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Abstract 

Prior work in automated scientific discovery has 
been successful in finding patterns in data, given 
that a reasonably small set of mostly relevant fea- 
tures is specified. The work described in this pa- 
per places data in the context of large bodies of 
background knowledge. Specifically, data items 
are connected to multiple databases of back- 
ground knowledge represented as inheritance net- 
works. The system has made a practical impact 
on botanical toxicology research, which required 
linking examples of cases of plant exposures to 
databases of botanical, geographical, and climate 
background knowledge. 

Introduction 
Discoveries made by computer programs have been 
characterized as human/computer discoveries because 
the discovery process is far from being completely au- 
tomated (Valdes-Perez, 1995). One area where the hu- 
man component has been vital is in guiding the discov- 
ery system based on background knowledge. In this pa- 
per we augment a standard inductive learning program 
by connecting data items to background knowledge 
represented as inheritance networks with role links and 
a limited form of non-monotonic inheritance, extend- 
ing the ability of the program to make discoveries by 
using the semantics of the features describing the data 
items. 

Representing Background Knowledge 
Scientific domain knowledge takes on a rich, structured 
form. Prominent in any scientist’s store of useful back- 
ground knowledge are various taxonomies, categories, 
and relationships between concepts. To automate dis- 
covery using these forms of domain knowledge we must 
represent and reason about classes and relationships, 
and be able to bring the knowledge to bear on the dis- 
covery process. Inheritance networks are an efficient 
way to implement this kind of reasoning, because they 
can represent class structure and complex relational 
knowledge, yet can be navigated efficiently (Fahlman, 
1979). 

Figure 1 illustrates how some knowledge about plant 
families and their properties can be represented us- 
ing standard inheritance network notation. A few 
records from a database of potentially toxic plant ex- 
posures and a small part of a botanical knowledge base 
are shown. Unlabeled arrows are ISA links, which 
can be interpreted as set inclusion. Thus, the link 
T. radicans --f Toxicodendron means that every plant 
in the species T. radicans is also in the genus Toxi- 
codendron. The link Toxicodendron --f Anacardiaceae 
means that the genus Toxicodendron is a subset of the 

family Anacardiaceae. The role link Araceae 
con2ins 

Calcium-oxalate means that plants in the Araceae fam- 
ily contain calcium oxalate. Since calcium oxalate is 
present throughout the Araceae family we put the link 
at the family level, and let lower nodes inherit it. Cal- 
cium oxalate is specific to R. rhabarbarum (within its 
family), so the contains link is put directly on that 
species’ node. These data are not in the primary 
database, but can be found in other databases. 

Nodes and links can be used to form predicates. For 
instance, Toxicodendron(x) is true of everything in the 
genus Toxicodendron. Roles represent relations and 
can be multivalued; an exposure can have more than 
one substance link. We can use predicates to char- 
acterize sets of data items in terms of the knowledge 
base. For instance, Toxicodwdron(substance(x)) char- 
acterizes the exposures l-3. The more complicated 
predicate Calcium-oxalate(contains(substance(x))) char- 
acterizes exposures 4-5. 

We note several advantages of this representation. 
First, inheritance networks provide a natural way to 
represent domain knowledge. For instance, our system 
allows a limited form of nonmonotonic inheritance to 
represent and reason about default and incomplete in- 
formation. Second, since the representation does not 
duplicate domain knowledge for each database record 
there is a huge gain in both time and space efficiency. 
Third, inheritance networks are sufficient to represent 
multi-table relational databases, with role composition 
representing joins between tables. Finally, using inher- 
itance networks for inductive learning connects auto- 
mated discovery to work in knowledge representation. 
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Figure 1: Linking Data to Botanical Knowledge. 

An Illustrative Example 
Consider the network in Figure 2. Six examples of 
Datura exposures are shown, connected to a database 
of geographical and climate knowledge. Datura ex- 
posures normally occur in August-October; here we 
are interested in characterizing an anomalous subset 
of toxic exposures that occur in May. The Knowledge- 
Based Rule Learner (KBRL) starts with general predi- 
cates and attempts to specialize them. The user defines 
criteria with which the system will judge a discovery 
to be interesting. For this example, we use the simple 
criteria: an interesting pattern is one that covers all of 
the May exposures, and none of the 0thers.l 

The search starts with the general predicate 
US(location(x)). Since testing reveals that this is an 
overly general characterization, its speciaZkations are 
formed from relationships in the network, and are im- 
mediately tested: 

Southeast(location(x)) 

Southwest(location(x)) 

The first predicate fails to cover any members of the 
concept class in the database, so the system rejects it. 
The second correctly excludes some of the complement 
of the concept class, while still covering the incidents 
we are interested in categorizing, so the system retains 
it. However, since this predicate still covers part of 
the complement, the system tests each of its special- 
izations: 

‘Of course, discovering a pattern characterizing a con- 
cept is seldom this simple. Predicates have to be evaluated 
statistically, and the concept will usually be covered only 
partially or covered by a disjunction of predicates. 
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Nevada(location(x)) 

Arizona(location(x)) 
Neither of these have adequate coverage-they reject 
items in the concept class-so the system rejects them 
and looks for other ways to specialize the current hy- 
pothesis. The system cannot use the hierarchy of lo- 
cations to refine its hypothesis any further, so it tries 
the zone link. Retaining the predicate already found, 
it forms the rule: 

Southwest(location(x)) & AnyZone(zone(location(x))) 
Again, the additional predicate is vacuous, so it is spe- 
cialized to create the three hypotheses: 

Southwest(location(x)) & Hot(zone(location(x))) 

Southwest(location(x)) & Mild(zone(location(x))) 

Southwest(location(x)) & Cold(zone(location(x))) 
Checking each of these verifies that the first character- 
izes the May incidents perfectly, so it is retained as a 
characterization that satisfies the system’s criteria for 
an interesting discovery. 

Some Details of the Algorithm 
KBRL, based on the RL learning program (Clearwater 
& Provost, 1999), performs a general-to-specific heuris- 
tic search for a set of conjunctive rules that satisfy user- 
defined rule evaluation criteria. At each stage of the 
search, KBRL specializes the currently most promising 
rules by either restricting their predicates, or adding 
new ones to the conjunction on the left-hand side of 
the rule. KBRL starts with the rule T(x) --) C(x), 
where T(x) is the most general concept in the knowl- 
edge base (true of everything), asserting that every- 
thing is a member of the concept C. KBRL performs 
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Figure 2: Characterizing May Datura Exposures. 

an n-best search through the space of rules defined by 
the following specialization operators: 

The rule . . . P(fn . . .fl(x)) . . . --+ C(x) can be spe- 
cialized to the rule . . . P(fn . . .fl(x)). . . & T(x) + 
C(x)* 
Given a rule of the form . . . P(fh . . .fl(x)) . . . --+ 
C(x) and ISA links P1 --) P,. . ., Pn + P in the 
network, the rules . . . Pl(fn . . .fl(x)). . . + C(x) 
through . . . Pn (fn . . .fl(x)) . . . + C(x) are special- 
izations. 

If the node P has f role values which are restricted 
to P’, the rule . . . P(fn . . .fl(x)). . . + C(x) special- 
izes to.. . P(fn . . .fl(X)) & P’(f,+lf” . . .fl(X)) . . . --) 

C(x)* 
The first operator-Add a Predicate-allows us to add 
additional predicates to a rule. This allows us to form 
rules with several conjuncts. The second operator- 
Specialize a Predicate-searches downward through a 
network identifying classes of the concept. It is impor- 
tant to note that in some cases there will be several 
different classifications of items. In botany, for exam- 
ple, there are different hierarchies based on different 
approaches to classification. The KBRL search algo- 
rithm explores all of these, specializing predicates ac- 
cording to each hierarchy and using heuristics to guide 
the search down paths that make meaningful distinc- 
tions in the current context. The third operator- 
Restrict a Role-selects a set of items based on their 

1 
relationship to other parts of the knowledge base. No- 
tice that the third operator is recursive, and we can 
restrict the predicate P(x) to P’(f(x)), P”(gf(x)), etc. 
Thus, we can talk about concepts such as “the average 
annual rainfall of the location of the exposure.” 

Membership in interesting classes may be deter- 
mined by exceptional information, so it is important 
to incorporate and use some form of nonmonotonic in- 
formation. We currently use a simple form of default 
inheritance that allows role values to be overridden by 
more specific information. Consider the diagram in 
Figure 3. The items in the concept, marked by “+“, 
are characterized by the predicate Qz(f(X)). This in- 
cludes every item in Pz, which all have f’s that default 
to Q2, as well as 13, which has an exceptional f value. 

An Application to Botanical Toxicology 
We have been working with botanical toxocologists to 
analyze a database of potentially toxic plant exposures 
(Krenzelok, et al., 1995a,b,c). KBRL was applied to 
these data linked to a knowledge base of geographic ar- 
eas and their climates constructed from several sources 
on the World Wide Web. 

As an example of the flexibility of learning with 
background knowledge represented as an inheritance 
hierarchy, consider the geographic knowledge base, 
which consists of approximately 1000 geographic re- 
gions. The smallest, most specific region is a “zip code 
area”-a geographically contiguous set of zip codes 
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Figure 3: A Relation with an Exception. 

that share the same first three digits. Zip code ar- 
eas are arranged into a hierachy, with upper levels for 
states and geographic regions. Climate data, includ- 
ing rainfalL solarization, soil conditions, and tempera- 
tures, are linked to nodes in the geographic hierarchies 
by role links. In most cases, KBRL reasons about sim- 
ilarities in climate conditions by utilizing the exposure 
records’ zip-code fields. However, some exposures are 
missing the zip code, but do have the telephone area 
code. Fortunately, KBRL can key into the geographic 
knowledge base at a less detailed level using the tele- 
phone area code. 

The inheritance hierarchy allows the use of the most 
specific climatic information possible. The nodes at 
the lowest level do not all have complete information, 
so some information must be inherited from the state 
level. Although information at the state level is com- 
plete, it tends to be approximate. We  also used a 
knowledge base of botanical species, genera, and fam- 
ilies adapted from a U. S. Department of Agriculture 
database. Several small hierarchies of demographic 
factors, treatment patterns, etc., were also used. 

One area of investigation in which KBRL took part 
was a study of exposures to Datura species. Many 
of the rules KBRL found refined the existing model 
of a seasonal spread of Datura exposures, but were 
not surprising to our botanical and toxicology collab- 
orators. Rules showing that Datura exposures peak 
later in colder areas than in warm areas are a reflec- 
tion of the fact that plants take longer to mature in 
colder climates. Other rules, such as a surprising de- 
gree of Datura abuse in some states, were unexpected 
but could have been found by other methods. A new 
rule was found that characterizes an unexpected set 
of May exposures in terms of basic enviromental con- 
ditions. This new rule was judged significant by our 
collaborators in botany and toxicology (Krenzelok, et 
al., 1995b). 

KBRL extends the notion of tree-structured attributes 
(Almuallim, Akiba & Kaneda, 1995) by allowing val- 
ues to reference into multiple ISA hierarchies, complete 
with role relations and inheritance. However, the ex- 
pressiveness of KBRL’s language is currently limited to 
binary relational terms, and thus is not as expressive 
as some existing inductive logic programming systems 
(Muggleton, 1992). The design of KBRL purposely 
chose efficiency over expressiveness when it came to 
decisions about particularly expensive constructs, such 
as n-ary and recursive relational terms. On the other 
hand, because it was crucial for applications with in- 
complete data, KBRL incorporates default inheritance, 
which is difficult to deal with naturally in other rela- 
tional systems. However, KBRL’s form of nonmono- 
tonic inheritance is limited, and will be difficult to ex- 
tend since we want to allow multiple values and mul- 
tiple ISA inheritance with negation. 
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