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Abstract 

Low-frequency variability in geopotential height 
records of the Northern Hemisphere is a topic of sig- 
nificance in atmospheric science, having profound im- 
plications for climate modeling and prediction. A de- 
bate has existed in the atmospheric science literature 
as to whether or not “regimes” or clusters exist in 
geopotential heights, and if so, how many such clus- 
ters. This paper tells the “detective story” of how 
cross-validated mixture model clustering, a methodol- 
ogy originahy described at the 1996 KDD conference 
(Smyth, 1996), h as recently provided clear and objec- 
tive evidence that three clusters exist in the Northern 
Hemisphere, where each of the detected clusters has 
a direct physical interpretation. Cross-validated mix- 

^-^- ture modeling has thus answered an iiiip0i;tAK.i upcu 
scientific question. 

Introduction 
Detection and identification of “regime-like” behavior 
in atmospheric circulation patterns is a problem which 
has attracted a significant amount of interest in atmo- 
spheric science. As defined in the atmospheric science 
literature, regimes are recurrent and persistent spatial 
patterns which can be identified from atmospheric data 
sets. The mnnf. wldelv-nsed data set for these stud- . Y” _,.&__” .J ---- 
ies consists of twice-daily measurements since 1947 of 
geopotential height on a spatial grid of over 500 points 
in the Northern Hemisphere (NH). Geopotential height 
is the height in meters at which the atmosphere attains 
a certain pressure (e.g., one has 500mb height data, 
700mb height data, etc.): it can loosely be considered 
analogous to atmospheric pressure, particularly since 
one can visualize the data using contour maps with 
“lows,” “highs” , “ridges,” etc. 

Research on low-frequency atmospheric variability 
using geopotential height data during the past decade 
has demonstrated that on time scaies ionger than 
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about a week, large-scale atmospheric flow fields ex- 
hibit recurrent and persistent regimes. Direct iden- 
tification of these regimes in observed flow fields is 
rl;fGo,.1t ‘l-‘h;c hs.x UllllbUl”. mntixrnt,wl t.hc= IIPP nf 2 v2riet;y Illl” II_ ill”“. .._“U”U “A&” ..a”” VL v 
of cluster analysis algorithms to objectively classify 
observed geophysical fields into a small set of pre- 
ferred regimes or categories, e.g., fuzzy clustering (MO 
and Ghil, 1988), kernel density estimation and “bump 
hunting” (Kimoto and Ghil, 1993), hierarchical clus- 
tering (Cheng and Wallace, 1993), and least-squares 
(or k-means) clustering (Michelangeli, Vautard, and 
Legras (1995)). 

While these approaches have produced useful and 
repeatable results (in terms of significant cluster pat- 
terns), there is nonetheless a degree of subjectivity in 
the application of these clustering techniques which is 
undesirable. In particular, none of these methods have 
provided a fully objective answer to the question of 
how many clusters exist. Thus, among the different 
studies, it is not clear how many different regimes can 
be reliably identified. In this paper we describe the ap- 
plication of mixture model clustering to this problem, 
and in particular the use of cross-validated likelihood 
(Smyth, 1996) to determine the most likely number of 
clusters in the data. 

The paper begins with a very brief review of the ba- 
,:- ------~c^-~-:~c....,. -,.-lA,.._?l CL,.,,,,, .rnl:rl,t;,, blC c"Ilcapba "1 IIIIzxblu~III"uI;‘3 auu Irllcz LI"UD-YcbIIua"I"II 

methodology. This is followed by brief description of 
the 700mb geopotential height data set. The appli- 
cation of the mixture modeling methodology to the 
problem of cluster analysis to NH geopotential height 
data is then discussed and strong evidence for the ex- 
istence of 3 regimes is presented. Finally, the scientific 
implications of this result are discussed. 

Clustering using Mixture Models 

There is a long tradition in the statistical literature of 
..-:-, ,:..+....A ,,,4_1, +n ,,,C,,>.m nnrrhnh;l;ot;e pl,,atp,._ uslllg Il‘lAlJUIG III"UI?IU IJ" pGrL"Lll, ~L"vcuurrru"rL. .dIU""YI~ 

ing (Titterington, Smith, and Makov (1986)). A key 
feature of the mixture approach to clustering is the 
ability to handle tincertainty about cluster member- 
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ship, cluster locations and shapes, and the number of 
clusters in a theoretically-sound manner. 

Let X be a d-dimensional random variable and let 
: represent a particular value of _X, e.g., an observed 
data vector with d components. A finite mixture prob- 
ability density function for X can be written as 

f@) (@P)) = & ajgj (&9j) (1) 
j=l 

where k is the number of components in the model 
and each of the gj are the component density functions. 
The Bj are the parameters associated with density com- 
ponent gj and the OIj are the reiative “weights” for each 
component j, where Cj oj = 1 and oj > 0,l 5 j 5 k. 
(P@) = (cY’1,. . .) a,$,&, . . . ,ek} denotes the set of pa- 
rameters for the overall mixture model. for exam- 
ple Titterington, Smith, and Makov (1986). Cross- 
validated log-likelihood provides a practical and sound 
way to estimate how many clusters k best fit a given 
data set (Smyth, 1996). 

The Northern Hemisphere 700mb 
Geopotential Height Data Set 

We analyzed the same data as has been used in most of 
the other clustering studies on this topic (e.g., Kimoto 
and Ghil (1993)), namely, twice-daily observations of 
the NH 700-mb geopotential heights on a loo x loo 
diamond grid, compiled at NOAA’s Climate Analysis 
Center. The data are subject to a number of specific 
preprocessing steps, each of which are considered desir- 
able from an atmospheric science viewpoint. The orig- 
inal 541 grid points are thinned out to yield 358 grid 
points. This “thinning” removes some points north of 
60” so that the resulting map has a more even distri- 
bution of grid points. For each resulting grid point, 
a 5-day running average is applied to remove seasonal 
effects. The resulting time series (one at each grid 
point) are called height anomalies, in the sense that 
the remaining signal is the anomalous departure from 
seasonal trends. A “winter” is defined as the 90 day 
Opnllnn,-n ,C Qnnmnl;do ham;,knm T\n nAromLn 1-t 4 ucIyuxzII~~ “I ~~I”IIIcL.ll~D LJ.z~jlLllllll~ “I1 uc.I..zIIIII~L IUY “I 
each year. All analysis was performed on the winter 
data, namely the 44 x 90 = 3960 days defined to be 
within the winter periods from Dee 1st 1949 extending 
through March 31st 1993. Non-winter data has much 
weaker persistence patterns and, thus, is typically ex- 
cluded from analysis. 

As is common practice in atmospheric science, the 
dimensionality is reduced via principal component 
analysis of the anomaly covariance matrix (a step 
referred to as empirical orthogonal function analysis 
or EOF analysis in the atmospheric science litera- 
ture). We will use the atmospheric science notation 
of “EOFs” to refer to principal component directions 
in the rest of the paper. Projections used in the re- 
sults described in this paper range from the first 2 to 
the first 12 EOFs. 
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Figure 1: Scatter plot of NH winter anomalies pro- 
jected into first 2 EOF dimensions 

The original 541 grid points for each time index are 
reduced to a low-dimensional projection by this series 
of preprocessing steps. Figure 1 shows the 3960 data 
points projected onto the first two EOFs. It is in this 
low-dimensional space that cluster analysis is typically 
performed. From a data analysis viewpoint one may 
well ask whether or not the results will be sensitive to 
any of the preprocessing steps performed above. One 
way of addressing this is to find a way to compare clus- 
ter results both with and without preprocessing: we 
describe such a comparison later in the paper. It is also 
important to note, however, that while alternative pre- 
processing steps might suggest themselves purely from 
a data analysis viewpoint (such as the use of other 
projection methods), it is important to investigate (as 
described here) the application of an objective cluster- 
ing methodology on data which is as similar as possible 
to that used in previous studies. 

Application of Mixture Model 
Clustering 

We applied the mixture model cross-validation 
methodology (Smyth, 1996) on the two-dimensional 
data set in Figure 1. In all experiments the number of 
cross-validation partitions was M = 20 and the frac- 
tion of data p contained in each test partition was set 
to 0.5. The number of clusters (mixture components) 
was varied from k = 1 , . . .15. The log-likelihoods 
for k > 6 were invariably much lower than those for 
k < 6 so for clarity only the results for k = 1, . . . ,6 are 
presented. The estimated posterior probabilities and 
cross-validated log-likelihoods are tabulated in Table 
1. The posterior probabilities indicate clear evidence 
for 3 clusters, i.e., the cross-validation estimate of the 
posterior probability for 3 clusters is effectively 1 and 
all others are effectively zero. 

Note that the absolute values of the log-likelihoods 
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Table 1: Cross-validated log-likelihood and estimated posterior probabilities, as a function of 6, from 20 random 
partitions of 44 winters. 

k=l k=2 k=3 k=4 k=5 k=6 

Cross-validated log-likelihood -29164 -29153 -29137 -29148 -29156 -29165 
D-.C-.:,.. ,-.l.,.I.:l:+.. .r”*b~II”I p”“v”“““y 0.0 0.0 I.0 0.0 0.0 0.0 

Figure 2: Log-likelihood of the test partition data 
on each cross-validation iteration relative to the log- 
likelihood of the Ic = 3 model for (from top) (a) k = 1, 
(b) k = 2, (c) k = 4, (d), k = 5, and (e) k = 6. 

are irrelevant-strictly speaking, likelihood is only de- 
fined within an arbitrary constant. Figure 2 shows the 
test log-likelihoods on the 20 different cross-validation 
partitions, relative to the log-likelihood on each parti- 
tion of the k = 3 model (dotted line equal to zero). 

Ic = 3 clearly dominates. Note that for any particu- 
lar partition k = 3 is not necessarily always the highest 
likelihood model, but on average across the partitions 
it is significantly better than the other possible values 
for k. 

Robustness of the Results 
Numerous runs on the same data with the same pa- 
rametern hilt. wit.h different ~~.nrlnmlv-c.hnnp.n win&y ______ d-__- __” .._“__ _________ .i ___-___-__ J ---_I--- 
partitions (with M = 20) always provided the same 
result, namely, an estimated posterior probability of 
p(k = 3) 2 0.999 in all cases. The relative cross- 
validated likelihoods over 10 different runs are shown 
in Figure 3. 

We also investigated the robustness of the method to 
the dimensionality of the EGF-space. Tlne unfiltered 
anomalies were projected into the first d EOF dimen- 
sions, d = 2,. . . , 12. As a function of the dimensional- 
ity d, the posterior probability mass was concentrated 
at k = 3 (i.e., p(k = 3) % 1) until d = 6, at which 
point the mass “switched” to become concentrated at 
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Figure 3: Cross-validated log-likelihoods for k = 
1 >***, 6 relative to the cross-validated log-likelihood of 
the k = 3 model for 10 different randomly chosen cross- 
validation partitions 

k = 1 (i.e., p(k = 1) M 1)). Thus, as the dimen- 
sionality increases beyond d = 6, the cross-validation 
method does not provide any evidence to support a 
model more complex than a single Gaussian bump. 
This is to be expected since the number of parame- 
ters in a k-component Gaussian mixture model grows 
as kd2. Thus, since the total amount of data to fit the 
models is fixed, as the dimensionality d increases the 
estimates of the more complex models are less reliable 
and cannot be justified by the data. Cross-validation 
will attempt to pick the best model which can be fit 
to a finite set of data. If there are enough data, this 
best model will correspond to the true model, while if 
there are too few data (relative to thd conrplexity of the 
models being fit), the method will be more conservative 
and choose a simpler model which can be supported by 
the data. Another interpretation of this result is that 
empirical support of the 3-component model in higher 
dimensions could require records on the order of a few 
hundred years long, rather than the 44 years of data 
^.% _..^.. Cl.. ,..,:1..l.1- I;ULLtxICIy aYalla”lc, 

For the three-component Gaussian model we investi- 
gated the variability in the physical grid maps obtained 
across different numbers of EOF dimensions. Note that 
cluster centers in the EOF space can be ‘<mapped back” 
to equivalent grid points in the original spatial grid to 
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Table 2: Pattern correlation coefficients between maps 
fitted using d EOF dimensions, 3 < d 5 12, and maps 
fitted using 2 EOF dimensions. 

- 
EOF Dimensionality d r1 r2 r3 

: 
0.978 0.961 0.998 
0.974 0.960 0.999 

5 0.947 0.957 0.976 
6 0.946 0.946 0.957 
7 0.945 0.951 0.945 
8 0.931 0.946 0.938 
9 0.938 0.953 0.941 

10 0.946 0.951 0.949 
11 0.927 0.943 0.934 
12 0.945 0.946 0.935 

create spatial contour maps. The unfiltered anomai 
lies were projected into the first d EOF dimensions, 
d = 3,..., 12 and a Gaussian mixture model with 3 
components was fit to the data for each case. For each 
value of d, 3 physical maps were obtained from the cen- 
ters of the 3 Gaussians. The pattern correlations (as 
defined in Wallace and Cheng (1993), page 2676) were 
then calculated between each of these maps (from d di- 
,mensions) and the corresponding maps obtained from 2 
EOF dimensions. The results are shown in Table 2. It 
is clear that here is a very high correlation between the 
2d EOF maps and maps obtained in up to 12 EOF di- 
mensions. One can conclude that the dimensionality of 
the EOF space does not affect the qualitative patterns 
of the physical maps in any significant manner, using 
the Gaussian mixture model clustering procedure. 

Comparison with Bayesian and Penalized 
Likelihood Techniques 
We ran AUTOCLASS 2.0 (a well-known Bayesian ap- 
proximation method for mixture modeling from NASA 
Ames) on exactly the same data as described above. 
The default version of AUTOCLASS (full covariance 
matrices) returned Ic = 3 as by far the most likely 
choice for the number of clusters, i.e., no other Ic val- 
ues had any significant posterior probability. For the 
same data we also calculated the BIC criterion which 
penalizes the training log-likelihood by an additive fac- 
tor of -lc/2 log N. The BIC criterion was maximized 
at k = 1 (by a substantial margin). This is consistent 
with previous results which have reported that the BIC 
criterion can be over-conservative. 

Scientific Interpretation of the E = 3 
Result 

Given that there is strong evidence for 3 Gaussian clus- 
ters we fit a 3-component Gaussian model to the en- 
tire set of 44 winters in the 2d EOF space (rather than 
partitioning into halves as before) and examine the re- 
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Figure 4: (a) Scatter plot of NH winter anoma- 
lies projected into first 2 EOF dimensions with esti- 
mated means and covariance matrix shapes (ellipses) 
superposed as fitted by the EM procedure with a 3- 
component Gaussian mixture model. (b) Contour plot 
of the probability density estimate provided by the 3- 
component Gaussian mixture model fitted to the 2d 
EOF data. 
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Figure 5: Height anomaly maps for the 3 cluster centers of the mixture model 
(left: panels a, c and e) and of Cheng and Wallace’s (1993) hierarchical cluster 
model (right: panels b, d and f) which are reproduced in Wallace (1996). See 
text for details. Panels b,d and f reproduced by permission of J. M. Wallace 
and Springer-Verlag. 
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