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Abstract 

Exploratory data analysis is inherently an iterative, 
interactive endeavor. In the context of massive data 
sets, however, many current data analysis algorithms 
will not scale appropriately to permit interaction on a 
human time-scale. In this paper “anytime data anal- 
ysis” is proposed as a general framework to enable ex- 
ploratory data analysis of massive data sets. Anytime 
data analysis takes into account not only the quality 
of the model being fit but also the resources (time 
and memory) used to achieve that fit. The framework 
is discussed in some detail for interactive multivari- 
ate density estimation. Out-of-sample log-likelihood 
and model combination techniques (such as stacking) 
are used to greedily explore the data landscape. The 
method is applied to two significant scientific data sets 
where it is shown that it can be better to combine mul- 
tiple “cheap-to-construct” models than to spend the 
same time optimizing the parameters of a single more 
complex model. 

Introduction and Motivation 
The problem of massive data sets is now well-known. 
There is tremendous interest at present in techniques 
such as data mining and knowledge discovery to ex- 
tract information from such massive data sets. Most 
of this interest is applications-driven: in medicine, fi- 
nance, marketing, science, and government, users are 
clamoring for techniques which allow them to handle 
their vast volumes of data. These applications gener- 
ate data sets which are increasingly beyond the bound- 
.aries of what existing data analysis algorithms can han- 
dle (cf. Proceedings of the iVationa1 Research Council 
Workshop on Massive Data Sets, 1996). For example, 
major telecommunications companies can collect hun- 
dreds of millions of call-records per day. 

In this paper anytime data analysis is proposed as 
a paradigm-shift away from current batch-oriented, 
resource-ignorant algorithms towards exploratory, in- 
cremental, resource-conscious algorithms. Anytime 
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data analysis addresses the problem of dealing with 
massive data sets by posing the problem as one of 
resource-limited data exploration. For example, many 
branches of science (including astrophysics, atmo- 
spheric and ocean sciences, geology, ecology, biology, 
and medicine) are currently being inundated with ob- 
servational data of vast proportions. Scientists are not 
interested in the data per se. The data are a “medium” 
for the development and validation of scientific hy- 
potheses at an abstract 1evel.l 

Note that “massive data set” is not a well-defined 
term. In the context of this paper it is interpreted in 
a broad sense to mean any data set which is beyond a 
particular user’s data analysis capabilities due to data 
set size. For example, one could have too many data 
points to fit in available main memory, the computa- 
tional complexity of the available algorithms could be 
too large to complete the analysis in reasonable time, 
or the dimensionality of the problem (the number of 
variables) could be so large as to overwhelm any avail- 
able model-fitting technique. Thus, the term “mas- 
sive data set” is somewhat application and context- 
dependent. 

The paper is organized as follows: first we provide a 
brief discussion of anytime algorithms in general and 
related work in exploratory data analysis. We then 
establish some necessary standard notation and back- 
ground on kernel and mixture modeling. (In this pa- 
per we focus on unsupervised learning: much of the 
presentation is also directly applicable to supervised 
learning problems). The next section introduces a for- 
mal framework for anytime data analysis and discusses 
some key points which arise from this formalism. We 
then describe a new method, stacked density estima- 
tion, for combining models in an unsupervised frame- 
work: such model combining is essential in anytime 
data analysis. Finally, we illustrate the anytime data 
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analysis framework by proposing some simple static 
anytime strategies and investigating their performance 
profiies on two iarge data sets. 

Related Work 
Exact definitions of anytime algorithms vary with dif- 
ferent authors, but in general an anytime algorithm is 
an algorithm which produces a set of outputs continu- 
ously over time (Zilberstein and Russell, 1996). Thus, 
in contrast to conventional algorithms, an anytime al- 
gorithm can be interrupted at “any time” and still 
produce an output of a certain quality. The founda- 
tionai work in this area reiies on a decision-theoretic 
framing of the problem, and in particular, the princi- 
ple of maximum expected utility (Dean and Wellman 
(1991), Horvitz (1987), Russell and Wefald (1991)). 
Anytime algorithms have largely been developed in the 
context of artificial-intelligence approaches to planning 
and reasoning. We are not aware of any direct ap- 
plication of anytime algorithms to unsupervised data 
analysis to date. 

There is a large body of work on online learning 
Iwhere t.he C1a.t.a. nnints m,re presumed to arrive se- \..----- ___- ---- =------ 
quentially in real-time) in the adaptive control, pat- 
tern recognition, and signal processing literatures (for 
recent work see for example, Moore and Schneider 
(1996)). For example, many neural network algorithms 
are designed to operate in an online fashion, and many 
statistical estimation algorithms can readily be for- 
mulated for online adaptation. However, this work 
is mainly concerned with parameter estimation rather 
than exploring a family of models and as such do not 
provide a general basis for anytime data analysis where 
modei structure is unknown a priori. Hatch data anai- 
ysis algorithms which are iterative in nature have a 
natural anytime interpretation (i.e., one can always use 
the estimates from the most recent iteration). Indeed 
we will take advantage of this later in the paper. All 
of these methods can be viewed as restricted special 
cases of a general anytime data analysis framework. 

Notation and Background 
Let : be a particular realization of the d-dimensional 
multivariate variable X. We will discuss data sets 
D = {:I,. . , ,a}, where each sample gii, 1 5 i 5 N 
is an independently drawn sample from an underlying 
density function f(g). A commonly used model for 
probabilistic clustering and density estimation is the 
finite mixture model with k components, defined as: 

f”(ic) = 2 ajSj(4’ 
j=l 

(1) 

which consists of a linear combination of k component 
distributions with C (Y = 1. The component gj’s are 
..-.--,I-- --1-L: -.-,w. 2 --,- ..-:-,.J-, J:,+,:L..+:,.,, ,..,1, usually relablvaly sllllp)lc ullllll”ual U15U1UUbI”113 3ULll 
as Gaussian distributions. The model can be general- 
ized to include background noise models, outlier mod- 
els, and so forth. Density estimation with mixtures 
involves finding the locations, shapes, and weights of 
the component densities from data (using for example 
the Expectation-Maximization (EM) procedure). Ker- 
nel density estimation can be viewed as a special case 
of mixture modeling where a component is centred at 
each data point, given a weight of l/N, and a common 
covariance structure (kernel shape) is estimated from 
the data. 

In terms of time complexity, fitting a Ic component 
Gaussian mixture model with arbitrary covariance ma- 
trices in d dimensions scales as O(lcNEd2) where E is 
the number of iterations of the EM algorithm. The 
scaling of E as a function of d and N is not well un- 
derstood in general: for some clustering applications it 
is sufficient to fix E as a constant (say 50 iterations), 
however this by no means guarantees the resulting fit 
will be even close to a local maximum of the likelihood 
function. 

The quality of a particular probabilistic model can 
be evaluated by an appropriate scoring rule on in- 
dependent out-of-sample data such as the test log- 
likelihood or log-scoring rule. Given a test data set 
Dtest, the test likelihood is defined as 

logf(DtestIfk(ic)) = c logf”(ai) (2) 
An important point is that this log-scoring objective 
function is an effective and consistent method for coni- 
paring cluster models and density estimates in an un- 
supervised learning context, i.e., it plays the role of 
classification error in classification or squared error in 
regression. 

An Anytime Data Analysis Framework 
We are given a data set D. Dj s D denotes a subset 
of the elements of D (e.g., a random sample, a boot- 
strap sample, etc). We also have a finite set of “un- 
fit,t,&’ mnrleln ara.ila.hle. MU = IMY. _ _ MCI. which *_.---_- I. -------, -.- I-‘-I 1---,--n,> 
are indexed by k, i.e., M,J could be a mixture of a 
particular type with a particular number of compo- 
nents, or a type of kernel density model, and so forth. 
To fit the models we have a set of algorithms avail- 
able, A = {AI,..., AL}, e.g., the EM procedure for 
mixtures and various bandwidth-setting algorithms for 
kernels. An algorithm Al can be viewed as a mapping 
from an instantiation of the tuple < Dj, ki, q, rt > to 
a fitted model Ml. The parameter q is a scalar or 
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vector influencing the “quality” of the estimation al- 
rrnrit.hm wlrh 2c t,he ~~p&er nf &ps gr nu&pr Qf o”-’ . . . . . . .....y.- 
random restarts in an EM procedure, or the resolu- 
tion of the bandwidth search in a kernel estimator. rt 
represents in a general sense prior knowledge available 
at time t when the algorithm is run, including results 
from previous algorithm runs, user-defined constraints, 
and so forth. 

For computational simplicity, we will restrict our at- 
tention to the maximum a posteriori (MAP) estimation 
framework where posterior modes are reported rather 
than full posterior densities. The generalization to a 
full Bayesian analysis in the anytime context is clearly 
of interest, but may be computationally impractical, 
and is not addressed here. 

A strategy S is a particular sequence of algorithms 
and algorithm input parameters, 

S = {Al(Dl,ql,~l,nl),..., 
Aj(Dj,qj,bq)..., 

AJ(DJ, qJ, LJ, ‘ITJ)). 

The performance profile of a strategy is a plot of util- 
ity versus computation time for a particular sequence 
of algorithm runs. Finding the optimal solution to the 
anytime data analysis problem in this context can be 
stated as follows: 

Given D, MU, A, and ~1, find a strategy S such 
that computational and memory constraints are 
obeyed and 5 IS strictiy dominant over aii other 
strategies in terms of the performance profile. 

There are some general comments worth making at 
this point: 

l It seems very likely that any non-trivial instantia- 
tion of finding the best strategy will be NP-hard. 
Even in very restricted versions of this problem, such 
as choosing between the better of kernel estimators 
with different kernel shapes, there is no way to de- 
termine the optimal strategy without knowing the 
true f(g). Thus, in practice, our attention will be 
limited to finding good heuristic (typically myopic) 
strategies as has been the practice with anytime al- 
gorithms in other problem domains. 

l One can distinguish between static anytime strate- 
gies which are determined a priori, and adaptive any- 
time strategies where the algorithm and parameters 
at time t + 1 are chosen adaptively based on results 
up to time t. 

l Static strategies are clearly more limited than adap- 
tive strategies, yet, already they form an interesting 
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generalization of typical data analysis methods. In 
t.hin context. -_--I --_--I--d, “&s&&” nlrmrithmn such as iters- 1-o ---------I, ----_ 
tive improvement learning procedures like backprop- 
agation or EM, can be viewed as naive “single-step” 
strategies which ignore resource constraints. 

Adaptive strategies provide a powerful framework to 
adaptively explore data but are faced with great un- 
certainty in terms of trying to choose the next be& 
step at any stage without knowing the true f(g). 
Markov-chain Monte Carlo methods, which are cur- 
rently popular in applied Bayesian statistics, can be 
viewed as adaptive strategies which use estimates 
of posterior probability densities to guide search in 
model space: however, resource constraints are typ- 
ically ignored and there is no formal connection to 
an anytime algorithmic framework. 

Unsupervised Stacking for Model 
Combination 

Model combination techniques have been widely used 
in regression and classification (e.g., Chan and Stolfo, 
1996; Breiman 1996a, 1996b, Wolpert 1992), but rela- 
tively rarely in unsupervised learning. However, using 
estimated out-of-sample iog-iiMih00d as the perfor- 
mance metric, it is straightforward to combine different 
density models. 

Here we consider stacked density estimation which 
we briefly review (for details see Smyth and Wolpert, 
1997). Consider that we have K individual estimates 
for the density of c, nameiy, $‘(aj, . . . , s”(gj. These 
could be kernel estimators with different bandwidths 
or shapes, mixture models with different numbers of 
components, etc. We would like to combine these f’s 
into a single predictive model. The straightforward 
approach is to treat the combined model as a mixture 
with II components, 

(3) 
kc1 

where the ,i3k are unknown parameters which can be 
assumed to be non-negative and sum to 1 in the stan- 
dard fashion. 

In this context; stacked density estimation works as 
follows. First one runs v-fold cross-validation on the 
training data, and for each fold, train each of the mod- 
els f”(g) on the training partition and predict each of 
the test density points (i.e., calculate the f” @ii) where 
LZ~ E{ test partition 1). After cross-validation is com- 
plete, one has a table of N x K density values, an 
out of sample prediction for each of the N data points 
for each of the I’ models. The EM procedure can be 
used directly on this table to estimate the p weights 



Table 1: Performance of stacking multiple mixture 
models (using different weighting schemes) on the as- 
teroid data set (described in more detail in the next 
section). 1500 data points were used for model-fitting 
and stacking. 2000 data points were used to evaluate 
the out-of-sample log-likelihood. 

Weighting Out-of-Sample 
Method Log-Likelihood 

Best Single Model 6333.2 
Uniform Weighting 6449.6 

Stacking 6476.6 

in the stacked mixture above. Finally the K models 
are retrained on all of the training data and weighted 
according to the p’s for prediction. An alternative ap- 
proach in the context of massive data sets is to simply 
use a separate validation set to estimate the ,8 weights: 
if data are “cheap,” but computation time is “expen- 
sive,” this strategy may be more effective than cross- 
validation. 

The component density models fk can themselves 
be mixture models with different numbers of compo- 
nents. This leads to an interesting representation, a 
hierarchical “mixture of mixtures” models, providing 
a natural multi-scale representation of the data. Each 
of the components models a different scale in the data, 
i.e., models with fewer mixture components will be 
broad in scale, while models with more components 
can reflect mm-e detail. Stnckinc determines in a &&a- ---_--1 ___-__ --1-___ L ll--e-m-o --A---------- 
adaptive manner which scale is emphasized. More gen- 
erally, one can mix and match many different types 
of density function models: kernel density estimators 
with different shapes and bandwidths, mixture mod- 
els with non-Gaussian components, and Gaussian mix- 
tures with different numbers of components and differ- 
ent covariance structures. For example, a useful com- 
bination (which we use later) is to combine finite sup- 
port kernels (such as triangular kernels) with Gaussian 
mixtures: the Gaussian mixtures tend to regularize the 
tendency of finite support kerneis to Wow up” jin- 
finitely negative log-likelihood) when data points are 
outside the support of the model. 

Results of a simple experiment with combining 
Gaussian mixtures are shown in Table 1. The table 
shows the out-of-sample test log-likelihood, where the 
test data was not used in any way during training, 
for three methods of combining mixture models with 
k= 1,2,..., 9,10 components, using the asteroid data. 
The first, method “cheats” and looks at the test data 
to pick the single best model. The second method uni- 
formly weights the 10 models. The third uses cross- 

validated stacking as described originally in Wolpert 
(1992) but adapted for density estim&onI the stacking 
weights can be quickly estimated by EM (Smyth and 
Wolpert, 1997). Both combining methods outperform 
the single best model chosen by “cheating” (agreeing 
with what Breiman (1996a) found for supervised learn- 
ing), and stacking outperforms uniform weighting. The 
log-likelihood scale is not particularly intuitive, but its 
argued by Madigan and Raftery (1994), a difference of 
5 or so on this scale effectively means that the posterior 
,,,h,h;l:t.. Atha -_,.a l:L-al., maclc.1 &man the rl.tza ;E pL”ua”rrr”y “I YIIb IIIVIL. rrr,tAg III”Ux.I ,y”C” “ALU ucuuu .” 

an order of magnitude greater. 
In experiments on several other data sets we have 

found that stacked density estimation consistently pro- 
duces better density estimates than choosing a single 
model using cross-validation, a single model chosen by 
looking at the test data, or uniform weighting (Smyth 
and Wolpert, 1997). For anytime algorithms such com- 
bining methods are critically important since they al- 
low the results of earlier model fitting to be incorpo- 
rated into current estimates (rather than being dis- 
carded). 

Anytime Density Estimation 
In this section we explore a particular set of static any- 
time strategies and evaluate their performance. These 
examples are intended to be illustrative. 

A simple utility function is mutual information 
Whf(d)> h h w ic measures the information between 
the encoder (the data generating process, f(g)) and 
the receiver (the data analyst). It is straightforward 
to show that the mean out-of-sampie iog-iikeiihood 
l/N c:, 1% f(Eii) is an unbiased estimator of the in- 
crease in mutual information (or reduction in uncer- 
tainty) about f(g) from knowing f^. 

Given the limited space constraints, we briefly dis- 
cuss four different types of strategies and illustrate 
their use on two scientific data sets. The anytime 
strategies (in increasing complexity) are: 

Single Mixture: Fit a single Gaussian mixture 
model with k components and report the parameters 
in an anytime fashion at e&ch iteration of EM. Select 
the highest-likelihood initialization from 5 different, 
initializations of the EM algorithm using k-means. 

Single Best: Fit a sequence of models in this or- 
der: triangular product kernels with bandwidths of 
{0.1,0.2,0.5,0.7,1.0,1.5,2.0,3.0}timesthestandard 
deviation in each dimension, and Gaussian mixtures 
with k E {2,4,8,16} components each with arbi- 
trary covariance matrices. In fitting the Gaussian 
mixtures, only run the EM algorithm for 10 itera- 
tions, and use the “ best, of 5” k-means initialization 
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Figure 1: Portion of asteroid data set: see text for 
details 

as in 1. Reserve some of the training data as a vali- 
dation data set and as each new model is constructed 
choose the single model which performs best on the 
validation data set. 

%niform Weights: The same sequence as for ‘Single 
Best,” but combine the models at each step using 
uniform weights. 

Stacked Weights: The same sequence as for “Single 
Best,” but combine the models at each step using 
stacking weights which are estimated on the valida- 
tion subset of the training data. 

Figure 1 shows a well-known asteroid data set, where 
each data point corresponds to a known asteroid in the 
Solar System. The x-axis corresponds to distance from 
the Sun in astronomical units (this particular region is 
between Mars and Jupiter) and the y-axis is the ec- 
centricity of the orbit of the asteroid. The existence 
in such data of gaps and “families of asteroids” (i.e, 
clusters) are very much the subject of current debate 
in the planetary geology community (Zappala et al, 
1995; Lagervist and Barucci, 1992). There are over 
30,000 such data points and only a fraction of the data 
set is displayed here. This data set is typical in certain 
respects of observational science data: a large, contin- 
ually growing, collection of data which is continually 
being analyzed by a variety of scientists interested in 
refining their understanding of the underlying struc- 
ture. 

The plots show out-of-sample log-likelihood per sam- 
ple on the test data set, i.e., an estimate of “informa- 
tion gain” about the unknown density in each case, 

Asteroid Data: Profiles of Anytime Density Estimatton Strategies 

stacking-o- 

unllorm .+. 

single best -: 

I 
0.1 - i 

, 
ox::xi I 

0 5 

mkture (k=4) - 

mixture (k=l6) -x- 

10 15 20 25 30 
Cputkne (seconds) 

Star-Galaxy Data: Profiles of Anytime Density Estimation Stratsgles 

6- 6- 

stacking-c- stacking-c- 

uniform .+, uniform .+, 

single best -: single best -: 

mixture (k=4) -- mixture (k=4) -- 

a 

20 30 40 50 
Cputime (seconds) 

Figure 2: Profile information plot for (a) the asteroid 
data and (b) the star-galaxy data for various simple 
static strategies for anytime density estimation com- 
bining Gaussian mixture and triangular kernel density 
estimates. See text for details. 
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This information gain is computed in each case rela- 
tive to a default prior consisting of a single Gaussian 
bump fitted to the data. 

Figure 2(a) shows the estimated anytime profiles on 
the asteroid data with 1000 training data points, of 
which 500 are reserved for validation, and 1500 test 
data points. Stacking and uniform weighting domi- 
nate, and the single model strategies are universally 
worse. Note that the model combining strategies dom- 
inate the single-model strategies at all times. 

Figure 2(b) shows the estimated profiles on an 8 di- 
mensional data set describing stars and galaxies, with 
1500 training data points, of which 600 are used for 
validation, and 1000 test data points. This is the SKI- 
CAT data with the class labels removed (Weir et al., 
1995). Here, astronomers are interested in the exis- 
tence of subclusters among the galaxies. The data used 
here is only a small fraction of what is a data collec- 
tion with millions of records. Here stacking dominates 
all other strategies. Uniform weighting is competitive 
with stacking and the single best strategy eventually 
finds a model which is competitive with the weighting 
---LL-_I- A- LLI- J-L- -..I. Ll-- 1. ~ A --!-L--- ---~-I IIlebIlwUs. VII bIllS Uaba tzb, IJIlt: R = 4 IIIIXbUIx 1110ue1 

(and k = 16, not shown, because it is so off-scale) over- 
fit to the extent that the information gain is negative 
relative to a single Gaussian. 

Generally speaking the plots clearly demonstrate 
that searching among multiple models is a much more 
effective strategy than fitting a Gaussian mixture 
model with some fixed number of components to these 
data sets. Furthermore, among the methods which 
consider multiple models, the stacking strategy domi- 
nated on these data sets and for these models. 

These experiments only scratch the surface of the po- 
tential possibilities for anytime-type algorithms in ex- 
ploratory data analysis. For example, for massive data 
sets one may want to consider building models on small 
subsets of the data and combining them together (e.g., 
Breiman, 1997). In addition, there are clear benefits to 
be gained from having adaptive strategies versus static 
ones, so that the exploration algorithm can adapt to 
the data “landscape” and eliminate low-utility models 
which take time to fit but produce negligible informa- 
tion gain. 

Conclusions 
Tn thin n~na,~ ,ilrn n~nnncm-l thn mncmd nf ~nvt;nw Arat= ALI “IIA.y y.AybL _I”U yA”y”uuu “l&U “““cuy” “I CU’LJ UII11., UIUUU, 

analysis as a flexible and practical framework for ex- 
ploratory analysis of massive data sets. In particular, 
we used novel combining schemes based on stacking 
which support anytime density estimation and illus- 
trated their utility on two real-world data sets. Any- 
time data analysis appears well-suited as a framework 

‘for tackling the problems which are inherent to massive 
data sets. 
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