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Abstract 
We introduce a novel, greatly simplified classifier for 
binarized data. The model contains a sparse, “digital” 
hidden layer of Parity interactions, followed by a sig- 
moidal output node. We propose priors for the cases: 
a) input space obeys a metrics, b) inputs encode dis- 
crete attributes. Stochastic search for the hidden layer 
allows capacity and smoothness of the approximation 
to be controlled by two complexity parameters. Aggre- 
gation of classifiers improves predictions. Interpretable 
results are obtained in some cases. We point out the 
impact of our model on real-time systems, suitability 
for sampling and aggregation techniques, and possible 
contributions to nonstandard learning devices. 

Introduction 
For huge databases with many variables that interact 
in complex ways, careful human selection of a feature 
space can become unmanageable (Elder & Pregibon 
1996). (Vapnik 1995) emphasizes a complementary ap- 
proach to data modelling, namely to approximate the 
unknown dependency by a “smart” linear combination 
of “weak features” . Any reasonable feature space may 
be chosen; the predictive power arises entirely from 
capacity control. Data mining tools operating accord- 
ingly must identify the relevant features or interactions 
between variables. Here we focus on the issues 
l Sparseness: how many interaction terms should a 

reasonable model include? 
l Preference: can a priori preferences be assigned 

within a group of models of same size? 
l Simplicity: are there reasonable feature sets that 

are particularly simple to compute? 
The first issue is dealt with by applying Vapnik’s Struc- 
tural Risk Minimization. For the model family dis- 
cussed in this paper, a nested set of models of increas- 
ing size is created and the optimum compromise be- 
tween low training error and tight worst case bound 
for the test error is determined. 
We tackle the second issue by assigning preferences to 
individual input features, speeding up the search pro- 
cess and improving performance over the worst case 
bounds. Interactions that seem natural are given high 
probability. Less obvious interactions are also explored 
to allow discovery of unexpected dependencies. With- 
out domain knowledge, general priors are used that 

punish rapidly oscillating or high order interactions. 
The third issue gains importance for mining huge 
amounts of data, for recent computationally intensive 
methods that sample in model space, for real-time data 
analysis, and for possible use within future optical or 
biomolecular hardware. Here we present a model with 
greatly simplified interaction features, as compared to 
“classic” neural networks. 
In the following, we discuss heuristic methods for the 
identification of models for binary data. In order to 
discover knowledge we may estimate joint probabil- 
ities or perform Soft classification of binary vectors 
g E {-1,-l)! 

Sparse Multinomial Logistic Model 
We model a stochastic dependency between g and a 
two-valued outcome variable y E { 0,l). The regression 
p(y = 11 g) is estimated from a training database 7 of 
labeled examples (b; y”)g<. For approximation of the 
regression, we use the logistic model 
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is a sparse vector of reals with an a priori fixed number 
of non-vanishing components. Fixed size models are 
fitted to the data by maximizing the log likelihood: 

zag Zh = Eyi zog@,e> + (1- yd) log(l- G&Q)) 
a’=1 
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Maximization is over all models of given size. This 
hard combinatorial problem can in general only be 
solved approximately. 
The unconstrained expression (2) is known as “Walsh 
expansion” (Walsh 1923). The additive and higher or- 
der interactions form an orthogonal base (of dimen- 
sion 2N) for real valued functions over binary strings. 
Model (1) can thus approximate any regression func- 
tion. In contrast, the sparse version has finite capacity. 
By enlarging the number of interactions sufficiently, 
any dichotomy over the input space can be approxi- 
mated. Determination of a reasonable model size is 
crucial for obtaining low generalization error. 
The second and higher order interaction terms can be 
considered as hidden nodes in a sparse network. Each 
node basically evaluates the Parity predicate (in the 
(0,l) representation) over some selected submask of 
input bits, which can be done in parallel. Heuristic su- 
pervised learning algorithms were proposed for prob- 
lems of unknown order (Fahner and Eckmiller 1994). 

Model Identification by Pruning and 
Replacement 

The algorithm presented in the box below determines 
model size, selects a set of interaction terms, and si- 
multaneously computes respective coefficients e+.. e 

1) chose model size within interval [$$,#I] 
2) chose prior distribution p(compZexity; p) 

for individual interactions 
3) initialize model with tentative inter- 

actions drawn according to p(comp/exity; p) 
4) maximize log Zh (tj 17) and obtain weight 

vector e* 
5) prune “brittle” interactions 
6) install novel tentative interactions 

replacing the pruned ones 
7)back to 4) until stopping criteriurn is 

met; output final sparse model 

The maximization 4) is over a fixed model structure, 
and the likelihood function possesses a single maxi- 
mum. Fig.1 depicts the inner “Pruning and Replace- 
ment” loop (4) to 7)). The stopping criterion of the 
algorithm varies with applications. For any preselected 
size and prior distribution, the algorithm outputs a 
sparse multinomial. Search for the best model (mini- 
mum validation error) is over the two-dimensional pa- 
rameter plane spanned by model size and the single 
parameter ZA, which determines the prior distribution 
for feature complexity (see explanation to Fig.2). We 
sample an ensemble of models from a reasonable region 
of the plane. We distribute the training of individual 
models over a network of workstations, which requires 
no communication. 
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Figure 1: Stochastically driven interaction selection: 
Right module modifies the current model by itera 
tive application of parameter estimation and struc- 
ture modification. In the simplest case, an interac- 
tion is pruned if its weight is below some threshold E. 
More advanced pruning mechanisms include prior pref- 
erences or statistical significance tests to reveal “brit- 
tle” interactions. For any interaction pruned, a request 
for a novel term is sent to the left module. 
Left module generates several candidate terms accord- 
ing to prior preferences, and ranks them according to 
their correlation with residual misclassification error. 
Greedy selection installs the term with the highest cor- 
relation. 
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Figure 2: Capacity control plane: with increasing size, 
reduction of training error is possible at the expense of 
overfitting. p parametrizes the form of a generic com- 
plexity prior distribution (as indicated qualitatively) 
for individual features. With increasing ZA, complex in- 
teractions are more likely to be included in the model, 
thereby increasing the effective model space. 
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Complexity Measures for Interactions 
For two types of input space semantics: a) binary rep- 
resentation of metrical input data, b) binary encodings 
of discrete attribute values, we propose respective com- 
plexity measures for individual interactions: 
l a) zero crossings: maximum number of sign flips 

along straight line through input space 
l b) order: number of multiplicative factors included 

in the interaction 
Fig.3 illustrates case a) for a two-dimensional rectan- 
gular input space. Both continuous a’ and b’ axes are 
uniformly discretized into 4 intervals. For each dimen- 
sion, the intervals are encoded by increasing binary 
numbers (- stands for 0, + for l), preserving the order 
relation of the aligned intervals. Each box in the rect- 
angular region is encoded as a 4-tuple ~l@~sz4 formed 
by the concatenation of the discretized and binarized 
coordinate values of the boxes. The given example 
generalizes to higher dimensions, to arbitrary binary 
resolutions individually chosen for each dimension and 
to nonuniform parcellings. 

-- -+ +-I ++ 

Figure 3: Behavior of the interaction term ~1~2~4 

in two dimensions. The interaction term oscillates be- 
tween -1’s and 1 ‘s, undergoing zero crossings at some 
box borders. Along the two dashed arrows, the num- 
ber of zero crossings za and Zb is counted separately 
for each of the coordinate axes. The maximum achiev- 
able number of zero crossings for an arbitrary direction 
linesweep is given by za + xb = 5. 

Simulation Results 
We illustrate the working of the model for the 2- 
spirals problem. In the original formulation (Lang 
and Witbrok 1988), the classifier has to separate two 
continuous point sets in IR2 that belong to one or the 
other of intertwined spirals. The problem is formu- 
lated for binarized inputs as follows: each point in the 
plane is represented by some bitstring B,& which is 
the concatenation of the truncated binary expansions 
for the points a- and b-coordinates. We chose 7 bit res- 
olution for each coordinate, which is much more than 
required to distinguish between any two training ex- 
amples. We use the “zero crossings” prior. A partic- 

ular choice of coordinate axes breaks shift invariance 
and isotropy of the original problem, due to the in- 
variance group properties of the Walsh functions. In 
order to restore the effect of broken symmetries, we 
apply the binarization for a transformation set (TS) 
of several randomly shifted and rotated (around coor- 
dinate center (O,O), not around center of the spirals, 
since we assume no a priori knowledge) versions of the 
original input vectors. For each coordinate system, a 
separate model is trained on 335 examples per class. 
Size and prior complexity are constant over TS. The 
approximation over the discretized [0, 1)2 is computed 
by averaging over the estimates of all members of TS. 
Training is stopped as soon as all training examples 
are correctly classified or no further error reduction 
is achieved within a reasonable number of iterations. 
Fig.4 shows a result with adequately designed models. 
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Figure 4: Approximation for models with size = 50, 
and with a prior that encourages a moderate number 
of zero crossings. TS contains 679 models, contribut- 
ing to the apparent smoothness of the approximation. 

The best models mainly use the 4 most significant bits 
of the binary encoded input vectors, and hardly con- 
tain interactions with more than 15 zero crossings. In 
contrast, models with a more flat zero crossings prior 
exhibit rich connectivity also to the least significant 
bits, thus overfitting the data. Using a well designed 
single model (instead of TS) yields approximations 
with an orthogonal axes bias, and a tendency of the 
approximation to undergo changes at fractions of low 
powers of two. But the concept of the two spirals is 
clearly learned by capacity controlled single models, 
proving the high flexibility of this model class. 
The second task is the Gene benchmark (Nordewier, 
Towel1 and Shavlik 1991) for predicting splice- 
junctions. Problem description, data, and en- 
coding conventions can be found and are adopted 
from the the PROBENl collection in the Neural 
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Bench Archive at CMU (ftp.cs.cmu.edu, directory 
/afs/cs/project/connect/bench/contrib/prechelt). The 
problem provides 120 binary inputs, and 3175 data 
labeled according to three classes. Three models are 
trained separately to discriminate each class against 
the other classes. 900 patterns are used for training, 
100 for crossvalidation, the rest for testing. Training is 
stopped when no further improvement can be achieved 
on the training set within a reasonable number of it- 
erations. We use the “order” prior. We find models of 
size NN 60 with interactions up to second order to be su- 
perior. For prediction, we chose the label of the model 
with the maximum active output as class label. Test 
error is 7 - So/ 0, comparable to results from literature 
with MLPs, and superior to experiments with ID3 and 
Nearest Neighbor (Murphy and Aha 1992, UC1 Repos- 
itory of machine learning databases, ftp.ics.uci.edu, 
University of California, Irvine, CA). 
A drastic reduction of prediction error to slightly above 
6% is achieved by aggregating 50 models for each class, 
starting with different seeds for the random number 
generator, and using majority voting for the class de- 
cision. Best voting results are achieved with models of 
size = 250, and interactions up to order 4 are found 
significant. Models trained on the same class exhibit 
a strong overlap of the more significant interaction 
terms, and high variability among the weaker inter- 
actions. We conclude that the improvement in predic- 
tion accuracy arises from less biased size constraints in 
conjunction with reduced variance of the aggregated 
classifier. 

E-I model 

tiput position 

Figure 5: Structure histogram for an Exon-Intron 
boundary predictor aggregated from 50 models: In- 
puts are ordered along the horizontal axis. Vertical 
axis measures absolute weight coefficients of interac- 
tions. A peak indicates that the corresponding bit con- 
tributes (in an additive way or participating in some 
higher order interaction) to the classifier decision; the 
height of the peak measures the strength of this con- 
tribution. 

Fig.5 reveals some gross information on the structure 
of interactions for the gene-splicing problem. A strik- 
ing observation is that genes in the local neighborhood 
of the junction have the most impact on the type of 
junction, and that no significant long range interac- 
tions are present. 

Discussion 
The paper contributes original research to: integrated 
data and knowledge representation for numeric and 
categorical data, model simplicity and scalability is- 
sues, and distributed search for the best model. The 
computationally feasible automatic model identifica- 
tion determines relevant interactions between binary 
variables. It constitutes a much faster, less biased, and 
wider applicable modelling process than human feature 
selection. This makes our data mining tool a good can- 
didate for real-time and high dimensional data analy- 
sis. A serious challenge for automatied search of wide 
model classes is the problem of overfitting. We over- 
come this difficulty by incorporating powerful novel 
regularization techniques for binary data formats. Our 
first simulation results hint that model aggregation fur- 
ther stabilizes predictions. 
Simplifying the computation of feature sets becomes 
an important issue regarding explosive growth of data 
mines, shrinking time spans for data analysis and de- 
cision making, and state-of-the-art sampling and ag- 
gregation techniques. Our findings show that float- 
ing point multiplications can be avoided for some im- 
portant data mining applications, speeding up the in- 
ference process significantly. A technological quan- 
tum jump may help to overcome severe scaling prob- 
lems. The bit-interactions which make up the “atom- 
ic” knowledge entities of our model seem well suited 
for parallel distributed processing by novel computing 
technologies under development. It remains to be seen 
if models similar in spirit could simplify the implemen- 
tation of statistical learning algorithms on future quan- 
tum computers for large scale, high-speed data mining. 
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