
Efficient Implementation of Data Cubes Via Materialized Views ”

Jeffrey D. Ullman

Department of Computer Science
Stanford University
Stanford CA 94305

ullman6cs. stanford.edu
http://db.stanford.edu/‘ullman

Abstract

Data cubes are specialized database management sys-
tems designed to support multidimensional data for
such purposes as decision support and data mining. For
a given mix of queries, we can optimize the implemen-
tation of a data cube by materializing some projections
of the cube. A greedy approach turns out to be very
effective; it is both polynomial-time as a function of the
number of possible views to materialize and guaranteed
to come close to the optimum choice of views. The work
reported here is a summary of results appearing in the
following two papers:

V. Harinarayan, A. Rajaraman, and J. D. Ullman,
“Implementing data cubes efficiently.” To appear
in 1996 SIGMOD. An extended version is avail-
able by anonymous ftp from db. stanford.edu as
pub/harinarayan/i995/cube.ps.

H. Gupta, V. Harinarayan, A. Rajaraman, and
J. D. Ullman, “Index selection for OLAP.” Avail-
able by anonymous ftp from db. stanford.edu as
pub/hgupta/i996/CubeIndex.ps.

Data Cubes

l Special-purpose DBMS for storing multidimension-
al data and handling queries that aggregate over
some dimensions.

Example 1: Consider information about sales at a
chain store. Dimensions might include day of sale, item
sold, store at which sold, color of item, etc. Figure 1
suggests a 4dimensional cube.

l One critical attribute represents the quantity to be
analyzed, e.g. dollar amount of sale.

Views

The natural choice of views to materialize is a subset of
the views of the form

Fig. 1. A 4-dimensional data cube.

SELECT <grouped attributes>,
SUM(tcritica1 attribute>)

FROM <the data cube relation>
GROUP BY <some attributes>

a That is, a view is a projection of the cube onto
some of its dimensions. Example:

Color

Queries
Item

Typically group by some dimensions, select particular
values for some other dimensions, and aggregate (sum
the critial attribute) over the other dimensions.

SELECT <grouped attributes>,
SUM(<critical attribute>)

FROM <the data cube relation>
WHERE <some attributes equated

to particular values>
GROUP BY <some other attributes>

386 Invited Papers

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

l Want to select the 3 views that most improve the
average query cost.

First Choice Second Choice Third Choice

b 50 x 5 = 250
c 25 x 5 = 125 25 x 2 = 50 25 x 1 = 25
d 80 x 2= 160 30 x 2 = 60 30 x 2 = 60
e 70 x 3= 210 20 x 3 = 60 20 + 20 + 10 = 50
f 60 x 2 = 120 60 + 10 = 70
g 99 x 1=99 49 x 1 = 49 49 x 1 = 49
h 90 x 1= 90 40 x 1 = 40 30 x 1 = 30

Analysis of Greedy Algorithm

Theorem (Harinarayan, Rajaraman, and Ullman): The
benefit of the greedy algorithm can never be less than
(e-1)/e = 0.63 t imes the benefit of the optimum choice
of materialized views.

Oddity: Frequently, after looking at the selection
made by the greedy algorithm, we can deduce a
much tighter bound. In particular, if either &11
chosen views contribute the same benefit, or the
last view chosen contributes negligible benefit, then
the greedy solution is optimal.

A similar proof of the 0.63 bound appears
in a different context by Cornujols, Fisher,
and Nemhauser, “Location of bank accounts to
optimize float,” Management Science 23, pp. 789-
810, 1977.

There is no tighter bound possible for the
greedy algorithm, in general. Figure 3 is a
counterexample.

A recent result of C. Chekuri shows that no
polynomial time whatsoever can have a worst-
case bound better than the 0.63 that the greedy
algorithm achieves.

More Complex W a rehouses
The reason greedy is so successful is that the benefit
function is monotone; that is, materializing a view never
increases the benefit of some other view.

l If the costs of queries and views are nonmonotone,
then greedy can be arbitrarily bad.

Views and Indexes

When queries involve specification of particular values
for some attributes, e.g., “give the total sales of red
items at the Des Moines store by month,” indexes on
materialized views can help. But there is no benefit to

‘(, ,;I

Optimum = 1

(k - 1)4/k5

(k - 1)3/k4

(k - 1)2/k3

(k - l)/k2

l/k

Greedy

Fig. 3. Why greedy cannot do better than 63%.

choosing an index without first choosing a view upon
which it is an index.

l Thus, if we treat views and indexes equally as
things to materialize, there is nonmonotonicity,
and greedy can be arbitrarily bad.

A Greedy Algorithm for Views and Indexes

For any view, its tail of indexes is chosen by greedily
adding one index at a time, until the benefit per unit
space of the view and the chosen indexes can no longer
be increased.

The full algorithm is to repeatedly choose either

1. An index for a previously selected view, or
2. A view plus its tail of indexes that has the

maximum benefit per unit space

until all available space is consumed.

Theorem (H. Gupta, V. Harinarayan, A. Rajaraman,
J. D. Ullman): The above algorithm runs in time
polynomial in the number of views and indexes and
never performs worse than 47% of the optimal solution.

l The actual constant is 1 - l/e0.63.

Acknowledgements
This work was supported by NSF grant IRI-92-23405,
AR0 grant DAAH04-95-1-0192, and USAF contract
F33615-93-1-1339.

388 Invited Papers

Example 2: The “shirts” plane of the Item-Color-
Store cube represents the query “‘list the sales of shirts
by color and store.”

f
Shirts

Color

Item

Relationship Between Queries and Views

Each query has a natural view from which it is most
easily answered. However, it can be answered from
views that group by more attributes; those views are
larger and require additional cost. Most extreme: the
raw data is a view (the top view) from which any query
can be answered at great cost.

A (Slightly) M ore General Model
The pure-or model of view definitions:

0 A collection of views (not necessarily projections of
a data cube).

+ Each view can be constructed from any
(perhaps none) of a set of “larger” views.

4 One view is the top view. It cannot be
constructed from any view, and all views can
be constructed from it.

l A collection of queries.

+ Each query has a weight, representing the
likelihood of its being asked.

0 For each query-view pair, there is a cost of
answering the query from that view (may be 00
if the view is unsuitable).

4 If query Q can be answered from view V, and
V can be constructed from view W, then Q
can be answered from W, and the cost is no
greater than the cost of constructing V from
W and then answering Q from V.

+ Each query can be answered from the top view
at some large, fixed cost.

Fig. 2. Lattice of views to materialize.

Relationship to Data Cube

l Views form a hypercube.

l A view can be constructed from any view “above,”
i.e., a view that groups on a superset of attributes.

0 A query has a natural “best” view, which groups
by the same set of attributes.

a But a query can be answered from any view above
its best view, at a cost equal to the size of that
view (or some fraction if the appropriate indexes
are available).

The Greedy Algorithm

a Assume the top view is materialed.

0 Select additional views to materialize, one at a
time, until some total cost of selected views is
reached.

l At each step, select that unmaterialized view with
the greatest benefit, i.e., the view that most reduces
the average cost of answering a query, per unit
space.

Example 2: In Fig. 2 is a lattice of views and their
query costs.

0 We shall assume that the queries each ask to see
one of these views.

a a is the top view, already assumed materialized.

a Simpl$$ng assumptions:

+ All views have unit cost of materialization.

4 All queries (= views) are equally likely.

Invited Papers 387

