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Abstract 

Data cubes are specialized database management sys- 
tems designed to support multidimensional data for 
such purposes as decision support and data mining. For 
a given mix of queries, we can optimize the implemen- 
tation of a data cube by materializing some projections 
of the cube. A greedy approach turns out to be very 
effective; it is both polynomial-time as a function of the 
number of possible views to materialize and guaranteed 
to come close to the optimum choice of views. The work 
reported here is a summary of results appearing in the 
following two papers: 

V. Harinarayan, A. Rajaraman, and J. D. Ullman, 
“Implementing data cubes efficiently.” To appear 
in 1996 SIGMOD. An extended version is avail- 
able by anonymous ftp from db. stanford.edu as 
pub/harinarayan/i995/cube.ps. 

H. Gupta, V. Harinarayan, A. Rajaraman, and 
J. D. Ullman, “Index selection for OLAP.” Avail- 
able by anonymous ftp from db. stanford.edu as 
pub/hgupta/i996/CubeIndex.ps. 

Data Cubes 

l Special-purpose DBMS for storing multidimension- 
al data and handling queries that aggregate over 
some dimensions. 

Example 1: Consider information about sales at a 
chain store. Dimensions might include day of sale, item 
sold, store at which sold, color of item, etc. Figure 1 
suggests a 4dimensional cube. 

l One critical attribute represents the quantity to be 
analyzed, e.g. dollar amount of sale. 

Views 

The natural choice of views to materialize is a subset of 
the views of the form 

Fig. 1. A 4-dimensional data cube. 

SELECT <grouped attributes>, 
SUM(tcritica1 attribute>) 

FROM <the data cube relation> 
GROUP BY <some attributes> 

a That is, a view is a projection of the cube onto 
some of its dimensions. Example: 

Color 

Queries 
Item 

Typically group by some dimensions, select particular 
values for some other dimensions, and aggregate (sum 
the critial attribute) over the other dimensions. 

SELECT <grouped attributes>, 
SUM(<critical attribute>) 

FROM <the data cube relation> 
WHERE <some attributes equated 

to particular values> 
GROUP BY <some other attributes> 
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l Want to select the 3 views that most improve the 
average query cost. 

First Choice Second Choice Third Choice 

b  50  x 5  = 250  
c 25  x 5  = 125  25  x 2  = 50  25  x 1  = 25  
d  80  x 2= 160  30  x 2  = 60  30  x 2  = 60  
e  70  x 3= 210  20  x 3  = 60  20  + 20  + 10  = 50  
f 60  x 2  = 120  60  + 10  = 70  
g  99  x 1=99 49  x 1  = 49  49  x 1  = 49  
h  90  x 1= 90  40  x 1  = 40  30  x 1  = 30  

Analysis of Greedy Algorithm 

Theorem (Harinarayan, Rajaraman, and Ullman): The 
benefit of the greedy algorithm can never be less than 
(e-1)/e = 0.63 t imes the benefit of the optimum choice 
of materialized views. 

Oddity: Frequently, after looking at the selection 
made by the greedy algorithm, we can deduce a 
much tighter bound. In particular, if either &11 
chosen views contribute the same benefit, or the 
last view chosen contributes negligible benefit, then 
the greedy solution is optimal. 

A similar proof of the 0.63 bound appears 
in a different context by Cornujols, Fisher, 
and Nemhauser, “Location of bank accounts to 
optimize float,” Management Science 23, pp. 789- 
810, 1977. 

There is no tighter bound possible for the 
greedy algorithm, in general. Figure 3 is a 
counterexample. 

A recent result of C. Chekuri shows that no 
polynomial time whatsoever can have a worst- 
case bound better than the 0.63 that the greedy 
algorithm achieves. 

More Complex W a rehouses 
The reason greedy is so successful is that the benefit 
function is monotone; that is, materializing a view never 
increases the benefit of some other view. 

l If the costs of queries and views are nonmonotone, 
then greedy can be arbitrarily bad. 

Views and Indexes 

When queries involve specification of particular values 
for some attributes, e.g., “give the total sales of red 
items at the Des Moines store by month,” indexes on 
materialized views can help. But there is no benefit to 
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Fig. 3. Why greedy cannot do better than 63%. 

choosing an index without first choosing a view upon 
which it is an index. 

l Thus, if we treat views and indexes equally as 
things to materialize, there is nonmonotonicity, 
and greedy can be arbitrarily bad. 

A Greedy Algorithm for Views and Indexes 

For any view, its tail of indexes is chosen by greedily 
adding one index at a time, until the benefit per unit 
space of the view and the chosen indexes can no longer 
be increased. 

The full algorithm is to repeatedly choose either 

1. An index for a previously selected view, or 
2. A view plus its tail of indexes that has the 

maximum benefit per unit space 

until all available space is consumed. 

Theorem (H. Gupta, V. Harinarayan, A. Rajaraman, 
J. D. Ullman): The above algorithm runs in time 
polynomial in the number of views and indexes and 
never performs worse than 47% of the optimal solution. 

l The actual constant is 1 - l/e0.63. 
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Example 2: The “shirts” plane of the Item-Color- 
Store cube represents the query “‘list the sales of shirts 
by color and store.” 

f 
Shirts 

Color 

Item 

Relationship Between Queries and Views 

Each query has a natural view from which it is most 
easily answered. However, it can be answered from 
views that group by more attributes; those views are 
larger and require additional cost. Most extreme: the 
raw data is a view (the top view) from which any query 
can be answered at great cost. 

A (Slightly) M ore General Model 
The pure-or model of view definitions: 

0 A collection of views (not necessarily projections of 
a data cube). 

+ Each view can be constructed from any 
(perhaps none) of a set of “larger” views. 

4 One view is the top view. It cannot be 
constructed from any view, and all views can 
be constructed from it. 

l A collection of queries. 

+ Each query has a weight, representing the 
likelihood of its being asked. 

0 For each query-view pair, there is a cost of 
answering the query from that view (may be 00 
if the view is unsuitable). 

4 If query Q can be answered from view V, and 
V can be constructed from view W, then Q 
can be answered from W, and the cost is no 
greater than the cost of constructing V from 
W and then answering Q from V. 

+ Each query can be answered from the top view 
at some large, fixed cost. 

Fig. 2. Lattice of views to materialize. 

Relationship to Data Cube 

l Views form a hypercube. 

l A view can be constructed from any view “above,” 
i.e., a view that groups on a superset of attributes. 

0 A query has a natural “best” view, which groups 
by the same set of attributes. 

a But a query can be answered from any view above 
its best view, at a cost equal to the size of that 
view (or some fraction if the appropriate indexes 
are available). 

The Greedy Algorithm 

a Assume the top view is materialed. 

0 Select additional views to materialize, one at a 
time, until some total cost of selected views is 
reached. 

l At each step, select that unmaterialized view with 
the greatest benefit, i.e., the view that most reduces 
the average cost of answering a query, per unit 
space. 

Example 2: In Fig. 2 is a lattice of views and their 
query costs. 

0 We shall assume that the queries each ask to see 
one of these views. 

a a is the top view, already assumed materialized. 

a Simpl$$ng assumptions: 

+ All views have unit cost of materialization. 

4 All queries (= views) are equally likely. 
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