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Abstract 
This paper introduces ADHOC (Automatic Discov- 
erer of Higher-Order Correlation), an algorithm that 
combines the advantages of both filter and feedback 
models to enhance the understanding of the given 
data and to increase the efficiency of the feature se- 
lection process. ADHOC partitions the observed 
features into a number of groups, called factors, that 
reflect the major dimensions of the phenomenon un- 
der consideration. The set of learned factors define 
the starting point of the search of the best performing 
feature subset. A genetic algorithm is used to explore 
the feature space originated by the factors and to de- 
termine the set of most informative feature configu- 
rations. The feature subset evaluation function is the 
performance of the induction algorithm. This ap- 
proach offers three main advantages: (i) the likeli- 
hood of selecting good performing features grows; 
(ii) the complexity of search diminishes consistently; 
(iii) the possibility of selecting a bad feature subset 
due to over-fitting problems decreases. Extensive ex- 
periments on real-world data have been conducted to 
demonstrate the effectiveness of ADHOC as data re- 
duction technique as well as feature selection 
method. 

Introduction 

Feature selection plays a central role in the data analysis 
process since irrelevant features often degrade the per- 
formance of algorithms devoted to data characterization, 
extraction of rules from data, and construction of predic- 
tive models, both in speed and in predictive accuracy. The 
interest in the feature selection problem is intensifying 
because of the pressing need of mining volume data ware- 
houses, which usually contain a large number of features 
(for example, in finance, marketing, and product devel- 
opment applications). Indeed, it is quite a hard task to 
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filter irrelevant features out during the warehouse con- 
struction process. 

Feature selection algorithms that have appeared in the 
literature can be categorized in two classes, according to 
the type of information extracted from the training data 
and the induction algorithm (John, Kohavi, & Rfleger 
1994) Feature selection may be accomplished independ- 
ently of the performance of the learning algorithm used in 
the knowledge extraction stage. Optimal feature selection 
is achieved by maximizing or minimizing a criterion 
function. Such approach may be referred to as the filter 
feature selection model. Conversely, the effectiveness of 
the feedback feature selection model is directly related to 
the performance of the concept discovery algorithm, 
usually in terms of its predictive accuracy. (John, Kohavi, 
& Pfleger 1994) argued that feedback models are prefer- 
able for feature selection algorithms and supported their 
claims with empirical evidence. However, the literature 
do not address some important issues. First of all, it is not 
clear which is the best starting point for the search of a 
good subset of features. Starting the search on the whole 
set of original features usually turns out to be unfeasible 
due to combinatorial explosion when the number of fea- 
tures is not limited. An alternative might be start with the 
features used by a decision tree algorithm. Second, current 
feature selection algorithm do not help to answer a basic 
question that arises in a number of data analysis tasks, that 
is whether there exist some fundamental dimensions 
which underlie the given set of observed features. This is 
a major drawback in marketing applications, for example, 
in which gaining an insight of the deep structure of the 
data is as important as achieving a good generalization 
performance. 

The attempt to address these open issues are the basis 
of our research work. In this paper we introduce a statisti- 
cal algorithm, called ADHOC (Automatic Discoverer of 
Higher-Order Correlations), that combines the advantages 
of both filter and feedback feature selection models to 
enhance the understanding of the given data and increase 
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the efficiency of the feature selection process. Two em- 
pirical analysis on real-world data have been conducted to 
demonstrate the effectiveness of ADHOC as data reduc- 
tion technique as well as feature selection method. Ex- 
perimental results are presented and discussed in the last 
section of the paper. 

Data reduction in ADHOC 

Factor Analysis (FA), Principal Component Analysis 
(PCA) and Cluster Analysis (hereafter designated as Sta- 
tistical Data Reduction Techniques or SDRTs) are well 
established procedures that are effective in many domains. 
But the set of mathematical assumptions on which they 
rely diminish their applicability in a number of machine 
learning and data mining applications. This is mainly due 
to the following factors: SDRTs fit a linear model to the 
data; are suitable to handle numeric features only; are 
often fooled by spurious or masked correlation; the out- 
come of SDRTs is rarely easy to interpret. 

Current statistical techniques may not represent an op- 
timal solution to the data reduction issue in the data min- 
ing framework. The ADHOC algorithm provides a differ- 
ent approach to data reduction that overcomes some of the 
problems which degrade the performance of pure statisti- 
cal techniques. ADHOC accomplishes data reduction in 
four stages: (i) Detection of linear and non-linear direct 
associations among the original features, (ii) Detection of 
indirect associations among features by investigating 
higher-order correlations, (iii) Clustering of related fea- 
tures to discover the hierarchy of concepts underlying the 
data, (iv) Selection of the most informative partition of 
the features. 
Analysis of direct association between features. Input of 
the algorithm is a training set of feature-valued examples. 
In the first stage, ADHOC measures direct pairwise asso- 
ciation between features by comparing the outcome of 
two non-parametric (distribution-free) statistical analysis, 
namely, correlation analysis and chi-square analysis. 
Measurement of the (linear or non-linear) dependence 
between any pair of features are normalized in the range 
[-1, l] and collected in a matrix called the first order de- 
pendence matrix. Unlike SDRTs, ADHOC can handle 
both numeric and symbolic features. Numeric features are 
automatically discretized with the algorithm described in 
(Richeldi & Rossotto 1995) if they need to be compared 
with symbolic features to estimate possible dependence. 
ADHOC selects the most appropriate test from a set of 
available statistics for any given pair of features automati- 
cally. For example, correlation between a real-valued 
feature and an ordinal discrete-valued feature is estimated 
by applying a Stuart’s Tau c test. 
Analysis of indirect association between features. 
ADHOC identifies groups of features that are equivalent 
measures of some factor. It can be regarded, therefore, as 
a clustering technique. However, the mechanism underly- 
ing the formation of clusters is very different from the one 

employed by cluster analysis of features. 
SDRTs rely on the analysis of direct correlation be- 

tween features to perform data summarization. Their goal 
is to obtain factors that help to explain the correlation 
matrix of the features. But correlation may not provide a 
reliable measure of the association between two features, 
as it does not take effects of other features into account. 
Spurios correlations may occur, or correlations may be 
imposed artificially or masked by other features. In this 
case, indirect relationships between features need to be 
investigated, since direct associations, which are meas- 
ured by correlation, do not convey enough information to 
discover the deep structure of the data. 

ADHOC search for indirect association is based on the 
concept of feature profile. The profile of a feature F de- 
notes which features F is related to and which ones F is 
not related to. For example, let A, B, C, D, E, and F be six 
features that characterize a given data set. Also, let 0.2, 
0.1, -0.8, 0.3, and 0.9, be estimates of the direct relation- 
ships between F and A, B, C, D, and E, respectively. F’s 
profile is defined as the vector ~0.2, 0.1, -0.8, 0.3, 0.9, 
1 .O>. Features which have similar profiles provide differ- 
ent measurement of the same concept (data dimension) for 
they are equally related (unrelated) to the rest of the fea- 
tures. If the converse were true, two concepts would be 
related in two contrasting ways at the same time, a very 
much unlikely situation in nature. Comparing feature 
profiles may yield more reliable an estimate of true asso- 
ciation than a direct measure of association, such as corre- 
lation, provided the cardinality of the feature profile is not 
too small (at least 4). Since components of the profile 
vector express correlations, comparing feature profiles 
may be viewed as correlating correlations. The result of 
the comparison has been named and-order correlation in 
(Doyle 1992), to stress out the double application of corre- 
lation. Accordingly, standard Pearson’s correlation coef- 
ficient is named I-st order correlation. A statistical test, 
called Rti, was designed to estimate profile similarity. 
Higher-order correlations between features are computed 
by recursive application of the RW statistics. N&order 
correlations result in a matrix called the Nth-order de- 
pendence matrix. By examining the Nth-order dependence 
matrix, one can determine the strength of relationship 
between features, and group those features that appear to 
be related. The recursive process halts when the profile 
similarity of features in each cluster goes over a prede- 
fined threshold or a given number of iterations have been 
done. Predictor variables may be partitioned into four 
different categories of clusters. They are’ called Posi- 
tive-concept, Negative-Concept, Undefined, and Unre- 
lated-Features, respectively, and reflect the different ty- 
pology and strength of dependences that may exist be- 
tween a set of features. Features that share very similar 
profiles, Le., that appear to contribute to the same dimen- 
sion of the phenomenon, are grouped into a cluster of type 
Positive-Concept. Features related by a negative associa- 
tion to other features are assigned to a Negative-Concept- 
type cluster. Features which appear not to influence or to 
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be influenced significantly by the rest of the features form 
the Unrelated-Features cluster. The Undefined cluster 
contains all the remaining features which can not be as- 
signed to one of the other three types of clusters. 

The analysis can then be repeated on each group of 
features in turn. The aim is refining the classification, as 
for the Positive-Concept clusters, or identifying relation- 
ships that could be masked by other features, as for the 
Undefined cluster. Cluster refinement is terminated when 
cluster cardinality goes below to a predefined value. 

As a result, ADHOC returns a hierarchy of clusters 
which would resemble the hierarchy of concepts that 
characterize the observed phenomenon. A test of homo- 
geneity of content is then applied to every level of the 
hierarchy to determine a good factorization of features. 

Selection of the best feature subset 

The problem of feature selection involves finding a good 
subset of features under some objective function, such as 
generalization performance or minimal use of input fea- 
tures. In our opinion, a feature subset cannot be truly in- 
formative and, consequently, good performing on unseen 
cases, unless it contains at least one feature which con- 
tribute to define every dimension underlying the data. 
Moreover, if there exist n important concepts that con- 
tribute to the target concept, and a feedback model iden- 
tifies a feature subset with less than n features which 
achieves the best predictive performance, it is very likely 
that the subset over-fit the data. On the other hand, in the 
very unlikely case in which data has no structure, every 
feature can be regarded as reflecting a single concept and 
the search would start from the entire set of features. The 
search for the best feature subset in ADHOC is based on 
the above considerations. The second step of the algo- 
rithm consists of selecting at most one feature from each 
of the factor, i.e., dimension of the data, that has been 
discovered in the data reduction step. As a consequence, 
feature subsets that reflect all the problem dimensions are 
formed, and search efficiency strongly increases. We in- 
vestigated several search heuristics to select the smallest 
number of features from each factor (group of features 
which reflect the same data dimension). Among the oth- 
ers, genetic algorithms (GAS) turned out to be an excellent 
fit to this task (Vafai & De Jong 1992). Experimental 
studies were conducted by forcing the GA to select at 
most one feature from each factor, in order to focus the 
search on the best performing, least-sized feature subset 
which covers all the data dimensions. The feature subset 
evaluation function was the generalization performance of 
the induction algorithm C4.5. To fairly estimate the pre- 
diction accuracy of the learning algorithm, a k-fold cross- 
validation technique was applied. The training data set 
was broken into k equally sized partitions. The learning 
algorithm was run k times; in each run k-l partitions were 
used as training set and the other one as test set. The gen- 
eralization accuracy was estimated by averaging the error 

rate on the test set over all the k runs. Results, which are 
summarized and discussed in the next section, confmed 
the intuition that GAS are able to find highly predictive, in 
many cases nearly-optimal, feature subsets. 

Experimental results 

We carried out an extensive empirical analysis in order to 
evaluate the effectiveness of ADHOC. We selected 14 
real-world datasets featuring different types of problem- 
atic features, i.e., interacting, redundant and irrelevant 
features in different measures. Some of the datasets were 
drawn from the U. C. Irvine Repository (Murphy & Aha 
1994), others from the StatLog Repository (Michie, Spie- 
ghalter, Jz Taylor 1994) and the COCOMO data set from 
(Bohem 1981). The experiments were carried out as fol- 
lows. Real-valued features were discretized using the al- 
gorithm described in (Richeldi dz Rossotto 1995) when 
necessary. The selection of the best number of data di- 
mensions was left to the algorithm. The second step of 
ADHOC was performed by running C4.5 as induction 
algorithm and using the pruned trees. As a consequence, 
C4.5 was also used as term of comparison for the accu- 
racy of the resulting feature subsets. To estimate the gen- 
eralization performance of feature subsets, lo-fold cross- 
validation was used. ADHOC was first run on the training 
data; then the test set was used to evaluate the perform- 
ance of the best feature subset learned by GA. The tables 
in this section report the average over the 10 runs. 

Table 1 shows that the performance of feature subsets 
discovered by ADHOC improves C4.5 on 11 out of 14 
domains. In particular, five times the improvement is 
significant at the 95% confidence level and twice at the 
90% confidence level. ADHOC’s performance is worse 
than C4.5’~ on the remaining three domains, in one of 
which, namely Segment, the degradation was significant 
at the 95% confidence level. Table 1 reports also the car- 
dinal@ of the output feature subsets. Lack of space makes 
it impossible to list the factors as were discovered by 
ADHOC in the data reduction step for each dataset. How- 
ever, we refer the interested reader to (Richeldi & Ros- 
sotto 1996) for a description of the results which were 
attained for two of the most interesting domains, namely 
German and COCOMO. 

A second empirical analysis was conducted to evaluate 
the performance of the data reduction algorithm that was 
introduced above, hereafter designated ADHOC-DR. The 
test was made by comparison with the performance of 
factor analysis (FA) and cluster analysis (CA) of features. 
Basically, we run ADHOC on the same domains em- 
ployed in the previous analysis two more times. The first 
step of ADHOC was modified to replace ADHOC-DR 
with FA and CA in turn. The second step of ADHOC was 
left unchanged, so that the discovered set of factors were 
used as starting point for the search of feature subsets 
carried out by the GA. Of course, since FA and CA cannot 
handle symbolic features, we had them to work on the 
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same input correlation matrix that was used to feed 
ADHOC-DR. This was the best way to make a fair com- 
parison among the three methods. Moreover, we run FA 
by using different factor extraction and rotation methods, 
then reporting the best performance result in case more 
alternative factor sets were discovered. 

Table 2 summarizes comparison results. It can be no- 
ticed that both FA and CA could not process 6 out of the 
14 datasets due to multicollinearity among the features. 
ADHOC-DR outperformed statistical data reduction 
techniques in all the remaining domains. The improve- 
ment was significant over the 95% confidence level in 3 
out of 8 domains. Further analysis showed that each of the 
three datasets is characterized by quadratic relationships 
among features which cannot be discovered by statistical 
methods based on linear models. These results support the 
claim that investigating higher-order correlation may well 
overcome some of the problem of statistical techniques 
devoted to data reduction. 
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Dataset c4.5 ADHOC 
%acc f 0 * %acc*o ** 

Anneal 95.6k1.6 19 95.oIk2.3 8 
Australian 84.2k4.0 14 86.7+_2.8 5 
Cocomo 73.8k21.2 18 77.2k21.8 7 
CRX 85.Ok4.0 15 85.1rtr6.1 7 

p-value 

0.292 
0.014 
0.420 
0.941 

Dataset 
Size 

798 
690 
63 
690 

Source 

UC1 
STATLOG 
BOHEM 
UC1 

Table 1. C4.5 and of ADHOC’s predictive accuracy on all the features and on the best feature subset, respectively. * column: no. of 
original features; ** column: size of the best feature subset. St. dev. given after the It sign. P-values computed using a two-tailed T test. 

Table 2. Percentage predictive accuracy of ADHOC, Factor Analysis and Cluster analysis. St. dev. given after the f sign. “No.Att” 
columns indicate the size of the best performing feature subsets. P-values were computed using a two-tailed T test. 
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