frequent patterns in the class of temporal 
patterns , \I, = X1 Unt& X2, where X1 and X2 are second- 
order variables ranging over the predicates in the 
temporal database D. To do this, for any temporal pattern 
that belongs to the class v,, we can count the number of 
time instances for which the pattern holds on D. The 
pattern is then frequent if it exceeds a threshold value c. 

For example, assume that X1 is associated with 
predicate p(X), Xz with predicate q(X) in D, X is 
instantiated to a~, and K=5. If a pattern “p(%) Until,, q(aJ’ 
occurs 90 times in D and c is 70, we conclude that the 
pattern occurs frequently in D. Alternatively, we could 
have searched for the most frequent patterns in D, i.e., the 
patterns having maximal frequency counts in comparison 
to other patterns in the given class. 

In the unrestricted case, the problem of finding the 
most frequent patterns can be trivially non-interesting. If 
we consider the (infinite) class comprising of all TL 

formulae, then an example of the most frequent pattern 
would be “p(a) v ~p($“, where p(X) is- a temporal 
predicate in a temporal database D. Therefore, we have to 
restrict our consideration to certain well-defined classes of 
temporal patterns for which the problem becomes non- 
trivial. For example, some classes of temporal patterns 
can be defined as follows: 
1. A single FOTL formula, where the “variables” could be 
arguments of predicates, but cannot be of second-order, 
i.e. range over predicates. 
2. A parameterized single FOTL formula defines a class 
of temporal patterns that may differ from each other by 
some parameters of the temporal operators. In the 
example discussed above, “IS’ is a parameter of Until. 
3. The class of all the temporal patterns defined using 
only AND and NEXT operators. 

Class Defined By A Single FOTL Formula 
To illustrate the discovery methods described in this 
section, consider the following class of temporal patterns 
defined by the expression 

y(X,Y,Z) = a(X,Y) Until b(Y,Z) (1) 
where a and b are temporal predicates from the temporal 
database D. We want to find all possible instantiations for 
the variables X, Y and Z for which pattern (1) occurs 
frequently (its frequency is above a certain threshold). To 
find such instances, we construct a TLP that will identify 
all the occurrences of temporal patterns that belong to v. 

Let a(X,Y,T), b(Y,Z,T), and v(X,Y,Z,T) be the 
temporal predicates that appear in (l), but with explicit 
references to time. Figure 1 illustrates a TLP program, 
written in eDatalog,s, that computes v(X,Y,Z,T) using a 
distinguished predicate q(X,Y,Z,T). 

(i) simtime(0) 
(ii) simtime(T) + simtime(T+l), 7 simtime(T) 
(iii) simtime(T), a(X,Y,T), --,a(X,Y,T-1) -+ 

flag1 (XYJ), flagW,Y,T) 
(iv) simtime(T), a(X,Y,T), a(X,Y,T-1) + flag2(X,Y,T) 
(v) simtime(T), b(Y,Z,T), flagl(X,Y,Tl), flag2(X,Y,T-l), 

(Tl I T2 5 T) + q(X,Y,Z,T2) 
(vi) simtime(T), +(X,Y,T ), flagl(X,Y,Tl),flag2(X,Y,T-I), 

(Tl I T2 ST) + --dag2(X,Y,T2), -dlagl(X,Y,Tl) 
(vii) b(Y,Z,T) -+ q(X,Y,Z,T) 

Figure 1. TLP computing a(X,Y) Until b(Y,Z). 

To simulate the forward movement in time, the 
program in Fig.1 uses predicate simtime that acts as a 
system clock, and Rule (ii) advances it forward on a tick- 
by-tick basis. Rule (iii) sets flag1 when the predicate 
a(X,Y) is true for the first time instant in a period of time 
when it holds continuously, and rule (iv) continues to set a 
new flag (flag2) for all time points in that period. Now 
when b(Y,Z) is encountered with flag1 and flag2 on, rule 
(v) sets the distinguished predicate, q(X,Y,Z) to be true 
for all instances of time from when flag1 was first set until 
the time when b(Y,Z) holds. Rule (vi) resets flags after the 
end of any continuous period of time when a(X,Y) holds. 
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To find frequent (or most frequent) patterns of the form 
(l), the program in Fig. 1 can easily be extended to 
incorporate a counter of the number of instances when 
q(X,Y,Z,T) is true. Note that the use of (first-order) 
variables in the program facilitates construction of a 
single TLP program to find all instances of temporal 
patterns in D that belong to the class \v. We can 
generalize this example into the following theorem, the 
proof of which can be found in [ 111: 

Theorem. For any class of temporal patterns 
specified by a single FOTL formula cp defined on a 
temporal database D, there exists a TLP program PROG 
with the distinguished predicate 4, such that for any finite 
instance of D, 4 E cp, i.e. CJ holds whenever cp holds and 
vice versa. 

The proof of this theorem is by induction on the 
number of operators in the TL formula cp, and is 
constructive. Also, there is a notion of “safety” of FOTL 
expressions, without which TLP programs may not 
terminate. Our TLP programs can be shown to terminate 
if D is finite and the domains of the arguments in 
predicates are all finite. 

Class of Patterns Consisting of AND and 
NEXT Operators 

Here we consider the class of temporal patterns TLJr\,o) 
consisting of A and o operators and study two problems of 
finding the most frequent and all frequent patterns. 
Most Frequent Patterns. Because of the distributivity of 
A and o operators, any pattern from TL{A,o} depending 
on temporal predicates X, , X1 , , . ., X,, can be converted to 
the following canonical form (for clarity we omit 
arguments of the predicates) : 

x, A Ok’& A 0%~ . . . A Oh& (2) 
where 1s kl I .., I h and for i#j, Xi # Xj when ki= kj. 
The mostfiequenf patterns in this case will be of the form: 

Wij(K) = Xi A OK Xj (3) 
The TLP that counts the occurrences of all the temporal 
patterns that belong to v+(X,Y,K) = a(X) A ok b(Y) is 
given in Figure 2, where predicate com&,b (X,Y,K,VAL) 
specifies how many times (VAL) the pattern v&b (X,Y,K) 
occurred in the database. 

(i) simtime(0) 
(ii) simtime(T) + simtime(T+l) 
(iii) simtime(T), a(X,T) , b(Y,T+K) , count+ (X,Y,K,VAL), 
-‘b,b (X,Y,~T)++‘,b ‘XY,KT),co’-u-&b (X,Y,K,V~+l > 

Figure 2. TLP program that simulates a A oK b. 

The program counting the most frequent occurrences 
of patterns belonging to (3) is obtained by combining the 
TLP programs presented in Fig. 2 for all possible pairs of 
predicates a and b and adding the “control” logic selecting 
the highest values (VAL) in predicate cou&,b for various 
values of a, b, X, Y and K. We would like to point out that 
the program that finds the most frequent patterns of the 
form (3) (and hence (2)), does it in one single forward 

“sweep” in time during the execution of the program, and, 
thus, its complexity is linear in time. 
Frequent Patterns. The starting point for finding 
frequent patterns from TL{A,o} is the canonical form (2) 
of these patterns. Since frequency of patterns is a 
monotonically decreasing function of n in (2), there is a 
value of n for which no temporal pattern given by (2) is 
frequent. Therefore, our goal is to find such maximal 
value of n (N) and also find all frequent patterns of the 
form (2) for n<N. 

Unlike the case of the most frequent patterns, we 
cannot reduce (2) to a simplified expression and will be 
dealing with the general case of (2). A naive approach 
would be to find frequent patterns for (2) for successive 
values of n (until the next value of n does not generate any 
new frequent patterns) without using the outputs from 
previous iterations. However, we will use a more efficient 
algorithm that is based on the idea of generating larger 
candidate patterns from smaller ones. This method of 
generating candidate patterns was used effectively by 
Agrawal et al.[16] and by Mannila et al [4] to mine 
association rules and episodes respectively. 

We will first start with finding frequent patterns for 
a single predicate p. In other words, the expression (2) is 
reduced to the case : 

p(X)AOklP(;Y)AOuP(~...AOhp(X)A... (4) 
where X is a vector of the attributes of predicate p. 

The algorithm, described in Fig 3, iteratively 
generates frequent patterns for successive values of n in 
(4) by utilizing the frequent patterns discovered in the 
previous iteration. T* is the largest value in the time 
domain (such value exists since the time domain is 
bounded), freq,,(X,K,,..,Kd is the class of all the frequent 
patterns found at stage n, count(X,K1,..,K,,,VAL) is a 
predicate that tracks the frequency count, VAL, and c is 
the threshold frequency value. Predicate 
holds(T,X,Kl,..., Ka is used in Rule (iii) to avoid double- 
counting. Initially, it is set to False for all of its values. 
The algorithm executes until the saturation point is 
reached, i.e. until freq,, = 4. 

n=l and fieqo = set of all frequent ground predicates p 
repeat 

compute freq,, with TLP program TLP, ; 
n=n+l; 

until (f?eq, = 4); 
print freqi, i=l,Z ,..., n-l 

where the program TLP,, is : 
(i) simtime(0) 
(ii) simtime(T) ,T 5 T* + simtime(T+l) 
(iii) simtime(T), p(X,T), p(X,T+Kl) ,..., p(X,T+K&, 

fieq,.l (X,KI ,..., Kn-l), p(X,T+K& 
count(X,Kl,.., K,,,VAL), Tholds(T,X,KI ,..., Kn) + 
holds (T,X,Kl,..., Kn), count(X,Kl,.., K,,, VAZ. +1) 

(iv) simtime(T*+l), count(X,Kl,..,K,,, VAL), (VAL > c) 
+ fiq-, (X,&...,KJ 

Figure 3. Algorithm to find all frequent patterns of form (4) 

,i 
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Note that in rule (iii) in Figure 3, we add the 
predicate fre%-ln-1 (X,Kl , . . . ,Knml) to the body of the rule. This 
can improve efficiency if a smart rule evaluation strategy 
is used since, for all values of T, freqnml (X,K, ,..., Kflel) 3 
p(X,T), p(X,T+KI) ,..., p(X,T+K,.& Thus, we have to 
evaluate p(X,T), p(X,T+K,),...,p(X,T+K& only for the 
frequent values of X,KI,...,K,.I in Rule (iii). 

The generalization of the algorithm presented in 
Figure 3 to the class of patterns of the form (2) that are 
defined by multiple predicates is straightforward but 
notationally cumbersome and, thus, we omit it. 
Furthermore, it leads to the combinatorial explosion in the 
size of the TLP programs constructed by the algorithm (as 
a function of the number of predicates in the database). 
We would like to note that, in contrast to the “most 
frequent patterns” case, we construct multiple TLP 
programs (one program per iteration) in this algorithm. 
This means that the complexity of the algorithm is no 
longer linear in T*. 

Experiments and Conclusion 
We used TL to express patterns and implemented TLP 
programs in OPS5 for an application in which different 
financial analysts rate various stocks in terms of buying, 
selling, or holding recommendations. In this application, 
we wanted to find the most frequent recommendation 
change patterns made by various analysts and the 
correlation patterns of stock recommendations across 
different analysts (e.g. frequently, analyst A recommends 
“buy” for a stock until analyst B recommends “sell”). For 
example, a recommendation change pattern can be 
expressed as: 

Analyst-Report(analyst,stock,recommendat) A 
T o Analyst-Report(analyst,stock,recommendat) 

In this case we want to find the analysts that changed 
their recommendations most often for different stocks. 
The eDatalogls program that finds such patterns is very 
similar to the one presented in Figure 2, and we simulated 
this program in OPS5 on a Sun Sparc20 using an 
artificially generated data set consisting of 3 analysts, 3 
stocks, and 300 days (we assumed that the frequency of 
recommendations was one day). The performance as a 
function of the size of the data set is presented in Figure 4. 

3ooBm 933 1203 15m 18m 2103 24C0 27C0 
# ofTuples 

Figure 4. Execution Time Vs. Database Size 
These preliminary results demonstrate that the 

performance of our implementation is quite slow. We 
attribute this to the following factors. Mainly, our version 
of OPS5 does not support arithmetic in the body of a rule. 

Therefore, we simulated expressions of the form P(A,T+l) 
by creating new predicates and making the OPS5 program 
bigger and less efficient. Second, the OPS5 interpreter has 
the serial semantics (one tuple instantiation per recognize- 
act cycle), and this also slowed the execution of the TLP 
program. In summary, to make the TLP technology 
practical for the pattern discovery purposes, there is a 
need to develop efficient TLP interpreters that support 
such important features as pseudo-parallel execution of 
temporal rules and that would provide an efficient support 
for the temporal dimension. 
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