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Abstract’ 
Several clustering algorithms have been proposed for class 
identification in spatial databases such as earth observation 
databases. The effectivity of the well-known algorithms such 
as DBSCAN, however, is somewhat limited because they do 
not fully exploit the richness of the different types of data con- 
tained in a spatial database. In this paper, we introduce the 
concept of density-connected sets and present a significantly 
generalized version of DBSCAN. The major properties of this 
algorithm are as follows: (1) any symmetric predicate can be 
used to define the neighborhood of an object allowing a nat- 
ural definition in the case of spatially extended objects such 
as polygons, and (2) the cardinality function for a set of neigh- 
boring objects may take into account the non-spatial attributes 
of the objects as a means of assigning application specific 
weights. Density-connected sets can be used as a basis to dis- 
cover trends in a spatial database. We define trends in spatial 
databases and show how to apply the generalized DBSCAN 
algorithm for the task of discovering such knowledge. To 
demonstrate the practical impact of our approach, we per- 
formed experiments on a geographical information system on 
Bavaria which is representative for a broad class of spatial da- 
tabases. 
Keywords: Clustering Algorithms, Spatial and non-spatial 
data, Trend Detection, Application to Geographic Informa- 
tion Systems. 

1. Introduction 
Increasingly large amounts of data obtained from satellite 
images, X-ray crystallography or other automatic equipment 
are stored in databases. Therefore, automated knowledge 
discovery becomes more and more important in databases. 
Knowledge discovery in databases (KDD) can be defined as 
the non-trivial process of identifying valid, novel, potential- 
ly useful, and ultimately understandable patterns in data. 
Data mining is a step in the KDD process consisting of the 
application of data analysis and discovery algorithms that, 
under acceptable computational efficiency limitations, pro- 
duce a particular enumeration of patterns over the data 
(Fayyad,Piatetsky-Shapiro & Smyth 1996). 

Spatial Database Systems (SOBS) (Gueting 1994) are da- 
tabase systems for the management of spatial data. Spatial 
data are data related to space, e.g. a part of the 2D surface of 
the earth. While a lot of research has been conducted on 
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knowledge discovery and data mining in relational databas- 
es in the last few years, only a few methods for knowledge 
discovery in spatial databases have been proposed in the lit- 
erature. 

Lu, Han & Ooi (1993) propose a generalization-based 
method to extract high-level relationships between spatial 
and non-spatial data stored in a spatial database. Koperski & 
Han (1995) present an algorithm to discover spatial associa- 
tion rules of the form X + Y (c%), where X and Y are sets 
of spatial or non-spatial predicates and c is the confidence of 
the rule. The implementation of the algorithm is based on the 
spatial join which is one of the basic operations in SDBS . 

Recently, several clustering methods have been devel- 
oped for the application on spatial databases (Ng & Han 
1994) (Ester, Kriegel & Xu 1995) (Ester et al. 1996) (Zhang, 
Ramakrishnan & Linvy 1996). All these methods are de- 
signed for point objects, i.e. objects without extension. In a 
spatial database, however, objects are usually spatially ex- 
tended with one or more non-spatial attributes. For example, 
objects in a geographic information system (GIS) may be 
polygons which represent, e.g., communities or lakes with 
non-spatial attributes like name, average income, number of 
houses in the area, etc. One can use all the clustering meth- 
ods mentioned above to cluster general spatial objects by 
transforming them to points in some feature space. Howev- 
er, some spatial relationships between them will be lost. If 
clustering in the original or in the transformed space, it is 
difficult to find a natural definition for the distance of gener- 
al spatial objects if their non-spatial attributes should be con- 
sidered. 

The clusters detected by any algorithm can be used as in- 
put for other KDD tasks. Knot-r & Ng (1996) study the prox- 
imity relationships between clusters of points and polygonal 
objects in a spatial database. For a given cluster of points, 
they give an algorithm which can efficiently find the “top-k” 
polygons that are “closest” to the cluster. For n given clus- 
ters of points, an algorithm is presented which can find com- 
mon polygons or classes of polygons that are nearest to 
most, if not all, of the clusters. 

In this paper, we use clustering as a basic operation for 
KDD in spatial databases. E.g., one may be interested in dis- 
covering trends of some non-spatial attribute for all spatial 
objects in neighboring regions. We present the algorithm 
GDBSCAN which is a generalized version of DBSCAN 
(Ester et al. 1996) and can cluster general spatial objects ac- 
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cording to both spatial and non-spatial attributes. To demon- 
strate the applicability as a basic operation for data mining, 
we use GDBSCN to find interesting regions for trend detec- 
tion in a geographic database. 

The rest of the paper is organized as follows. We present 
the notion of density-connected sets and an algorithm to de- 
tect them in section 2. Section 3 discusses the task of trend 
detection in a geographic database and shows how to use 
GDBSCAN as a basic operation. Section 4 concludes with a 
summary and some directions for future research. 

2. Density-Connected Sets in Spatial Databases 
In the following, we introduce the notion of “density-con- 
nected sets” which is a significant generalization of the no- 
tion of “clusters” as presented in (Ester et al. 1996). We as- 
sume a spatial database D to be a finite set of objects 
characterized by spatial and non-spatial attributes. The spa- 
tial attributes may represent, e.g., points or spatially extend- 
ed objects such as polygons in some d-dimensional space S. 
The non-spatial attributes of an object in D may represent 
additional properties of a spatial object, e.g., the unemploy- 
ment rate for a community represented by a polygon in a 
geographic information system. 

The key idea of a density-based cluster is that for each 
point of a cluster its &-neighborhood for some given E > 0 
has to contain at least a minimum number of points, i.e. the 
“density” in the &-neighborhood of points has to exceed 
some threshold. This idea of “density” can be generalized in 
two important ways. First, we can use any notion of a neigh- 
borhood of an object if the definition of the neighborhood is 
based on a binary predicate which is symmetric and reflex- 
ive. Second, instead of simply counting the objects in a 
neighborhood of an object we can as well use other measures 
to define the “cardinality” of that neighborhood. 

Definition 1. (neighborhood of an object) Let NPred be a 
binary predicate on D which is reflexive and symmetric, i.e., 
for all p, 4 E D: NPred(p, p) and, if NPred(p, q) then 
NPred(q, p). Then the NPred-neighborhood of an object 
o E D is defined as NNpred(o) = (0’ E DI NPred(o, o’)}. 

The definition of a cluster in (Ester et al. 1996) is restricted to 
the special case of a distance based neighborhood, i.e., NE(o) = 
{o’ E DI the distance between o and o’ is less than or equal 
to E) , A distance based neighborhood is a natural notion of a 
neighborhood for point objects, but it is not clear how to ap- 
ply it for the clustering of spatially extended objects such as 
a set of polygons of largely differing sizes. Neighborhood 
predicates like intersects or meets are more appropriate for 
finding clusters of polygons, i.e. density-connected sets of 
polygons, in many cases. 

Although in many applications the neighborhood predi- 
cate will be defined using only spatial properties of the ob- 
jects, the formalism is in no way restricted to purely spatial 
neighborhoods, We can as well use non-spatial attributes 
and combine them with spatial properties of objects to de- 
rive a neighborhood predicate. Suppose, we have a database 
of polygons representing communities in a country with the 
non-spatial attribute “unemployment rate” taking values 

“very low”, “low”, “medium”, “high”, “very high”. Then, 
we can define that o is a neighbor of a’ if and only if poly- 
gon(o) intersects polygon(o’) and the unemployment rate of 
0 is equal to the unemployment rate of 0’. 

Another way to take into account the non-spatial at- 
tributes of objects is as a kind of “weight” when calculating 
the “cardinality” of the neighborhood of an object. To keep 
things as simple as possible, we will not introduce a weight 
function operating on objects, but a weighted cardinal@ 
function wCard for sets of objects. The “weight” of a single 
object o can then be expressed by the weighted cardinality of 
the singleton containing o, i.e. wCard(( 0)). This particular 
generalization of the parameter MinPts in the algorithm DB- 
SCAN and some example applications on databases con- 
taining point objects can also be found in (Sander et al. 
1997). 

Definition 2. (MinWeight of a set of objects) Let wCard 
be a function from the powerset of the Database D into the 
non-negative Real Numbers, wCard: 2D G= 3” and 
MinCard be a positive real number. Then, the predicate 
MinWeight for sets of objects S is defined to be true iff 
wCard(S) 2 MinCard. 

There are numerous possibilities to define wCard(s) for 
subsets of the database D. A special wCard function, called 
the “default weighted cardinality” is the common cardinality 
from set theory (i.e. the number of objects in subsets of the 
database). Simply summing up the values of some non-spa- 
tial attribute for the objects in S is another example of a 
wCard function. E.g., if we want to cluster objects represent- 
ed by polygons and if the size of the objects should be con- 
sidered to influence the “density” in the data space, then the 
area of the polygons could be used as a weight for objects. A 
further possibility is to sum up a value derived from several 
non-spatial attributes, e.g. by specifying ranges for some 
non-spatial attribute values of the objects (i.e. a selection 
condition), we can realize the clustering of only a subset of 
the database D by attaching a weight of 1 to objects that sat- 
isfy the selection condition and a weight of 0 to all other ob- 
jects. Note that using non-spatial attributes as a weight for 
objects one can “induce” different densities, even if the ob- 
jects are equally distributed in the space of the spatial at- 
tributes. Note also that by means of the wCard function the 
combination of a clustering with a selection on the database 
is possible, allowing a tight integration of the generalized 
DBSCAN algorithm with a SDBMS. 

We can now define density-connected sets, analogously 
to the definition of density-based clusters in (Ester et al. 
1996), in a straightforward way. 

Definition 3. (directly density-reachable) An object p is 
directly density-reachablt from an object q wrt. NPred, 
MinWeight if 
1) P E NNpred(q) and 
2) MinWeight(NNp,,dq)) = true (core object condition). 

Definition 4: (density-reachable) An object p is density- 
reachable from an object q wrt. NPred, MinWeight if there is 
a chain of objects ~1, . . . . pn, p1 = q, pn = p such that pi+1 is 
directly density-reachable from Pi wrt. NPred, Min Weight. 
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Definition 5: (density-connected) An object p is density- 
connected to an object q wrt. NPred, Min Weight if there is an 
object o such that both, p and q are density-reachable from o 
wrt. NPred, MinWeight. 

Density-reachability is a canonical extension of direct 
density-reachability. Density-reachability is transitive, but it 
is not symmetric. Figure 1 depicts the relations density- 
reachability and density-connectivity on a sample database 
of 2D points using a distance based neighborhood for the 
points and the default weighted cardinality. Although not 
symmetric in general, an important property of density- 
reachability is that it is symmetric for core objects. This 
holds because a chain from q top can be “reversed” if also p 
is a core object since we require the neighborhood predicate 
to be reflexive and symmetric. Density-connectivity is a 
symmetric relation. For density-reachable objects, the rela- 
tion of density-connectivity is also reflexive. 

and q density- 
onoected to 
ach other by o 

l . . 

figure 1: Density-reachability and density-connectivity 

Definition 6: (density-connected set) A density-connect- 
ed set C wrt. NPred, MinWeight in D is a non-empty subset 
of D satisfying the following conditions: 
1) Maximality:V p, q E D: if p E C and q is density-reach- 
able from p wrt. NPred, Min Weight, then q E C. 
2) Connectivity: Vp,q E C: p is density-connected to q wrt. 
NPred, Min Weight. 

We can now define a clustering CL of a database D wrt. 
NPred, MinWeight based on density-connected sets as the 
set of all density-connected sets wrt. NPred, MinWeight in 
D, i.e. all clusters from a clustering CL are density-connect- 
ed sets with regard to the same “parameters” NPred and 
MinWeight. Noise will then be defined relative to a given 
clustering CL of D, simply as the set of objects in D not be- 
longing to any of the clusters of CL. 

Definition 7: (clustering) A clustering CL of D wrt. 
NPred, MinWeight is a set of density-connected sets wrt. 
NPred, MinWeight in D, CL = (Cl ,. . ., C,}, such that for all 
C: if C is a density-connected set wrt. NPred, MinWeight in 
D, then C E CL. 

Definition 8: (noise) Let CL={ C1 ,. . .,Ck} be a clustering 
of the database D wrt. NPred, MinWeight. Then we define 
the noise in D as the set of objects in the database D not be- 
longing to any density-connected set Ci ,i.e. 
noisec- = D \ (Cl u . . . u ck). 

The algorithm DBSCAN presented in (Ester et al. 1996) is 
based on two lemmata which can also be proven for the gen- 
eralized notion of a cluster, i.e. a density-connected set. In 
the current context they state the following. Given the pa- 
rameters NPred and MinWeight, we can discover a density- 

connected set in a two-step approach. First, choose an arbi- 
trary object from the database satisfying the core object con- 
dition as a seed. Second, retrieve all objects that are density- 
reachable from the seed obtaining the density-connected set 
containing the seed. Furthermore, a density-connected set C 
wrt. NPred, MinWeight is uniquely determined by any of its 
core objects, i.e., each object in C is density-reachable from 
any of the core objects of C and, therefore, a density-con- 
nected set C contains exactly the objects which are density- 
reachable from an arbitrary core object of C. 

Lemma 1: Let p be an object in D and Min- 
Weight(NNp,,&)) = true. Then the set 
0 = {o E D I o is density-reachable from p wrt. NPred, Min- 
Weight} is a density-connected set wrt. NPred, MinWeight. 

Proof: 1) 0 is non-empty: p is a core object by assump- 
tion. Thereforep is density-reachable fromp. Thenp is in 0. 
2) Maximality: Let qI E 0 and q2 be density-reachable from 
ql wrt. NPred, MinWeight. Since q1 is density-reachable 
from p and density-reachability is transitive wrt. NPred, 
MinWeight, it follows that also q2 is density-reachable from 
p wrt. Eps, MinWeight. Hence, q2 E 0.3) Connectivity: All 
objects in 0 are density-connected via objectp. 0 

Lemma 2: Let C be a density-connected set wrt. NPred, 
MinWeight and let p be any object in C with Min- 
Weight(NNp&p)) = true. Then C equals to the set 0 = {o 
E D I o is density-reachable from p wrt. NPred, Min Weight}. 

Proof: 1) 0 C C by definition of 0.2) C C 0: Let q E C, 
Since also p E C and C is a density-connected set, there is 
an object o E C such that p and q are density-connected via 
o, i.e. both p and q me density-reachable from o. Because 
bothp and o are core objects, it follows that also o is density- 
reachable from p (symmetry for core objects). With transi- 
tivity of density-reachability wrt. NPred, MinWeight it fol- 
lows that q is density-reachable fromp. Then q E 0. D 

Since we have proven that density-connected sets in their 
most general form have the same properties as density-based 
clusters, as far as the procedure for finding them is con- 
cerned, we can use the same algorithmic schema to detect 
both. 

Note that GDBSCAN is similar to a simple form of region 
growing. Note also, that there are special instances of the 
schema GDBSCAN in which density connected sets are in 
fact clusters in a very common sense: if the default weighted 
cardinality is used, MinWeight set to 2, and an E-neighbor- 
hood is used for NPred where E corresponds to an NN-dis- 
tance, then a clustering wrt. NPred, MinWeight is equivalent 
to the level in the single-link hierarchy (Sibson 1973) deter- 
mined by the “critical distance” Dmin = E if the points p in 
the set noisecL are considered as a single cluster as well. 
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Ugoritbm GDBSCAN (Generalized DBSCAN) 
I Precondition: All objects in D are unclassified. 
TORALL objects o in D DO: 

IF o is unclassified and wCard(NNpred({ 0))) > 0 
call function expand-cluster to construct a density- 
connected set wrt. NPred, MinWeight containing o. 

;uNCTION expand_cZuster: 
etrieve the neighborhood of o wrt. NPred, A&Weight; 
F Min Weight(NNpred(o)) = false 

//i.e. o is not a core object 
mark o as noise and RETURN; 

3LSE // i.e. o is a core object 
select a new cluster-id and mark all objects in NNPred(o) 
with this current cluster-id; 
push all objects from NNpre o o on 
WHILE NOT seeds.empty(fDE’ ’ to the stack seeds 

currentObject := seeds.top(); 
retrieve the neighborhood of currentObject, 
//i.e. N,,,,&urrentObject); 
IF MinWeight(NNPred(currentObject)) = true 

select all objects in NNp,d(currentObject) 
which are not yet classified or are marked as 
noise,push the unclassified objects onto seeds 
and mark all of these objects with current cluster-id 

seeds.pop(); 
=TURN 

In (Ester et al. 1996) we argued that the good efficiency of 
DBSCAN is due to the fact that DBSCAN uses spatial ac- 
cess methods such as R*-trees, which efficiently support 
range queries to extract the &-neighborhood of a pointp. For 
small query regions the runtime complexity of a region que- 
ry using R*-trees is O(log n), Since the regions used for DB- 
SCAN are assumed to be very small compared to the size of 
the dataspace, we have in general an overall runtime com- 
plexity of O(n log n) where n is the number of points in the 
database.This analysis was confirmed by the experiments on 
real datasets reported in (Ester et al. 1996). 

In the case of polygonal objects, spatial access methods 
can also be used to support efficient computation of the 
neighborhood of a polygon for some neighborhood predi- 
cate based on a topological relation like intersects. But be- 
cause we cannot store polygons directly in such a spatial ac- 
cess structure, we have to use a multi-step filter-refinement 
procedure for the computation of the neighborhood 
(Brinkhoff et al. 1994). A further filter step becomes neces- 
sary if the neighborhood predicate NPred is defined as a 
combination of spatial and non-spatial attributes. The multi- 
step approach to spatial query proccessing for databases 
containing extended spatial objects also scales well with the 
size of the database (Brinkhoff et al. 1994). 

3. Finding Interesting Regions for Trend 
Detection in a Geographic Information System 

A geographic information system is an information system 
to manage data representing aspects of the surface of the 
earth together with relevant facilities such as roads or hous- 
es. In this section, we introduce a geographic database (Ba- 
varia database) providing spatial and non-spatial informa- 
tion on Bavaria with its administrative units such as 
communities, its natural facilities such as the mountains and 
its infrastructure such as roads. The database contains the 
ATKIS 500 data (Atkis 1996) and the Bavarian part of the 
statistical data obtained by the German census of 1987. We 
use the SAND (Spatial And Non-spatial Database) architec- 
ture (Aref & Samet 1991): the spatial extension of all objects 
(e.g. polygons and lines) is stored and manipulated using an 
R*-tree (Brinkhoff et al. 1990), the non-spatial attributes of 
the communities (54 different attributes such as the rate of 
unemployment and the average income) are managed by a 
relational database management system. 

The Bavaria database may be used, e.g., by economic ge- 
ographers to discover different types of knowledge. In the 
following, we discuss the tasks of spatial classification and 
spatial trend detection. 

Spatial classification should discover rules predicting the 
class membership of some object based on the spatial and 
non-spatial attributes of the object and its neighbors. The ob- 
ject may also be a density-connected set of objects, e.g. an 
agglomeration of several close cities, and the following spa- 
tial classification rule may be discovered: 

if there is some agglomeration of cities, 
then this agglomeration neighbors a highway 
(confidence 75%) 

A trend has been defined as a temporal pattern in some 
time series data such as network alarms or occurrences of re- 
current illnesses (Berndt & Clifford 1996), e.g. “rising inter- 
est rates”. We define a spatial trend as a pattern of systemat- 
ic change of one or several non-spatial attributes in 2D or 3D 
space. 

To discover spatial trends of the economic power, an eco- 
nomic geographer may proceed as follows. Some non-spa- 
tial attribute such as the rate of unemployment is chosen as 
an indicator of the economic power. In a first step, areas with 
a locally minimal rate of unemployment are determined 
which are called centers, e.g. the city of Munich. The theory 
of central places (Christaller 1968) claims that the attributes 
of such centers influence the attributes of their neighbor- 
hood to a degree which decreases with increasing distance. 
E.g., in general it is easy to commute from some community 
to a close by center thus implying a low rate of unemploy- 
ment in this community. In a second step, the theoretical 
trend of the rate of unemployment in the neighborhood of 
thecentersiscalculated,e.g. 

when moving away from Munich, 
the rate of unemployment increases 
(confidence 86%) 
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In a third step, deviations from the theoretical trends are significantly differ in length, then the longer one is returned 
discovered, e.g. indicating the direction of a deviation. 

when moving away from Munich in south-west 
direction, 
then the rate of unemployment is stable 
(confidence 97%) 

The goal of the fourth step is to explain these deviations. 
E.g. if some community is relatively far away from a center, 
but is well connected to it by train, the rate of unemployment 
in this community is not as high as theoretically expected. 

GDBSCAN can be used to extract the influence regions 
from an SDBS. We define NPred as “intersect(X,Y) A attr- 
class(X) = am-class(Y)” and use the default cardinality. Fur- 
thermore, we set MinCard to 2 in order to exclude sets of less 
than 2 objects. Figure 3 depicts the influence regions in the 
Bavaria database wrt. high average income detected by 
GDBSCAN some of which are discussed in the following. , 

We conjecture that this process of trend detection is rele- 
vant not only for economic geography but also for a broader 
class of applications of geographic information systems, e.g. 
for environmental studies. The steps are summarized as fol- 
lows and are illustrated by figure 2: 

(1) 

(2) 

(3) 

(4) 

discover centers 
i.e. local extrema of some non-spatial attribute(s) 
determine the trend of some non-spatial attribute(s) 
when moving away from the centers (theoretical as 
well as observed trend) 
discover deviations 
of the observed trend from the theoretical trend 
explain the deviations 
by other spatial objects (e.g. by some infrastructure) 
in that area and direction. 

- - theoretical 
- observed 

n 

figure 2: The steps of trend detection in a geographic 
information system 

In the following, we present a simple method for detecting 
spatial trends based on GDBSCAN. GDBSCAN is used to 
extract density-connected sets of neighboring objects having 
a similar value of the non-spatial attribute(s). In order to de- 
fine the similarity on an attribute, we partition its domain 
into a number of disjoint classes and consider the values in 
the same class as similar to each other. The sets with the 
highest or lowest attribute value(s) are most interesting and 
are called influence regions, i.e. the maximal neighborhood 
of a center having a similar value in the non-spatial at- 
tribute(s) as the center itself. Then, the resulting influence 
region is compared to the circular region representing the 
theoretical trend to obtain a possible deviation. Different 
methods may be used to accomplish this comparison, e.g. 
difference-based or approximation-based methods. A di#er- 
ewe-based method calculates the difference of both, the ob- 
served influence region and the theoretical circular region, 
thus returning some region indicating the location of a possi- 
ble deviation (see figure 2). An approximation-based meth- 
od calculates the optimal approximating ellipsoid of the ob- 
served influence region. If the two main axes of the ellipsoid 

figure 3: Influence regions wrt. average income extracted 
from the Bavaria database 

The influence region of Nurnberg is circle-shaped show- 
ing no significant deviation. The influence region of Ingol- 
stadt is elongated indicating a deviation in west-east direc- 
tion caused by the river Danube traversing Ingolstadt in this 
direction. Figure 4 shows the approximating ellipsoid to- 
gether with the significantly longer main axis in west-east 
direction. 

The influence region of Munich has four significant devi- 
ations from the theoretical region (in the NE, SW, S and SE). 
Figure 5 illustrates the difference between the observed in- 
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fluence region and the theoretical circular region. These ar- 
eas coincide with the highways originating from Munich. 

the theoretical influence region of Munich “?? $ 
4’ $ 

4. Conclusions 

In this paper, we presented the algorithm GDBSCAN which 
is a generalized version of DBSCAN (Ester et al. 1996) to 
cluster spatial objects considering both spatial and non-spa- 
tial attributes. GDBSCAN can use any notion of a neighbor- 
hood of an object provided that the definition of the neigh- 
borhood is based on a binary predicate which is symmetric 
and reflexive. Instead of the set theoretic cardinality of the 
neighborhood of an object it can use measures for the “cardi- 
nality” of that neighborhood taking into account the non- 
spatial attributes. 

Furthermore, we used GDBSCN to find interesting regions 
for trend detection in a geographic database on Bavaria. A 
spatial trend was defined as a pattern of systematic change of 
one or several non-spatial attributes in 2D or 3D space. We 
discussed how the discovered knowledge can be useful for 
economic geographers. 

In the future, we will investigate the use of density-con- 
nected sets for other KDD tasks such as classification as in- 
dicated in section 3. It is also interesting to explore methods 
for discovering correlations between density-connected sets 
detected in the same database using different non-spatial at- 
tributes. 
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