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Abstract 

The unsupervised detection of hierarchical structures 
is a major topic in unsupervised learning and one of 
the key questions in data analysis and representation. 
We propose a novel algorithm for the problem of learn- 
ing decision trees for data clustering and related prob- 
lems. In contrast to many other methods based on 
successive tree growing and pruning, we propose an 
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non-greedy technique for tree growing. Applying the 
principles of maximum entropy and minimum cross 
entropy, a deterministic annealing algorithm is derived 
in a meanfield approximation. This technique allows 
us to canonically superimpose tree structures and to 
fit parameters to averaged or ‘fuzzified’ trees. 

Introduct ion 
Clustering is one of the fundamental problems in ex- 
ploratory data analysis. Data clustering problems 
occur in pattern recognition, statistics, unsupervised 
learning, neural networks, data mining, machine learn- 
ing and many other scientific fields. The wide range 
of applications is explained by the fact that clustering 
procedures are important tools for an automated or in- 
teractive detection of structure in data sets. Especially 
for large data sets grouping data and extracting typical 
prototypes is important for a compact representation 
and is a precondition for further symbolic processing 
stages. In the context of data clustering the detection 
of hierarchical structures is an essential goal of data 
analysis. In this paper we consider binary trees with 
stochastic transition nodes, (Breiman et al. 1984) ap- 
plied to vector-valued data. 

We will formulate data clustering as a stochastic 
optimization problem to be addressed in the masi- 
mum entropy framework. Maximum entropy meth- 
ods have been introduced as a stochastic optimiza- 
tion method, called simulated annealing in a seminal 
paper of Kirkpatrick et al. (Kirkpatrick, Gelatt, & 
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Vecchi 1983). To overcome the computational bur- 
den of Monte Carlo sampling, efficient determinis- 
tic anne&ng variants have been derived for a num- 
ber of important optimization problems (Yuille 1990; 
Kosowsky & Yuille 1994; Buhmann & Hofmann 1994; 
Gold & Rangarajan 1996), including unconstrained 
clustering and vector quantization. (Rose, Gurewitz, 
& Fox 1990; Buhmann & Kiihnel1993). Maximum en- 
tropy methods have recently been successfully applied 
to the case of tree-structured vector quantization in 
(Miller & Rose 1994; 1996). Similar methods have also 
been used in the context of regression (Jordan & Jacobs 
1994) and for unsupervised learning problems (Dayan, 
Hinton, & Zemel 1995). The key idea in simulated 
and deterministic annealing is to reformulate a given 
combinatorial optimization problem as a stochastic op- 
timization problem. A temperature parameter T is in- 
troduced to control the amplitude of the induced noise. 
In the zero temperature limit, T + 0, the combinato- 
rial problem is recovered, while for high temperatures 
the objective function is smoothened. Tracking soiu- 
tions from high temperatures thus helps us to avoid 
unfavorable local minima. 

The major novelty of our approach is an explicit 
treatment of the topology of binary trees in the maxi- 
mum entropy framework, which results in a systematic 
and well-founded ‘fuzzification’ of binary tree topolo- 
gies. At a finite computational temperature different 
trees are superimposed resulting in an average tree 
structure. An average tree is not a single tree but 
a tree mixture. The proposed algorithm optimizes the 
tree toooioor iointly with all other relevant parann!- 
ters, e.g. data assignments to clusters and decision 
node parameters. 

Unconstrained Data Clustering 
We restrict our attention to the case of real-valued 
data vectors X = {xi E lRd : 1 5 i s N}, and a cor- 
responding set of prototypes Y = {yv E IRd : 1 5 Y 5 
K}, K << N, yy representing a group-G,. To describe 
the mapping of data vectors to prototypes we intro- 
duce an indicator function representation by Boolean 
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straints Cr=‘=, Mj, = 1, for all i. The objective func- 
tion for unconstrained data clustering is usually stated 
as (Duda & Hart 1973) 

N K 

i=l v=l 

where I? is a problem dependent distortion measure, 
e.g. D(xi,y,) = ]/xi - ~~11”. Applying the princi- 
ple of maximum entropy, Boolean assignments are re- 
placed by assignment probabilities (Mi,), maximizing 
the entropy S = - Cz Cf=‘=, (Mi,) log(it&,) subject 
to fixed expected costs t ‘tl). For a given set of proto- 
types the assignment probability of vector x; to group 
G, is the Gibbs distribution 

(*@iv> c exp [-WG Y~)/TMI 
C,“=, exp [-WG, Y~)/TMI ’ 

(2) 

where TM is the computational temperature. Mini- 
mization of the expected costs with respect to the pro- 
totype vectors results in an additional set of centroid 
equations, 

YV = &Miv)*i / g(“iV), (3) 
i=l i=l 

for the case of squared Euclidean distances. Eqs. (2) 
and (3) can be solved efficiently by an EM algorithms 
(Dempster, Laird, & Rubin 1977). In a more general 
situation additional prior assignment probabilities OTT;, 
are given. Applying the principle of minimum cross en- 
tropy this results in modified, ‘tilted’ assignment prob- 
abilities, 

which minimize the cross entropy to the prior for fixed 
costs (3-1) ((Miller & Rose 1994)). For uniform priors, 
we recover Eq. (2) as expected. Tilted assignments will 
be used in the following section to model the influence 
of the cluster hierarchy on data assignments. 

Decision Trees for Data Clustering 
In this paper we consider stochastic binary decision 
trees with a given number of K leaves, representing 
the data clusters. We denote nodes of the tree by 
n,, 0 5 a 5 2K - 2. Associated with each inner 
node n, are two test vectors yk,yL E lRd and a con- 
trol parameter X, E IR+. The test vectors determine 
transition probabilities p&(x) and &(x) for a given 
vector x according to the formula 

exp [-&3(x, y?‘)] 
p’p(x) = exp [-X,2>(x, yk)] + exp [-X,z)(x, y;)] ’ (5) 

p;(x) and p:(x) are the probability for vector x to 
continue its path with the left and right successor of 

n,, respectively. X, controls the stochasticity of the 
transition, hard decision boundaries are obtained for 
X, -+ co. The path probability x7(x) of a data vector 
x from the root to a node ny is given by the prod- 
uct of all transition probabilities at inner nodes on 
that path. in the liiit of di A, -b 00 the tree de- 
fines a unique partitioning of the data space. Follow- 
ing (Miller & Rose 1996) we optimize the tree in or- 
der to minimize the deviation of the decision tree data 
partitioning from an unconstrained clustering solution 
with assignment probabilities {(Miv)}. As a suitable 
measure of divergence between probabilities the cross- 
entropy or KuIlback-Leibler divergence is employed, 

z({(Mv)}ll{~iv)) = 2 E(Miv)lOg e, (6) 
i=l v=l 

where aj, = xv+K-s(xi). The binary tree is op- 
timized such that the leaf probabilities xiv approx- 
imate as closely as possible the target probabilities. 
Conversely, for a given tree the prototype vectors 
Y are selected to minimize the exnected distortion 
k(Y, {xiv}) = CL1 Cf=‘=, (Miv)?r -D(w, YY), where 
(Mi,)” is the tilted distribution from Eq. (4). The 
path-probabilities obtained from the tree take the role 
of a prior to impose structural constraints on the se- 
lection of prototypes. 

Since our goal is to explicitly optimize the tree topol- 
ogy, we introduce an adjacency matrix re resentation 
for binary trees. Let U’, Up E (0, l}tK-r x(2K-11 en- P 
code the successor relation between nodes in the tree. 
u l/r w = 1 denotes that n, is the immediate left/right 
successor of inner node no. To avoid directed cycles 
we use the node numbering as a total order, where 
successing nodes are required to have a higher index. 
Furthermore every inner node has exactly one left and 
one right successor and all nodes except the root ns are 
required to have a unique predecessor. The path prob- 
abilities x7(x) are related to the adjacency matrices by 
tile formula. 

7-l 
+> = c 744 [C, PS> + U& PLMI 9 (7) 

a=0 

with TO(X) = 1. Path probabilities are efficiently cal- 
culated by sequentially propagating the probabilities 
from the root to the leaf nodes. This results in a well- 
defined optimization problem with a single objective 
function for the tree topology encoded by U’, U’ and 
all involved continuous decision node parameters. 

Optimizing the ‘iPee Topology 
The problem of finding an optimal decision tree is com- 
putationally difficult for two reasons: (i) the number 
of binary trees grows exponentially with the number of 
leaves; (ii) evaluating the quality of a single topology 
requires to fit all continuous parameters for test vec- 
tors and prototypes. The maximum entropy method 
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age over tree topologies feasible. Parameters are fitted 
not to a single tree, but to a weighted superposition 
of structures which converges only in the zero temper- 
ature liiit towards a uniquely determined topology. 
This results in a ‘fuzzification’ of structures at finite 
temperatures, which is gradually eliminated in an an- 
nealing process. 

Consider an extension of the probabilistic parti- 
tioning model, such that not only the transitions are 
stochastic, but also the successors of nrr are randomly 
drawn from the set of nodes {nr,r > a}. This 
means the connection between n, and ny, encoded 
by VA,, Vi., is a random variable, with expectations 
d, =’ cvL> and qrr, = (U&), respectively. The 
probabiliti& have to be chosen such that ‘&a q& = 
&,a q& = 1 in order to obtain a correct normaliza- 
tion. A class of probabilities which is of special interest 
in this context are fair probability distributions. A fair 
probability distribution possesses the additional prop- 
erty that every node except the root has the same aver- 
age number of predecessor, i.e. czr’, (q& + q&) = 1, 
for all 7 > 0. Fair probability distribution have the ad- 
vantage, that the constraints on U’ and U’ are at least 
fulfilled in the average. In the extended model we can 
calculate path probabilities for x simply by replacing 
the Boolean variables in Eq. (7) by their probabilities. 

Applying the maximum entropy principle to the ob- 
jective function in Eq. (6), we assign the Gibbs prob- 
abilities P(U’, U’) = $ exp [-Z(U’, Up)/Tu] to every 
tree topology U’,V. Z is a normalization constant 
and TV a temperature (or Lagrange) parameter. Ide- 
ally, we would like to average tree topologies according 
to the Gibbs distribution, without performing a tedious 
Monte Carlo sampling of trees. A standard approxima- 
tion technique to analytically calculate Gibbs averages 
is the meanfield approximation. In the meanfield ap- 
proximation we restrict the set of admissible probabil- 
ity distributions to distributions Q  which are factorial 
and fair. Within this restricted set we want to pick 
a Q* which maximizes the entropy for fixed expected 
costs or equivalently minimizes the cross entropy to the 
true Gibbs distribution Z (QIIP). 

Omitting the technical details, the link probabilities 
q$ of Q* are 0 for cx 2 7 and are otherwise given by 

The above cross entropy minimization problem has 
been reduced to the problem of finding values for the 
Lagrange parameters P-,, such that Q  is fair. Stan- 
dard methods from combinatorial optimization, devel- 
oped in the context of matching problems, can be ap- 
plied to find solutions for Eq. (8) if all h$ are kept 
fixed. In our simulations we used an iterative proce- 
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Kosowsky & Yuille 1994). To give the basic idea, the 
Lagrange parameter P-, can be interpreted as the ‘price’ 
of linking n., to another node na. These prices have to 
be simultaneously adjusted, such that every node has 
in the average exactly one predecessors. To arrive at a 
final solution we recalculate the derivatives 

and insert into Eq. (8), until a stationary state 
is reached. This is similar to the application of 
Sinkhorn’s algorithm for graph matching problems 
(Gold & Rangarajan 1996). 

Fitting Continuous Tree Parameters 
The continuous decision node parameters axe chosen 
in order to minimize 1. Applying the chain rule in 
calculating derivatives yields the final formula 

az 
- = -2X, (Xj - yyp) [Sy’(Xi) 
ayL! 

-Pfil’(Xi) (Sfi(Xi) + @ i,)] ? (10) 

where #(xi) denotes up-propagated unconstrained 
leaf probabilities. The test vectors can be optimized by 
gradient methods, e.g. steepest descent or conjugate 
gradient techniques. The derivation of similar equa- 
tions for the control parameters X, is straightforward. 

The optimization of prototype vectors yV proceeds 
according to the centroid condition in Eq. (3), with the 
unconstrained assignment probabilities replaced by the 
‘tilted’ probabilities of Eq. (4). The only remaining 
variables are the temperature parameters TM and Tu, 
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priate annealing schedule. 

Tree Clustering Algorithm (TCA) 
INITIALIZATION 

choose yw, yp ‘lr, iip randomly 
chose (Miy)) (Vet) E (0,l) randomly; 
temperature TM t TO, T~J i- CTM ; 

WHILE TM > TFINAL 
REPEAT 

estimate tilted assignm. {(Mu)}, Eq. (4) 
update prototypes {yy} with tilted assignm. 
caic . unconstr. assignm. {(li4ii.jj, Eq. izj 
adapt {yy’} and {A,} by gradient descent 
apply Sinkhorn’s algorithm to talc. (a$} 

UNTIL all {yy}, {~a’}, {A,) are stationary 
TM ~-TM/Z; Try i- CTM; 

Results 
The tree clustering algorithm can in principle be ap- 
plied to any set of vector-valued data. As a test ex- 
ample we chose synthetic two-dimensional data and 
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Figure 1: Hierarchical clustering of artificial two- 
dimensional data from 16 isotropic Gaussian modes. 
Displayed are partitionings with K = 4,9 and K = 16 
clusters. 

real world data from multispectral LANDSAT images 
with seven spectral channels. The results on the syn- 
thetic data at different levels are shown in Fig. 1, to- 
gether with a representation of the final tree topology. 
The obtained hierarchical data partitioning retrieves 
the structure of the generating source. Fig. 2 shows 
the hierarchical split of the LANDSAT data. Regions 
which correspond to particular clusters are grey-scale 
coded and can be identified with the help of external 
information. The split between meadows and other ar- 
eas occurs fist in our example. Further down in the 
hierarchy, a separation of forest from urban areas can 
be observed. The hierarchy is stable for runs with dif- 
ferent initial conditions. 
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