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Abstract 

Our work offers both a solution to the problem 
of finding functional dependencies that are dis- 
torted by noise and to the open problem of ef- 
ficiently finding strong (i.e., highly compressive) 
partial determinations per se. Briefly, we intro- 
duce a restricted form of search for partial de- 
terminations which is based on functional depen- 
dencies. Focusing attention on solely partial de- 
terminations derivable from overfitting functional 
dependencies enables efficient search for strong 
partial determinations. Furthermore, we general- 
ize the compression-based measure for evaluating 
partial determinations to n-valued attributes. 
Applications to real-world data suggest that the 
restricted search indeed retrieves a subset of 
strong partid determinations in much shorter 
runtimes, thus showing the feasibility and use- 
fulness of our approach. 

Introduction 
Functional dependencies (Mannila & Raiha, 1994) are 
a fundamental form of knowledge to be discovered in 
databases. In real-world databases, however, we have 
to face the effects of noise on functional dependencies: 
dependencies among attributes that would have been 
functional without noise are likely to have exceptions. 
r-i-- --I__^ -.LL. -I---:LL-- .f-.. :,c,...,:,,. c..,,+:,,,, ,.l, ~“ILsaquarlbly, alg”rlbMm I”1 Illlt;lllll~ IuI,LbI”I,a, UC? 
pendencies would not return those dependencies which 
are distorted by noise. More precisely and in machine 
learning terms, they would overfit the data, meaning 
that these algorithms would find too specific functional 
dependencies instead of the ones we would like to find. 

In contrast to functional dependencies, partial de- 
terminations ((Russell, 1989), (Pfahringer & Kramer, 
1995)) or approxiniate functional dependencies allow 
for exceptions. (In this respect, they are similar to 
association rules (Agrawal & Srikant, 1994).) Par- 
tial determinations may reflect probabilistic dependen- 
cies among attributes, but they may also be “impure” 
functional dependencies, i.e. functional dependencies 
which are distorted by noise and have only a few ex- 
ceptions. In this paper, as in (Pfahringer & Kramer, 
1995), we deal with those partial determinations which 

help to compress a given database as much as possi- 
ble. These highly compressive partial determinations 
will be called strong partaal determanations. 

In the next section we summarize the ideas from /XT,. , . n TJ .rrnr\ n 1 (rranrmger dl; nramer, luvoj. >uosequentiy, we define 
and explain a new compression-based measure for par- 
tial determinations ranging over n-valued attributes. 
Then we describe an efficient method to search for 
strong partial determinations. In section 5, we report 
on experimental results of our method in several “real- 
world” databases. 

Compression-Based Evaluation of 
Partial Determinations 

Partial determinations are expressions of the form 
X -fd Y, where X is the set of RHS (right-hand side) 
attributes, and Y is the set of LHS (left-hand side) at- 
tributes. d is the determination factor d(X, Y) (Rus- 
sell, 1989), the probability that two randomly chosen 
tuples have the same values of Y, provided they have 
the same values of X. In the following, we will restrict 
ourselves to RHSs consisting of single attributes. 

Given a relation r, we define a mapping that corre- 
sponds to the expression X +d Y: the mapping relates 
the values of X occurring in r to the most frequently 
co-occurring values of Y. The tuples in r with Y values 
,.cL,.. tL,m +h,on mc.;,,;t,, ~,.,l..na .,,.n s.nl1or-l .avom,t;T\*Ia “Llllrji bllcul “II”D.2 ulaJ”vr,“y “UIUG;Iu ChIti .dc&IIbU h-.““~“A”IIY 

to the mapping in r. 
The basic decision is which partial determinations 

to search for in databases. If we are interested only 
in accuracy, we are likely to get overly complex par- 
tial determinations in the presence of noise: we will 
find partial determinations fitting the noise instead of 
the underlying dependencies. To avoid this, we also 
have to take into account how complex partial determi- 
nations are. Therefore, (Pfahringer & Kramer, 1995) 
proposes a compression-based measure based on the so- 
called Minimum Descraption Length (MDL) principle 
(Rissanen, 1978). The MDL principle tries to measure 
both the simplicity and the accuracy of a particular 
theory (in our setting: a partial determination) in a 
common currency, namely in terms of the number of 
bits needed for encoding both a theory and the data 
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%aw~’ Data of Database 

Sender - ---c Receiver 

for specifying the LHS-attributes and of the coding 
length for the string of values for the RHS-attribute. 
The alphabet for this string is the domain of the RHS- 
attribute. 

Exceptions to the mapping are encoded by (3). We 
have to identify the exceptions, and additionally en- 
code a string of corrections for the identified exceptions 
to the mapping. Again, the aiphabet of this string is 

Compressed Database 
V x W  

Sender -c - Receiver 

Maw&z f-l-7 + m  Exceptions 

Figure 1: Transmission metaphor. 

given that theory. The theory with the mznimal total 
message length (the most compressive partial determi- 
nation) is also the most probable theory explaining the 
data (Rissanen, 1978). 

To illustrate the key idea of the measure for par- 
tial determinations proposed in (Pfahringer & Kramer, 
1995)) we consider the hypothetical task of transmit- 
ting a given database as efficiently as possible (see 
fig. 1). If we can find a good partial determination 
X -fd Y for a given attribute Y, transmitting the par- 
tial determination instead of the raw data may improve 
efficiency considerably: we just have to transmit the 
mapping (the model) and transmit the information to 
correct the values of Y for the exceptions to the map- 
ping. Thus, we have to identify the exceptions (the 
“grey tuples” in figure 1) and transmit the corrections 
(the black box in figure 1). The values of Y need not 
be transmitted anymore. Thus we achieve some com- 
pression of the data, the degree of which is estimated 
by our measure based on the MDL principle. 

The work reported in (Pfahringer & Kramer, 1995) 
has several limitations and problems: the paper only 
deals with partial determinations ranging over boolean 
attributes. Secondly, the problem of efficiently find- 
ing compressive partial determinations has not been 
solved. Thirdly, the method has not yet been applied 
to real-world databases. The following sections present 
extensions of our work that overcome these problems 
and limitations. 

A New Compression-Based Measure for 
Multi-Valued Partial Determinations 

In figure 2? we define the new compression-based mea- 
sure for partial determinations ranging over multi- 
valued attributes. The total coding length (1) is the 
sum of the coding length of the mapping and the cod- 
ing length of the corrections to be made. The coding 
length for a mapping (2) is the sum of the coding length 
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the domain of the RHS-attribute. 
The entropy-based bound of (Shannon & Weaver, 

1949) is used as an estimate for the cost cchoose of en- 
coding the selection of E elements out of N possible 
elements (4). Encoding a string over a multi-valued 
alphabet (5) is a straightforward generalization of (4). 
It can be thought of as a repeated binary selection en- 
coding of what is the value occurring most frequently 
and which positions in the string are exceptions, i.e. 
have a different value. The resulting formula can be 
simplified to the definition (5) for c.+,i,, which is just ““, y,yy; 
the sum of the entropy of the distribution of values in 
the string (6) and of an encoding of the values’ iden- 
tities sorted according to their frequencies (a kind of 
codebook for the particular string, 7). 

Efficient Search for Strong Partial 
Determinations 

Based on the view of partial determinations as func- 
tional dependencies which are distorted by noise, we 
propose an efficient search strategy to find strong par- 
tial det4erminat*ions. L 2a.I&+. St ting J&E. gy&tsing f~nc- 

tional dependencies, we propose to search for the best 
subset of left-hand side attributes according to our 
MDL-measure which avoids fitting the noise. In ma- 
chine learning terminology again, we propose to prune 
the left-hand sides of overfitting functional dependen- 
cies. Pruning is achieved by a complete A*-like search 
over all subsets of LHS-attributes of the original func- 
tional dependency. In the following, we will refer to 
this two-level approach as restricted search. Limiting 
our attention to this highly interesting subset of partial 
determinations enables efficient search. 

Even though both searching for functional depen- 
dencies and for partial determinations is exponential 
in the worst case, on average functional dependencies 
can be searched for much more efficiently due to much 
stronger pruning criteria. Additionally the evaluation 
function is much simpler: just counting the number 
of tuples in a projection vs. creating a mapping and 
computing its coding length for a projection. So in re- 
stricted search the expensive part has only to deal with 
a small number of attributes, namely those occurring 
in the left-hand side of the respective functional de- 
pendency, Furthermore, as a flunctinna! depm!ency is 

a partial determination with no exception, it also sup- 
plies an upper-bound on the coding length of possibly 
better partial determinations in the restricted search. 

The next section will empirically show the effective- 
ness of restricted search in comparison to full search. 



c(PD) = 
c( Mapping) = 

c(Ezceptions) = 

moose (E, N) = 
cstring(St~iw) = 

entropy({Fr,...,FM}) = 

c(Mupping) + c(Ezceptions) (1) 
c,~,,,,(lUsedAttrsl, IAZIAttrsl) + cst,.ans(RHS Values Mapping) (2) 
c,h,o,,(lEZcePtionsI, IAIIEzamplesl) + c,t,.&Cowections) (3) 
N * entropy({E, N - E}) (4) 
Zength(String) * entropy(char-frequencies(String)) + c,ar2Le-OTder(String) (5) 

-(f’plog(F,lN)), where N = 5 F, (6) 
t=l i=l 

j-l 

cot -) 1 g il.4 i ,where M is the cardinality of the alphabet, 
i=o 
and j is the number of different chars in String. 

0 if P=O 
P * logz( P) otherwise 

(7) 

Figure 2: The definition of the coding length c of a partial determination. 

Full search is implemented as an iterative-deepening 
best-first search for partial determinations. For prag- 
matic reasons, if the number of attributes is larger than 
20, both search approaches must be iimited,to ieft- 
hand sides of a prespecified maximum length, which is 
usually 10 in our experiments. 

Empirical Results 
For a preliminary empirical comparison of both search 
strategies we have done experiments using various 
small to medium-sized “real-world” databases. Breast 
cancer, Lymphography, and Mushroom are taken 
from the UCI-repository. Peace, Conflicts, and 
Attempts are databases capturing mediation attempts 

/l-L?,nnl ot iii iiitf3YiZtiC3d COi&CtS &Ed CliSt3 \ ~rcbyp~ LU a!., 
1996). Table 1 gives the sizes (number of attributes 
and number of tuples) of these databases and summa- 
rizes the search results. For the restricted search ap- 
proach (pruning of overfitting functional dependencies) 
we list the number of attributes, for which a partial 
determination was found and the determinations’ av- 
erage compression factor. This compression factor for 
a given attribute is defined as the ratio between the 
coding length of the raw data and the coding length of 
the respective partial determination. Next we list the 
average compression factor achieved by a full search 
for partial determinations for the same RHS-attributes 
as those for which the restricted search found com- 
pressive partial determinations, Additionally we list 
the number of attributes for which only the full search 
was able to find compressive partial determinations, 
and again include their average compression factor. 
We can summarize as follows: for a subset of all at- 
tributes restricted search seems to find partial deter- 
minations which are on average almost as strong or 
compressive as those found by full search. Partial de- 
terminations missed by restricted search are on av- 
,.,.c.,..n o:nm.;G:rantlrr Tx,.albm /with thn ovrmtinn nf t.ho cxcltjr; ul~jrrrrl~oruury 1”L.uIILbI \ “.I”II “&A” “~uuyv.v.I VI YllV 

Conflicts database). We have not yet performed de- 
tailed runtime measurements, but even for the small- 
est database Breast Cancer the difference is already 
of two orders of magnitude (SO seconds vs. ’ ‘~ ~~~’ ~~ I nourl. 
For the other domains the differences in the runtimes 
were even more drastic. Summing up, the restricted 
search indeed retrieves a subset of strong partial de- 
terminations in much shorter runtimes. 

Inspecting the retrieved determinations for useful 
knowledge also provided a few insights. For instance 
the peace database includes both a few raw numerical 
attributes and their respective discretizations. Clearly 
a discretization should be functionally dependent on 
the raw data, which was not the case in the actual 
database. These erroneous discretizations were discov- 
ered as partial determinations. Moreover, we found 
strong partial determinations reflecting the implicit 
structure of the database: originally structured knowl- 
edge had been converted into one large and flat table 
due to restrictions imposed by standard propositional 
machine learning algorithms. 

Related Work 
(Shen, 1991) describes an algorithm that searches for 
determinations and two other kinds of regularities in 
a large knowledge base. Since the algorithm is just 
looking for determinations having a single left-hand 
side attribute, there is no need to avoid overfitting the 
data. 

(Schlimmer, 1993) proposes an algorithm that re- 
turns every “reliable” partial determination with a 
complexity lower than a user-defined threshold. Since 
the evaluation function does not have a penalty for 
overly complex dependencies, it does not avoid overfit- 
ting 

(Russell, 1989) and (Kivinen & Mannila, 1995) pro- 
pose to determine the accuracy of partial determina- 
tions (rpsppct;jyp!y 2nnmuimn.t.e function&] &pen&n- -==---‘--‘-‘- I- 
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Domain ’ # A. # T. ’ B.estr.Search Restr.Search 
# PDs Compression 

fi (4 
Br. Cancer 11 699 6 1.49 (0.78) 
Lymph. 19 148 14 1.13 (0.09) 
Mushroom 23 8124 7 95.16 (26.84) 
Peace 50 1753 33 4.47 (2.76) 
Conflicts 33 268 24 1.38 (0.47) 
Attemots 17 1753 10 2.23 (1.00) 

Full Search FuII Search Full Search 
Compression # Add. Ada. PDF 

P (4 PDs Compression 
1.64 (0.73) 5 1.20 
1.13 (0.09) 

(0.07) 
5 1.01 

100.03 (23.25) 
(0.01) 

15 5.49 
4.63 (2.70) 

(6.32) 
16 2.11 

1.38 (0.47) 
(0.85) 

4 1.37 
2.26 (0.99) 

(0.24) 
7 1.65 10.48) 

Table 1: Results in real-world domains: the meaning of columns is explained in section 5. 

ties) through sampling. However, if the proposed mea- 
sures of accuracy would be used in a search framework, 
the returned determinations would overfit the data. 

P10489-MAT. Financial support for the Austrian Resedrch 
Institute for Artificial Intelligence is provided by the Ai.&‘? s 
trian Federal Ministry of Science, Trans$ort atid the Arts,: ’ 
Both the lymphography and the breast cancer domain’%!%,, 
obtained from the University Medical ,Centre, Institute bpqi 
Oncology, Ljubljana, Slovenia. The mediation databases 
were obtained from the Department of Political Science at r .,* 
the University of Canterbury, Christchurch, N.Z. We w&Id 
like to thank M. Zwitter, M. SokIic and J. Bercovitch for 
providing the data, and Gerhard Widmer for valuable dis- 
cussions. 

Conclusion and Further Work 
Our contribution is twofold: firstly, we offer a solution 
to the problem of finding functional dependencies that 
are distorted by noise. Secondly, we propose a solu- 
tion to the open problem of efficiently finding strong 
(i.e., highly compressive) partial determinations. Fo- 
cusing attention on partial determinations derivable 
from overfitting functional dependencies enables etli- 
cient search for strong partial determinations. 

Furthermore, we have generalize the compression- 
based measure for evaluating partial determinations to 
n-valued attributes. Applications to real-world data 
suggest that the restricted search indeed retrieves a 
subset of strong partial determinations in much shorter 
runtimes, thus showing the feasibility and usefulness of 
our approach. 

Our approach to searching for partial determinations 
hat ~~vm.1 limit.at.inne. rlmrlv we cznp& find n!! pr- AA-” ““I “I -1 IIII.IVUIYAVA.Y. y-y-- -.I 9 
tial determinations, but only a subset. However, ex- 
periments indicate that those partial determinations 
which are distorted functional dependencies are among 
the most compressive dependencies to be found. It is 
also important to note that this approach is based on 
assumptions about real-world data, namely that there 
are strict functional dependencies which are distorted 
by noise. Thirdly, if the noise level is too high, no 
functional dependency might exist at all. So the prun- 
ing approach would not find partial determinations in 
these situations. 

We plan to extend our work along the following lines: 
our method could be used to restructure the database 
in order to minimize the required memory, similar to 
INDEX (Flach, 1993). Another application of the mea- 
sure could be to distinguish between reliable functional 
dependencies and those which are due to chance. Fi- 
nally, it would be interesting to compare and combine 
our approach with sampling techniques as proposed in 
(Kivinen & Mannila, 1995). 
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