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Abstract 
The main aim of this paper is to suggest multi-criteria based 
metrics that can be used as comparators for an objective 
evaluation of data mining algorithms @M-algorithms). 
Each DM-algorithm is characterized, generally, by some 
positive and negative properties, when it is applied to 
certain domains. Examples of properties are the accuracy 
rate, understandability, interpretability of the generated 
results and stability. Space and time complexity and 
maintenance costs can be considered as negative properties. 
By now there is no methodology to consider all of these 
properties, simultaneously, and use them for a 
comprehensive evaluation of DM-algorithms. Most of 
available studies in literature use only the accuracy rate as a 
unique criterion to compare the performance of DM- 
algorithms and ignore the other properties. Our suggested 
approach, however, can take into account all available 
positive and negative characteristics of DM-algorithms and 
can combine them to construct a unique evaluation metric. 
This new approach is based on DEA (Data Envelopment 
Analysis). We have applied this approach to evaluate 23 
DM-algorithms in 22 domains. The results are analyzed and 
compared with the results of alternative approaches. 

Introduction 
Knowledge Discovery in Databases (KDD) is a process 
that aims at finding valid, useful, novel and understandable 
patterns in data (Fayyad et al. 1996). The core of this 
process consists of the application of various Data Mining 
algorithms (DM-algorithms) based on statistical 
approaches, Machine Learning, Neural Networks etc. One 
of the essential issues in both the development and 
application phases of DM-algorithms is, however, the lack 
of objective metrics making a fair evaluation of the 
algorithms possible. In our opinion: 
1. Such metrics, on one hand, should take into account not 

only positive properties (advantages) but also negative 
characteristics (disadvantages) of DM-algorithms. Only 
in this case is a fair evaluation possible. In buying a car 
e.g. people consider not only positive points like safety, 
comfort, quality and after sales service, but also the 
negative points like high price, high fuel consumption, 
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high repair cost, environmental issues etc. We appeal for 
consistency in applying the same philosophy in the 
evaluation of DM-algorithms. 

2. On the other hand, a fast and comprehensive evaluation 
of various algorithms is then possible, when a unique 
metric is available that can reflect objectivity and not in 
ad-hoc manner all known positive and negative 
properties of algorithms. In the above mentioned 
example, it would be a significant help for car buyers, if 
they can use a unique metric to conclude that car A is 
superior to car B, considering all known positive and 
negative properties of the cars. 

The main aim of this paper is that to suggest metrics for 
the evaluation of Data Mining algorithms that cover both 
points 1 and 2 above. The rest of the paper is organized as 
follows: In section 2, we critically review the available 
evaluation criteria in the literature and discuss the need for 
developing multi-criteria based evaluation metrics 
reflecting all the available positive and negative properties 
of DM-algorithms. In section 3, we suggest a new 
evaluation approach based on the concept of Data 
Envelopment Analysis (DEA) that, in our opinion, covers 
both requirements 1 and 2. In section 4, we use this 
approach and evaluate the algorithms that have been ~.-~.-I-.-, :.. ,.L- .---12-A E&^&.I ^- ,x2:_,-:- -L mvOlveu m inns: proJeLl 3~ar~uy (1~11~1110 eL al. i994j. Tiie 
last section is devoted to discussions, conclusions and 
suggestions for further research. 

Available Evaluation Criteria 
The definition of the KDD-process given by Fayyad et al. 
(1996) considers a lot of positive properties for the patterns 
one obtains at the end of a KDD-Process. The patterns 
should be new, valid, understandable and usable. This 
leads to definition of interest@gness (see also Hausdorf 
and Miiller 1996, Silberschatz and Tuzhilin 1995). Such 
characteristics can be used for the evaluation of DM- 
algorithms which are used to obtain the patterns. For 
example, algorithm A would be superior to algorithm B if 
it leads to more understandable or more valid patterns. If 
such characteristics can be described in a measurable 
metric then they can be used for an objective evaluation of 
DM-algorithms. 
One important problem in dealing with such properties is 
that by now most of them are not measurable. For 
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example, novelty or usefulness are only subjective and can 
not be measured. In dealing with complexity one can argue 
that the number and the length of the extracted rules might 
be a measure for complexity (see also Klinkenberg and 
Clair 1996). This argument is, however, only valid, if one 
compares two or more rule based DM-algorithms. This 
approach can not be used to compare a rule-based 
algorithm e.g. CN2 (Clark and Niblett 1989) with an 
algorithm based on linear discrimination or neural 
networks. Measuring of understandability or 
interpretability is more difficult because in this case the 
domain-specific background knowledge should be 
available. Only in the light of this background expertise 
can the results be interpreted (Bratko 1995). 
Specifically dealing with validity in one dimension there 
are, however, reasonable criteria like predictive accuracy 
rate, the cost of misclassification (Knoll et al. 1993), 
robustness (Hsu et al. 1995), generalization and domain 
coverage (Klinkenberg and Clair 1996) and stability 
(Tumey 1995) that can be used as objective measurable 
metrics to evaluate DM-algorithms’. Such criteria are 
applicable, however, only to the DM-algorithms based on 
supervised learning. In the case of unsupervised learning, 
it is not easy to measure the validity (see for example the 
discussion on vaiidity of ciuster anaiysis aigoritlnms in 
Gordon 1996). 
As already mentioned, to perform a fair comparison of the 
alternative DM-algorithms, one should take into account 
not only positive but also negative properties. To negative 
properties belong e.g. high complexity, high cost of 
misclassification, high training and testing time, high 
inference time and high maintenance costs. It is true that in 
some available contributions in the literature the authors 
measure such negative properties as well and discuss them 
(see Michie et al. 1994, Klinkenberg and Clair 1996) but 
by now there is no comprehensive metric available for 
evaluation of DM-algorithms reflecting all known positive 
and negative properties of such algorithms, when they are 
applied to different domains. 
In the next section we introduce a multi-criteria based 
metric that overcomes this shortcoming and can be used 
for an objective ranking of alternative DM-algorithms. Our 
approach uses the DEA concept developed originally by 
Operations Research Community to measure technical 
efficiency. 

’ It should be mentioned that in some cases is necessary to define 
standards. For example we need to standardize what is meant by 
max. memory. A linear discrimination algorithm (LDA) as 
implemented in SAS may need different memory as LDA 
impiemenieci by SPSS, though the accuracy rate wili be identicai. 
This idea was suggested during a useful discussion with Charles 
Taylor. 

DEA-Based Evaluation Metrics 

Main Idea 
The main idea of DEA is due to Chames et al. (1978). 
More recently, however, it has been further developed in 
different directions and applied to different domains (see 
Emrouznejad et al. 1996, for a comprehensive 
bibliography on DEA). It is not the aim of this paper to 
discuss the different versions of DEA. Our aim is to 
discuss the main idea and to explain how this idea can be 
used to develop evaluation metrics for ranking alternative 
DM-algorithms. 
Originally, DEA tries to develop a ranking system for 
Decision Making Units (DMUs). In our case, each DMU is 
a DM-algorithm. In DEA terminology, positive properties 
are called output components and negative properties input 
components. In our terminology, a typical example for an 
output component is the accuracy rate produced by a 
supervised DM-algorithm. A typical input component is 
the computation time that the DM-algorithm needs for 
training. Generally, output components are all components 
where higher values are better and input components are 
those where lower values are better. Using these 
components, we can now define the eficiency of a DM- 
algorithm as follows: 

eflciency = 
c weighted output components 
c weighted input components 

As the above relation shows, the definition of efficiency 
covers all positive and negative characteristics of a DM- 
algorithm and efficiency in this form can be regarded as a 
multi-criteria based metric that can be used for the 
evaluation of DM-algorithms. In our opinion, efficiency as 
defined above is more general as interestingness defined 
by Fayyad et al. (1996) that covers only the positive 
properties of DM-algorithms. Due to the fact that the 
values of input and output components are given, only the 
values of the weights are necessary to determine the value 
of efficiency. Precisely in this point, namely in 
determining the weights, DEA differs from the alternative 
approaches, for example, from the point awarding method. 
By using point awarding, one can award to the accuracy 
rate (which is a positive property for DM-algorithms) a 
certain number of points, say 10, to each percentage 
accuracy rate which exceeds a threshold value (e.g. the 
accuracy rate of the naive predictor). This means that if the 
accuracy rate is three percent better than the naive 
nt-rvli,-tnr thnn the ~llrnrithm will he arrrmv-brl ‘VI nnintr y~“~“c”’ .n1v11 CIl” U’~““~““’ 1.111 “V u..-uvu J” y”‘.‘C”. 

Awarding negative properties (e.g. time consume or space 
complexity) is done in the same way. The total achieved 
Score of each DM-algorithm is determined by summing the 
points across different attributes. Such scores can be used 
now for ranking the DM-algorithms, the higher the score 
the higher the rank. This approach suffers, however, from 
some drawbacks. Specifically, it suffers from the 
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subjective opinion of decision makers who determine the 
required awarded points. It might be e.g. that an attribute 
with the same importance is awarded different points. 
In many cases, it is very difficult or impossible to award or 
calculate objective weights. If the weights are the 
corresponding prices of a unit of each input and output 
component (this would be a natural way to determine the 
values of input and output and calculate the efficiency), 
then who can say e.g. how much cost a unit of the 
accuracy rate or a unit of the rule complexity? Normally, 
such mice< are unknown. L-.--mr---mL .-- _.----__ ..--. 
DEA evades the ad-hoc judgments described above. In 
DEA the awarded points (weights) are determined for each 
DM-algorithm individually during the computation by 
maximizing the efficiency in the following way. Suppose 
that we are evaluating n algorithms with p input and q 
output components and for the algorithm k let: 

kx = amount of input X; 
Ok, = amount of output y; 
UhX = weight for input x; 
QY = weight for output y. 

Denoting the efficiency of the DM-algorithm k by Rk now 
leads to: 

DEA chooses the weights so that the efficiency of the 
algorithm k is as close to 100% as possible (see Doyle and _^^_ - Green 1YYl ror more detail). At the same time, the other 
algorithms should not have an efficiency more than 100% 
using the same particular weights. Obviously this is an 
optimization problem that can be transformed to the 
following linear program (LP): 
,%3kCt VdUCS Of ukl, UE ,..., Ukp and Vkl, V,Q ,..a, Vk by 
maximizing Rk in the relation (1) subject to: 

(2) 

for i = 1, 2,..., k,.. ., It, uh 2 0 and Vb 2 0 for all x and y. 
If algorithm k does not achieve the given threshold 
(lOO%), then it is not efficient and there is at least one 
algorithm among the others dominating it. There are 
different ways for setting the weights in (2). The most used 
ones are the input-oriented and the output-oriented 
optimization (Ali and Seiford 1993). The goal in input- 
oriented optimization approach is to reduce radially the 
input-levels as much as possible. Radially means that all 
component-values are changed by the same proportion. 
Conversely in output-oriented optimization approach the 
main goal is to enlarge radially the output-levels as much 
as possible. Keeping the input as constant, the above LP is 

transformed to maximizing of: 

Rk = x;=, %y Oky 

subject to: (3) 

for i = 1, 2,..., k ,..., n, uh 2 0 and vky 2 0 for all k, x and y 
which can be solved for each algorithm using the Simplex 
Method. 
After solving this LP and determining the weights, the 
algorithms with Rk = 1 (100%) are efJicient algorithms and 
form the e@ciency ffontier or envelope. The other 
algorithms do not belong to the efficiency frontier and 
remain nutnid~ nf it. An alredv mentinned the &jgifigc ^----I^- ---I-- -I -- --. _ _- - -‘---, ----__ - -----, 

of eficiency is more general than interestingness as 
suggested by Fayyad et. al. (1996). One can connect also 
both concepts in this form that more efficient algorithms 
are more interesting. For ranking the algorithms, one can 
use the approach suggested by Andersen and Petersen 
(1993) @P-model). They use a criterion that we call it the 
AP-value. In input-oriented models the AP-value measures 
how much an efficient algorithm can radially enlarge its 
;~~,,+~IP.,P~~ ..rh;la mmo;n;nrr o+;ll nff;Annt /m.m..t ,wLm,tmA uqJuL-‘Ld”Y,o VVIUIC, IUuuul‘lll~ Dull U,I1IbIUUL \“urpuc-“uulrrju 

is analogous). For example, for an input-oriented method 
an AP-value equal to 1.5 means that the algorithm remains 
still efficient when its input values are all enlarged by 
50%. If the algorithm is inefficient then the AP-value is 
equal to the efficiency value. 
To explain the above approach, we present the following 
simpie exampie. 

Example 
Suppose that we have four DM-algorithms A, B, C and D 
with one positive property (output) and two negative 
properties (input) given in Table 1. Figure 1 shows these 
data graphically in the input-space. 

Comparision unit A\BICiD 
Input 1 -- --II: 5001 ..m-,-L lOOk -...I...., 800 
Input2 6.00 
output LOOi 

5.0-q" 
1.001 1.00 1 .oo 

Table 1: The data of the example. Selection output values 
equal to 1 is just for an easier interpretation. 

DEA creates an efficiency frontier (bold lines), which is 
convex in the input-space. The efficiency frontier is 
formed in Figure 1 by the algorithms A, B and C. Their 
efficiency values are equal to 1. In the input-space, D lies 
outside the efficiency frontier. If D could use, however, the 
input values of its corresponding projection D*, then it 
would lie on the efficiency frontier. Graphical 
representations like Fiure 1 are only possible for two or _ - 

Nakhaeizadeh 39 



three input components. Using LP (3) leads to the solution 
given in Table 2. 
We can see in Table 2 that DEA classifies all efficient 
algorithms A, B and C with the efficiency value of 1. The 
inefficient algorithm D gets the efficiency value 0.79 
which is just the ratio of OD* to OD. It has to reduce the 
input values by 21% to become efficient. In this case the 
values for input 1 and input 2 would be 4.32 and 4.47, 
respectively, which correspond to the coordinates of point 
D”. 

Input 2 

0. Lput 1 

Figure 1: Efficiency frontier for DM-algorithms A, B and 
C (bold lines). Algorithm D is inefficient. To become 
efficient, this algorithm has to reduce both input values 
until it reaches the input values of the point D*. Algorithm 
B which is efficient could use the input-levels of point B* 
and would still be efficient. 

D I 0.79 1 0.79 1 4 1 
Table 2: The solution of the DEA-algorithm for example 

As mentioned before, to rank efficient algoritts, we use 
the AP-model. Algorithm B e.g. has an AP-value equal to 
1.20, i.e. it can enlarge the input-levels by 20% remaining 
still efficient. Graphically we get this value from OB*/OB. 

Empirical Analysis 

The most comprehensive evaluation of DM-algorithms 
known to us is the study of Michie, Spiegelhalter and 
Taylor (MST 1994). They compare the performance of 23 
classification algorithms on 22 different domains. To rank 
different algorithms, when they are applied to a certain 
domain, MST use only one property namely the accuracy 
rate for the test data set although they have data about 

maximum computer storage, training and testing time, 
training and testing error rates and training and testing 
misclassification costs (where the costs are available). As 
an example, the results reported by MST for the Credit 
Management Data set is presented in Table 3. Their 
ranking for the algorithms is given in the last column. The 
notation ,,*“ is used for missing (or not applicable) 
information, and ,,FD“ is used to indicate that an algorithm 
failed on this data set. 
To obtain a DEA-based ranking for the algorithms applied 
by MST q?p, haye USed the ipAp” &Cd output-oriP,nted 
versions of DEA described above. In the following, these 
versions are denoted by I and 0, respectively. To rank the 
algorithms, we have used the AP-model. We have used 
three input components (max. storage, training time and 
testing time) and one output component (accuracy rate 
defined as 1 - error rate for the test data set). As an 
alternative, we have also used the version with an 
additional output component (accuracy rate for training 
data set). Input oriented versions are denoted by 41 (one 
output and three input components) and by 51 (two output 
and three input components). The same is valid for output- 
oriented versions denoted by 40 and 50. 

Max. 
Al.&;hm ” 

Training Testing. Training Testing ,, ,, ,. 
Storage Time (sec.) Time (sec.) Error Rates Error Rates Rank 

“2ktirn”.“.“~_ .,,,, “. .“.“...ciK “.“,_,” ,.,,.. ?G. 3.8 - *^^ 
.“.._ .“.. . ..s% .“...“. u:uu ,. ..E 

Quadisc 0.051 
Logdisc. 

7l.L 67.2 ‘2.5 ., o.oscl, 21, 
889 I ,., .” ,. ,__ .._ ’ 65.6 ,, 14,2 _._ I?!??!“,. 0.030, *s 

SMART 412 27930.0 5.4 0.021 0.020 1 ” ,,x ̂ ., ,,“. ,” ,,,,,,..” x .,....., ” ,,,, _ ” ._. ,“. ..“.“,, ” .,. ..“.“.,.-.^. ,, .,, IX 
ALLOC*O.. 22069.7 z20 I”. !?.??? 0.03! . ..!.9 
k:NN 'OS 124lVJ3 .?6!.. .~ ~. ~~... .~. ..~. .A? 0.028 0.088 
CASTLE 48 370 1 81.4 0051 0.047 19 _“,“,_ ,.,.. ,,“,,, .,, ,~, ̂  .,, ._ _,,,, . . . ..“..L “,I.. ,.,,,1 I _“II”,x JII “.x,,, -L-,.... ,,,..” -,., “,,, ̂ “,“_ ““.“1.-,- 
CA.RT ,. n, f? ,, !=P ???, FP ,, .,. .I 
IndCART ‘656 423 1 .: 415 7 ..‘.. ‘0.010 b.025 6 
NWdD 104 3035.0 2.0 I..“,” ,.- ._ ..” . . *. _, ..L. . . ^.-. .O~!xF? b.oi3 13. 

AC2 ,, ,725O 5?.!8.0 .3607:0 .v?-? O.??P 8. 
Baytree 1368 53.1 3.3, .a:?!?. 0.028 7 ,, ,. 
NaiveBay 956 24.3 2.8 0.041 0.043 16 
CN2 2100 2638.0 9.5 0.000 0.032 12 ,, ,..... . .,.,. “-, ,I ,,. ,-. “, ,, .,“... .., ,. ,.-ll”ll”,“l ., ̂ . “II”I”,“,i,” .,... .,. ” ,.... “, I,x. 
C4,5 620 171.0 158.L-J .P:W ,, .wz.. 3, 
‘We ,377 4470.0 ,,, I.:? . ..o!??!. 0.046, .I8 
Cal5 167 553.0 7.2 0.018 0.023 4 _.,~,~“.“_“, ll”l.“, ,~ ,,,,,, “I..“.I.x,” “I”Ix. .“.., ,,x._I_. I, “,_ -,.- l-“l,“l.“̂  I”--,.““IIx .,,, I, . ,” Ix _,““. ,“,. “.“. .,. ,,,, xI 
Kohonen ,715 ” . . . ...” OF? .?.?4?. .!.6 
DIPOL92 218 2340.0 57.8 0.020 0.020 1 Backprop .., ~48 :~ ~ .5950,0 ,.. 

0.020 0.023 4 3.9, ^ ^__ 
y$ 253 ‘̂ -^ ,qj>.0 .‘?68 ,. w3 u.lJ31 i0 

Q 
476 212i.o. 

52.9 0.024 0.040 .. is 

Table 3: Results for Credit Management data set (2 classes. 
7 attributes, 20 000 observat:ons) p. 133, using 22 
algorithms 

The DEA-ranking results for the Credit Management data 
set are given in Table 4. We have omitted algorithms 
CART and Kohonen from further analysis because as Table 
3 shows there is not always enough information about 
input and output components for these algorithms. 
We can see from Table 4 that the MST-ranking results 
based only on one comparison criterion differs, generally, 
from our results which are based on multi-criteria metrics. 
For example, algorithm NaiveBayes is ranked by MST as 
16*. Our ranking using different versions of DEA varies, 
however, between 7 and 10. The reason is that the 
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relatively low accuracy rate of this algorithm (1 - 0.043 = 
0.957) is compensated by low training and testing time. 
This is the same for NewID and ITrule. For these 
algorithms low accuracy rate is adjusted by low max. 
storage and low testing time. On the other hand, MST rank 
DIPOL92 as the first. In 3 of the versions of DEA, it is 
ranked, however, between 6 and 9. In this case, the high 
accuracy rate is compensated by high training time. 
Considering Qua&c, we can see that it is ranked by MST 
as 21St. Our results show that this algorithm is not efficient 
at all. It has got a rank between 12 and 18 using different 
versions of DEA. It seems that in this case the low 
accuracy rate can not be adjusted by the other components. 
There are some cases for which the MST-ranking does not 
differ radically from our ranking. For example, SMART 
has got the first rank by MST and a ranking between 2 and 
5 in our analysis. If we examine the input and output 
components of this algorithm, we can see that with the 
exception of the training time the other values are 
relatively good and apparently the high training time can 
not obscure, significantly, the positive effect of the other 
components. 

Algorithm 
Discrim ,. . . _. 
Quadisc “.” .,.. Ix ..” l_“. .“ll. 
Logdisc 1 ,--..” -... .“..” 
SMART ,,I ..,, 
k-NN ,. 
CASTLE ” ll..l.... “l~-“l”..“. ,. 
IndCART 1”1 _(.. _“.” l-lll.... 
NewID . .-.“ll ., ,“. 
AC2 IIIII”.xII”.“.l-~- 
B aytree ,l~l_l 
NaiveB ay .Ix.---II.--.-... 
CN2 _-lll--_ll” .._. - 
c4.5 --11--^--- 
ITrule 
Cal5 ----- 
DIPOL92 -_I 
Backproe-. 
RBF - “--_ 
LVQ 
Table 4: Ran 

1x 8 11 9 7 - ~~“-- 
4 4 6 2 2 - -*--I -~---- 
1 9 1 6 6 --“-- _ ~- _I----- 
4 7” 7 3 3 -.-I- ---1_1 I I --~ I_.-~._ 

10 18 15 16 14 -__--. 
15 19 18 --i?-- 18 

ig algorithms for the Credit 1 
data set using MST and different DEA-models (italic 
figures mean efficient) 

Concerning the different versions of DEA, we can see 
from Table 4 that for Credit Management data set each 
algorithm which is efficient in 41 is also efficient in 51, but 
not all efficient algorithms in 51 are efficient in 41. The 
same is valid for 40 and 50. The more components are 
included into the DEA-model the more algorithms are 
classified as efficient. Our further examinations have 
shown that this is not valid, generally. Using different 

DEA-versions (as it was expected) does not lead to exactly 
the same but to similar rankings. Exceptions are DZPOL92 
in 41, NewID, Baytree and C4.5 in 51 and AC?, CN2 which 
in some cases are not efficient at all. 
We have done this sort of analysis for all 22 data sets, but 
we can not report the whole results here. More details can 
be found in Jammemegg et al. (1997). To make an 
additional comparison, we report, however, in Table 5 the 
top 5 algorithms selected by DEA-model 41 for each data 
set and compare our results with those of MST reported in 
p. 185 of their book. 

Data set IIFirst ISecond IThird IFourth IFifth 

.Credman .!?!qw?2 SMART Discrim c4.5 ., ,, ,, ., BaytlW, 
CCiUSl NewID NaiveBay ITrule c4.5 DIPOL92 
Dig44 Cascade ““_. ,. C&+isc DIPOLYZ Discrim .._ .” .l.l.“” _._.,. ““., x 

LVQ ‘..“.’ 
,. l.“.” ..,.,,, ” ““,. NaiveBay, 

KL Backprop Cascade Discrim DIPOLY 2 
Vehicle DIPOLY 2 ALLOCSO 
Letter i.VQ 

TMART NaiveBay CART 

&mn k-NN 
NN’ Baytree. Naiv+y Discrim 
DIPOL92 CASTLE 

SatIm LVQ 
NaiveBay NewID 

c4.5 Discrim NaiveEgy Baytree 
Segm .- .“. . _.,, “-- E?J!vee k-NN c4.5 SMART CART ,“., .“,-, I ._- _ I ,,.,. ., -- ,,. ,,‘,.,“. ,I __“,.^xx., ., “., ., 
Cut20 New”’ k-NN Discrim 
Cut50 ?aytree i&ID D&m 

Backprop LVQ 
Backprop DIPOL92 

Heed Discrim 
Heati 

CASTLE Cascade CART 
IndCART b&ID 

Baytree 
SMART DIPOLYZ Baytree 

Cffier k-NN +ytriX Cal5 DIPOLj2 CART “” 
.f$!“. ...” y!KT. “f!$%E.. .-.. pi,.. fJ?kJ?kT ‘w;ree 

DNA c4.5 CASTLE’ NewID 
Tech Baytree,, k-I6 

Disc& Backprop’ 
Discrim ” ’ NaweBay 

Belg Logdisc k-NN DIPOLYZ NewID 
Ca15, 

CA%E ‘iackwp 
Backprop 

I+!gII Bayire.! N+D Cal5 
Faults DIPOLY 2 NaiveBay ITrule CART Discrim 
Tsetse Baytree NewID Discrim NaiveBay Cal5 

Table 5: The Top 5 algorithms of the DEA-model 41 : 
each data set 

r 

As it was expected, our results based on the DEA-version 
41 differ, generally, from the results of MST based on only 
one comparison criterion namely the accuracy rate of the 
test data set. For example, in our results DZPOL92 has the 
first rank for four data sets. In MST results for none. On 
the other hand, KNN is selected as the best algorithm by 
MST for four data sets. In our results only for two. 

Discussion and Conclusions 
As we mentioned before, the main idea of DEA is 
extended in different directions. These extensions can 
handle some of the limitations of the basic versions of 
DEA. To such extensions belong dealing with non- 
discretionary inputs and outputs, handling of categorical 
inputs and outputs and dealing with flexible weights (see 
Chames et al. 1996, Chapter 3). 
DEA-models were originally developed in the Operations 
Research Community and are used to rank DMUs in 
different domains (see e.g. Paradi et al. 1995 and 
Emrouznejad and Thanassoulis 1996). In this paper we 
have shown that such models can be used effectively to 
rank DM-algorithms and provide a fair evaluation. This 
enables the KDD-community to have a better 
understanding of the real performance of the developed 
DM-algorithms. As discussed in section 2, the number of 
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measurable input and output components characterizing 
the positive and negative properties of the DM-algorithms 
is at present too low. We have shown in this paper that 
even in this situation using the DEA-based multi-criteria 
metrics is more suggestive than using a single criterion i.e. 
the accuracy rate. 
Further research can be done in different directions. First 
of all, the practicability of different extensions of DEA 
described above should be examined, when they are 
applied to evaluation of DM-algorithms. Secondly, the 
adaptive DEA-models are needed to handle the dynamic 
aspects (changing of inputs, outputs, preferences etc.) 
automatically. In the DEA-Community some efforts have 
be done in this direction (Piire and Grosskopf 1996, 
Schnabl 1996). Further basic research is still necessary in 
this field. 
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