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Abstract 

The goal of pattern classification can be approached 
from two points of view: informative - where the classi- 
fier learns the class densities, or discriminative - where 
the focus is on learning the class boundaries without 
regard to the underlying class densities. We review 
and synthesize the tradeoffs between these two ap- 
proaches for simple classifiers, and extend the results 
to modern techniques such as Naive Bayes and Gener- 
alized Additive Models. Data mining applications of- 
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where the tradeoffs between informative and discrimi- 
native classifiers are especially relevant. Experimental 
results are provided for simulated and real data.’ 

KDD and Classification 
Automatic classification is among the main goals of 
data mining systems (Fayyad, Piatetsky-Shapiro, & 
Smyth 1996). Given a database of observations con- 
sisting of input (predictor) and output (response, i.e. 
class label) variables, a classifier seeks to learn relation- 
ships between the predictors and response that allow 
it to assign a new observation, whose response is un- 
known, into one of the K predetermined classes. The 
goal of good classification is to minimize misclassifica- 
tions or the expected cost of misclassifications if some 
types of mistakes are more costly than others. 

Classifiers can be segmented into two groups: 

1. Informative: These are classifiers that model the 
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the likelihood of each class producing the features 
and assigning to the most likely class. Examples in- 
clude Fisher Discriminant Analysis, Hidden Markov 
Models, and Naive Bayes. Because each class den- 
sity is considered separately from the others, these 
models are relatively easy to train. 
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2. Discriminative: Here, no attempt is made to model 
the underlying class feature densities. The focus is 
on modeling the class boundaries or the class mem- 
bership probabilities directly. Examples include Lo- 
gistic Regression, Neural Networks, and Generalized 
Additive Models. Because this requires simultane- 
ous consideration of all other classes, these mod- 
els are harder to train, often involve iterative algo- 
rithms, and do not scale well. 

lated via Bayes rule, but often lead to different decision 
rules, especially when the class density model is incor- 
rect or there are few training observations relative to 
the number of parameters in the model. 

There are tradeoffs between the two approaches in 
terms of ease of training and classification perfor- 
mance. Precise statements can only be made for very 
simple classifiers, but the lessons can be applied to 
more sophisticated techniques. In this paper we re- 
view the known statistical results that apply to sim- 
ple non-discriminative classifiers and we demonstrate 
how modern techniques can be categorized as being 
discriminative or not. Using Naive Bayes and GAM 
applied both to simulation and real data, we exem- 
plify that, counter-intuitively, discriminative training 
may not always lead to the best classifiers. We also 
propose methods of combining the two approaches. We 
focus on parametric techniques although similar results 
obtain in the non-parametric case. With the advent 
of increasingly sophisticated classification techniques, 
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falls in, because the assumptions, problems and fixes 
for each type are different. 

Overview of Bayesian Classification 
Theory 

Formally, the classification problem consists of assign- 
ing a vector observation 2 E 7V into one of K classes. 
The true class is denoted by y E { 1, . . . , K}. The clas- 
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sifier is a mapping that assigns class labels to observa- 
tions: y : z + (1,. . . , K}. There is also a cost matrix 
c(r,s), T, s = 1,. . .) K which describes the cost associ- 
ated with misclassifying a member of class-r to class-s. 
A special case is O/l loss, c(r, s) = 1 - c$.,~ = 1 if T # s 
and 0 otherwise. 

Underlying the observations is a true joint density 
P(x, y) = P(ylz)P(z) = P(zly)P(y) which is unknown. 
The goal is to minimize the total cost of errors, known 
as the overall risk and this is achieved by the Bayes 
classifier (Duda & Hart. 1973) 

= n-y-l ~logPe(xilyi) + lOWe( 
i 

For the gaussian case this yields the well known 
estimates ?k = nk/n,fik = L%k = & cyiCIE X4,x = 
i Cf Cyizk(xi - Zk)(xi - &)’ where nk is the num- 
ber of observations from class Ic and n = Cf nk. The 
discriminant functions are 

xk (x> = (log 2 - ;(Pk + PK)WPk - /.a)) + 

y(x) = rnp- lc ckm)P(Y = 4x1 (1) 
nZ=l 

= m,ax-lP(Y = Iclx) (O/l loss). (2) 

For O/l loss this reduces to classifying x to the class Ic 
for which the class posterior probability P(y = IcIx) is 
maximum. 

and are linear in x. Note that while Kp+P(p + 1)/2 + 
(K - 1) parameters are estimated, the discriminants 
involve only (K - l)(p + 1) parameters. 

The important points with informative training are 

In practice, the true density P(x, y) is unknown and 
all that is available is a set of training observations 
(xi,yi) for i = 1,. . . ,n. Many classification tech- 
niques seek to estimate the class posterior probabilities 
P(y = klx), since we see in (2) that optimal classifica- 
tion can be achieved if these are known perfectly (for a 
discussion on the relationship between class posteriors 
and neural net outputs see (Ney 1995)). 

1. A model PO (XIY) is assumed for the class densities. 

2. The parameters are obtained by maximizing the full 
log likelihood log PO (x: Y) = log nn (ulz)sn (5). v-“\“I ,a”\ I 

3. A decision boundary is induced, and the model pa- 
rameters may appear in a way that reduces the ef- 
fective number of parameters in the discriminant. 

For convenience in what follows, we will make use of Discriminative Classification 
the discriminant function 

X,(x) = log pq(yy _=;;; . 
X 

This discriminant preserves the ordering of the class 
posterior probabilities and can be used instead of them 
for classification. 

Informative Classification 
Rather than estimate the class posteriors P(ylx) di- 
rectly, the class densities p(xlg) and priors p(y) are 
estimated. The operative equation here is Bayes rule, 
which gives the class posteriors in terms of the class 
densities and priors 

P(Y = $4 = PblY = WP(Y = k) 
c: P(4Y = rn>P(Y = m> * 

The discriminative approach models the class posteri- 
ors and hence the discriminants directly. The discrimi- 
native approach is more flexible with regard to the class 
densities it is capable of modeling. By only restrict- 
ing the discriminant &,(X) = log[p(y = klz)/P(y = 
Klx>l = lwM4y = ~)P(Y = WP(~Y = KMy = K)l 
we are capable of modeling any class densities that are 
exponential ‘Ws” of each other 

P(Y = K) P(X[Y = k) = exk(“)p(xly = K) p(y = k) . 

In particular, the informative model, as regards the 
class densities, is seen to be a special instance of 
the more general discriminative model. The example 
above was a special case with a gaussian as the “carri- 
er” density 

Typically some model is chosen for the class densi- 
ties, for example gaussian, Pe(XlY = k) = n/(x; pk, C) 
(heree={pi ,..., pK,7rr ,..., 7rK,C}),andthemodel 
parameters are estimated from the data by maximizing 
the full log likelihood 

p(xly = k) = N(x; pi, C)ep~+ob’s (z) 

while the corresponding discriminative model allows 
any carrier density 

oMLE = meaX -l~hWe(xi,Yi) 
i 

~(43 = k) = fdx; e>e 
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so long as the discriminant is linear. 
Parameter estimation in the discriminative case is 
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9 DISCR = mop -l ~logPe(YiIxi). 
i 

On the one hand, maximizing the conditional likeli- 
hood is a natural thing to do because it is directly fo- 
cused on the class posteriors p(ylz) which is all that is 
required in order to classify well. However, it is ignor- 
ing part of the data, namely, the marginal distribution 
p(z). Compare to the full likelihood case where each 
observation contributes p(~:, y) = p(ylz)p(z). The dis- 
criminative approach, which uses only the first term 
on the right side, throws away the information in the 
marginal density of x. Thus, if the class density model 
is correct, the discriminative approach ignores useful 
information. However, ignoring the class models may 
be good if they are incorrect. The table below sum- 
marizes the main comparisons between the two ap- 
proaches. 

Informative Discriminative 
Objective Full log likelihood Conditional log 
Function xi logpe(zi, y;) likelihood 

JJ logPe(Yil~i) 
Model Class densities Discriminant 
Assumptions p(zly = L) functions XI,(~) 
Parameter “Easy” “Hard” 
Estimation 
Advantages More efficient More flexible, ro- 

if model correct, bust because 
borrows strength fewer 

1 from p(z) - 1 assumptions 
Disadvantages 1 Bias if model is 1 May also be bi- 

I I- _...._^^I 
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Logistic Regression vs Linear 
Discriminant Analysis 

A lot of insight can be gained from examining the 
two class case where the class densities are assumed 
to be Gaussian p~(zly = k) = N(,t~k, C) [z] = 
d& exp -(+(x - #)‘C-l (X - pk)) with priors 

PS(Y = k) =m. 
When the popuiations are gaussian, informative 

classification is more efficient than discriminative, ie 
fewer training observations are required or for a fixed 
number of training observations, better classification 
is obtained (Efron 1975; O’Neill 1980; Ruiz-Velasco 
1991). Even when the class densities are not gaussian 
there are circumstances - such as when the classes are 
well separated - when informative training does about 
as well as discriminative (Byth & McLachlan 1980). 

The informative approach requires estimating class 
means and a pooled covariance which requires only a 
sippde SWP.AII thrmeh the data: The diqcriminativc! an- o-- -..--= ------o- ---- -__- -_L- ________ 21-. - Ir 
preach requires an iterative optimization via a gradient 
descent of the conditional likelihood. 

Figure 1: Class densities for 3 cases of simulation 
data. The class boundaries derived from many (10000) 
training observations for Normal Discriminant Anal- 
ysis (LDA) and Logistic Regression (LOGREG) are 
shown: points to the left of the boundary are classified 
to class 1. 

iments. Case 3 is a gaussian class case for which we ex- 
pect LDA to do better than LOGREG when the mod- 
els are learned using training data. For each case, 100 
training sets with 5 observations per class, i.e. p(y = 
1) = p(y = 2) = l/2, were drawn according to the class 
densities pictured. LDA and LOGREG classifiers were 
trained for each set and the exact probability of error 
was computed using integration over a grid P(error) = 

The table below provides error rates using the two 
procedures. Each column corresponds to a different 
density case as depicted in figure 1. The first two rows 
are ‘<best” in the sense that the model is trained using 
the complete density, not a sample of training observa- 
tions. The remaining rows are averages and standard 
errors of the error rates across 100 training sets, each 
of which contained 5 observations per class. 
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I case II 21 31 
LDA - best 28.1 8.6 6.7 
LOGREG - best 8.8 3.1 6.7 
LDA 25.2 9.6 7.6 
SECLDA) 0.47 0.61 0.12 
LO-GREG .“2.6 4.1 8.1 
SE(LOGREG) 0.94 0.17 0.27 

As expected, LDA did better than LOGREG when 
the classes were gaussian (case 3). An interesting result 
in case 1 is that LDA does significantly better (25.2% 
vs 28.1%) when it does not know the true distribu- 
tions. In this case, it is because the true distribution 
is highly non-gaussian. When the number of obser- 
vations are few relative to their dimensionality, infor- 
mative methods may do surprisingly well even when 
the model is incorrect (see also the GAM/Naive Bayes 
example below). 

StatLog data 
The StatLog experiments compared several classifica- 
tion techniques on various datasets. For most of the 
datasets, logistic discrimination did better than the 
corresponding informative approach of LDA (Michie, 
Spiegelhalter, & Taylor 1994). However, there were 
several cases, such as the chromosome dataset, in 
which LDA did better than logistic discrimination. For 
these cases, the informative model apparently makes 
use of important information in the marginal density 
P(Xc>* 

Naive Bayes and GAM 
Naive Bayes classifiers are a specialized form of a 
Bayesian network (John & Langley 1995; Langley & 
Sage 1994) and fall into the informative category of 
classifiers. The class densities assume independence 
among the predictors 

PblY = ICI = fiP(dY = ICI 
j 

* logp(xly = k) = ~logP(xjIY = k) 

= g9r;,(z,), 
j 
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ley 1995) considered class densities tha.t are products 
of univariate gaussians as well as “flexible” gaussian 
kernel densities. 

The corresponding discriminative procedure is 
known as a Generalized Additive Model (GAM) 
(Hastie & Tibshirani 1990). GAM’s assume that the 

log ratio of class posteriors is additive in each of the 
predictors zj, j = l,, . . ,p 

log ‘(’ = ‘lx) = 2 fk,j(xj) + constb. 
P(Y = Klx) j 

Theorem 1 Naive Bayes classifiers are a specialized 
case of GAM. 
Proof It suffices to show that the induced discriminant 
is log additive. 

log P(Y = Vx) = 
P(Y = 04 

= 

1 

= 

log PMY = k)P(Y = ICI 
P(ZlY = K)P(Y = K) 

l%P(XlY = k) - logp(xly = K) + 

l%KY = UP(Y = K)l 

&lhj(xj) - SK,j(Xjcj)l + 

iMY = k)/P(Y = WI 

f: fk,j(xj) + constk 
j 

0 
In the comparisons to follow, we ensure that the same 
representations are possible for both procedures. In 
particular, for the informative case, we model the class 
densities with logspline densities which imply an addi- 
tive spline discriminant 

O,(X) = &Oj,nB,(2) 
j 

where B is a natural cubic spline basis. 

Logspline simulation study 
For the simulation study shown in figure 2, the dis- 
criminant was taken to be an additive spline with 5 
uniformly spaced fixed knots. Class 1 is a complicated 
mixture density (the outer ring), and class 2 (the two 
mounds in the middle) is the exponential tilt (using 
the logspline discriminant) of class 1. The Naive Bayes 
classifier assumes a logspline density (see (Stone et al. 
to appear)) separately in each dimension and in each 
class. Asymptotically, the GAM classifier achieves the 
Ravm OFmr rate 17 ‘F!Z,\ ~inre t-ho tnm cliwr;minmt YWJV” VL-VL AWYV \,.A,,“, Ylll”” “ALU YL uv UI”UIIIAIA~LLuII” 
is log additive by construction. Asymptotically, the 
Naive Bayes (NB) classifier does worse (9.0%) than 
GAM, since the class densities are not a product form. 
However, when only a finite sample of training obser- 
vations is available, the Naive Bayes classifier does sur- 
prisingly well (this behavior has been noted by Langley 
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(Langley & Sage 1994)). In simulation experiments, 25 
training sets each containing 25 observations from each 
class were used to train both NB and GAM classifiers. 
The average error rates were 11.1% for NB and 11.4% 
for GAM with standard errors of 0.05 % and 0.06% re- 
spectively. Here then is an instance where informative 
training actually does slightly better than discrimina- 
tive training, even though the discriminative model is 
correct and the informative one is not! 

Conclusion 

Recently, Friedman (Friedman 1996) has shown that 
when it comes to classification, bias in the class poste- 
riors is not so critical because of the discretization of 
the assignment rule. So even if the class density model 
is incorrect, i.e. biased, it may yet get the upper hand 
especially if it has lower variance estimates of the ciass 
posteriors across training sets. 

It is best to use an informative approach if confi- 
dence in the model correctness is high. This suggests a 
promising way of combining the two approaches: par- 
tition the feature space into two. Train an informative 
model on those dimensions for which it seems correct, 
and a discriminative model on the others. Experimen- 
tal results on this approach are forthcoming. We are 
also investigating other techniques of combining the 
+...r. w...nnnAr.r~” l!W” pI”bcuu’“J. 

Even when the goal is discrimination between 
classes, it, pays to investigate the performance of 
the corresponding informative model which borrows 
strength from the marginal density. 
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