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Abstract 

Discretization is the process of dividing a continuous- 
valued base attribute into discrete intervals, which 
highlight distinct patterns in the behavior of a re- 
lated goal attribute. In this paper, we present an in- 
tegrated visual framework in which several discretiza- 
tion strategies can be experimented with, and which 
visually assists the user in intuitively determining the 
appropriate number and locations of intervals. In ad- 
dition to featuring methods based on minimizing clas- 
sification error or entropy, we introduce (i) an opti- 
mal algorithm that minimizes the approximation in- 
trodnced lp discretimtinn ad (ii\ a nnvd al!mrithm --L---2-_‘-.>--- A-_ \.., 1 -_- .-_ -~o-~‘L-- 
that uses an unsupervised learning technique, cluster- 
ing, to identify intervals. We also extend discretiza- 
tion to work with continuous-valued goal attributes. 

1 Introduction 
Discretization is the process by which the range of a 
given base attribute (or independent variable) is parti- 
tioned into mutually exclusive and exhaustive intervals 
based on the value of a related goaE attribute (or de- 
,r.,A#w,, .,nl:nhlr\\ ..,hnnn Llthn.r:r,- . ..n . . . . .. lA l:l,, cr. 
pcxrucxrll "cumvlr;,, WIIVJG l.J~ua”I”I wr; W”UlU IlILt? b” 

understand or predict. While the goal is typically 
discrete/nominal-valued, we extend discretization to 
continuous goals. 

The motivations for discretization are: 
Summarization: it provides a high level overview 
of the behavior of the goal vis-a-iris the base, by par- 
titioning the base into intervals within which the goal 
behavior is similar. 
Decision Tree Splits:, when a continuous’ attribute 
is used as a decision variable, it needs to be broken 
into regions, each of which constitutes a path out of a 
decision node. 
Simplicity of learning: several learning algorithms 
restrict attributes to be discrete. Discretization al- 
lows us to convert continuous attributes into nominal- 
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valued ones, and discrete attributes into intervals, al- 
beit with some concomitant i0ss of information. 

We refer the reader to (Dougherty, Kohavi, & Sa- 
hami 1995), for an excellent survey of the work on 
discretization. The following references constitute the 
most germane comparisons. (Fayyad & Irani 1993) 
use minimum entropy as a discretization metric and 
use the minimum-description-length principle to de- 
termine the appropriate number of intervals. (Kerber 
1991) suggests that intra-interval similarity should be 
maximized and inter-interval similarity should be min- 
imized, (MRA.SS 1994) nrovider, an efficient kxwithm ,- --.-.-_ -L L -, r-- __--L -__ _________ 1 1-o---L _____ 

that minimizes classification error. 
The input to our discretization algorithms could be 

either the raw data or a joint probability density func- 
tion (pdf) of the base and goal derived from the data. 
Using the data eliminates errors introduced by estimat- 
ing a pdf. However, using a pdf enables us to exper- 
iment with more meaningful error metrics. It allows 
experienced users to encode their intuitions in a disci- 
plined fashion, by altering the shape and type of kernel 
used for density estimation. Further, it lends itself to 
a ciient-server architecture where density estimation 
could be done on the server (perhaps as a data-blade) 
and a compact representation shipped to the client to 
enable interactivity. 

1.1 Contributions 

We have: 

1. built a visual framework (Figure 1) which allows 
experimentation with different discretization strate- 
m.:ncl rl:GL,n,+ m.~ml.nro A:,+,,..,l, ,-a..+ r\e:n+n n&h,,, pxi, uIIIczIrx1~ IIUIIILI-ZLD “I lllbcil “axi) Lub-p”‘IIbJ “UICX 

than those recommended by the algorithm, and dif- 
ferent metrics to judge goodness of discretization 
(Section 5). We believe that the single most impor- 
tant contribution of this paper is its demonstration 
that the visually interactive paradigm of learning, 
which brings the user and machine into a tight loop, 
is both viable and useful. 
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2. 

3. 

4. 

5. 

6. 

introduced a new discretization algorithm based on 
clustering (Section 3). 

formalized the notion that discretization is a form of 
approximation and provided an efficient algorithm 
that captures this intuition (Section 2). 

provided a proof (by example) that the algorithm of 
(Fayyad & Irani 1993) does not find the best multi- 
interval split whereas our algorithm does (Section 2). 

extended discretization to work with continuous goal 
attributes and demonstrated that doing so, rather 
than imposing artificial categories on the goal, can 
be advantageous (Section 4). 

demonstrated that density estimation can be gain- 
fully used for interactive discretization (Section 7). 

2 Discretization to minimize 
difference 

Intuition The effect of discretization is to approxi- 
mate the goal behavior as being the same over an entire 
!-..-."A :..J.r\..-ml U,.,"?. .l:,.,....-.+:~,c:~, ft"J..b"," &L, :,:,c 
ucmt: IllbCl "al. IltmLC) UIDLl~blzxzbl"lI J‘"‘bW‘" Cllt: J""Ib 

pdf, PG,B, of the goal G and the base B, to a constant 
value within each interval. This suggests that the best 
discretization is that which minimized the approxima- 
tion introduced. 

Given p and a set of intervals Z = {Ii}, one 
can define the approximation qG,B as follows: (i) 
h, b2 E Ii * qG,B(g, bl) = qG,B(g, 62) and (ii) 
&I. c, PG,Bbr bldb = I&. c, qG,B[& b]db. Hence, 
we &ant to find the set of iniervals that minimizes the 
distance between p and q. To indicate its derivation 
from Z, we write q as q(1). 

Metrics used to measure the distance between the 
two pdfs, p and q, are: 
1. Kulback-Leibler (KL) distance (Cover & 
Thomas 1991) = D(pllq) = &p(z) log $$ 
2. L-1 norm D(Plld = s,cc, I PWI -cdgl~l I) P[Wb. 

Our implementation offers minimization of Class 
Information Entropy (CIE) (Fayyad & Irani 1993) 
as an option. CIE = - xi q(bi) Cj q(gjlbi) log(gjIbi) 
where i spans the intervals, and j spans the values the 
goal can assume. It can be shown that minimizing 
KL-distance is equivalent to minimizing CIE. 

Problem Statement For ~m-mutational mn-noses. r---ll--_-----.- r--r-LA, 
we evaluate p at n values of B chosen so that the inte- 
gral of the density between adjacent points is roughly 
the same. Formally, let pG,B(g,b) be a pdf s.t. g E 
{gi),b E Z?O = {bi) where bi E R,i < j + bi < 
bj, l&l = n. Given Bo, define CO = { bi+ii+l }. With 
any set of cutpoints, C, one can define an associated 

set of mutually exclusive and exhaustive intervals, de- 
noted as Z(C). 

Problem Definition 2.1 Given a pdfp evaluated at 
a set of initial points Bo, a candidate set of cutpoints 
CO, a desired number of cutpoints C, jind Copt E CO 
such that (i) [C&l = C (ii) D~llq(Z(C,,t))) is mini- 
mum. 

Algorithm SP We create a weighted, undirected 
graph where the nodes are the candidate cutpoints, 
Co, augmented by two distinguished vertices, a source 
S and a destination D representing the left and right 
extrema of the base. Each node i has a location Eoci 
such that i < j + loci < Eocj. We create edges 
eij = (i,j),i < j. The weight, wi,j of ei,j, is the 
distance between p and q over the interval spanned by 
eij . Recall that this distance is D(pllq) conditioned 
on b E [Zoci,Zocj]. Finding the optimal cutpoints is 
equivalent to finding the shortest path from S to D of 
a specified length, which is C + 1 in our case. This 
is easily done by dynamic programming. Note that 
i < k < j + ~ik + Wkj < Wij. This reflects our intu- 
ition that the more the number of cutpoints, the less 
the discrepancy between p and q. 

Theorem 2.1 Algorithm SP solves Problem 2.1 in 
O(n”(C + 1)) time using O(n”) space. 

Proof Sketch: The graph has O(n2) edges. Let 
sp(i, j, 1) be the shortest path from i to j of length 
1. Calculating sp(S, D, Ic) requires O(n) work to find 
the minimum of sp(S, i, Ic - 1) + sp(i, D, 1). Maintain- 
ing sp(S, i, k) for all values of i requires O(n2) work for 
each value of L. Creating a single edge weight could re- 
quire as much as O(n) work, since it might span O(n) 
intermediate nodes. However, earful organization and 
re-use of computations and amortizing the cost over all 
edges, allows us to compute all edge weights in O(n2) 
work. To see why this is true, observe that sp(i+l, j, 1) 
can be easily derived from sp(i, j, 1) by subtracting the 
influence of sp(i,i + l,l). The “subtraction” process 
requires O(1) work but is too detailed for presentation 
here. q 

Sub-optimality of greedy algorithms (Fayyad & 
Irani 1993)‘s algorithm to discretize based on minimiz- 
ing Class Information Entropy (CIE) is greedy, in that 
it ~V-PEPVT~~PP nuictintr rhnirnc nf rlrtnnintc rirhrm waroh- AU y&u”.,’ I.,” V”‘““‘LLt, “LA”.UU” “I YYYy”“.‘“” ..ALVSI ““~I_“~- 
ing for additional cutpoints. A simple example shows 
that this is a sub-optimal strategy. Let the data ini- 
tially fall into 4 intervals and let the goal have 2 classes. 
Let ci,j be number of instances in interval Ii of class 
j. Let cl,1 = 48,~~ = 16, c2,1 = 65,~~ = 53, 
C3,1 = 43,c3,2 = 73, C4,l = 84,C4,2 = 70. The best 
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one cutpoint is between intervals 1r/12. The best two 
cutpoints are between intervals I2/I3 and Is/14 yield- 
ing CIE = 0.67117 . A greedy algorithm, forced to 
retain its first cutpoint when looking for its second, 
could not find the optimal two cutpoints. Setting cut- 
points between intervals 11 /Is and 1s /14 yields CIE = 
0.67168. Setting cutpoints between intervals II/&J and 
I2/I3 yields CIE = 0.67222. 

3 Maximizing adjacent differences 
Another approach to discretization is suggested by the 
rationale that adjacent intervals ought to be as dis- 
similar as possible; else, they should not have been 
separate intervals at all. Kerber (Kerber 1991) calls 
the “defining characteristic of a good discretization” 
as “intra-interval uniformity and inter-interval differ- 
ence.” However, his Chimerge algorithm has the draw- 
backs that (a) it does not specify what objective func- 
tion it is trying to optimize (b) the algorithm merges 
small intervals to achieve large ones. However, for 
small intervals, the x2-test, used to judge whether in- 
tervals ought to be merged, is imprecise. 

Our approach uses ciustering to partition the space 
(defined by the range of the base and goal attributes) 
into classes so as to minimize intra-class differences and 
maximize inter-class differences. We then project the 
class descriptions down onto a single axis, the base, to 
determine intervals. The advantage is that we leverage 
the robustness of clustering algorithms. We use a vari- 
ant of AutoClass, which has performed well in many 
other domains (Cheeseman & Stutz 1996). We believe 
that this is an intersting application of unsupervised 
learning techniques for a supervised learning problem. 

Our notion of clustering, explained below, hypoth- 
esizes that there exists a parametrized description of 
the data generation process that needs to be discovered 
by the clustering algorithm. The data is presented to 
the clustering algorithm which aims to find the best 
description. This typically involves a computationally 
expensive search. 

3.1 The Finite Mixture Model (FMM) 
The FMM postulates that the data is generated in the 
following fashion. Assume that the number of classes, 
J, is known. First, class probabilities, pj are selected. 
Assume attributes are independent. To each attribute 
Ic of each class _i is assigned a functional form Fjik with 
parameters {yj,,~+} (e.g., a Gaussian and corresponding 
mean and standard deviation ,Uj,k, aj,h). Typically, the 
choice of functional forms is restricted to a few simple 
ones. 

Instances are generated as follows. First select a 
class: class j is selected with probability pj. The lath 

attribute of the instance is determined by drawing a 
random variable from Fj,k and parameters {yj,h}. 

3.2 Problem Statement 
Given the data, the number of classes, C + 1, and the 
types of functional forms permissible, the first prob- 
lem is to find the best parameters (whether Maxi- 
mum Likelihood estimates or Maximum A Posteriori 
estimates, if a Bayesian approach is preferred). Let 
vj(b) = Fj(b : {Y~,B}) be the probability that a ran- 
dom variable B drawn from the distribution Fj,B with 
parameters {T~,B} has values in [b, b + dbl. For ex- 
ample, N(z : ~,a) = &exp(-i(y)2) Let q(b) 
be the probability that an instance whose base value 
is b belongs to class j i.e., wj(b) = ~j vj (b) 

Cjpjuj(b)’ Let 

K(b) = j’ s.t. 7” wj(b) = wjt(b). 

Problem Definition 3.1 Given C and a FMM, the 
problem is to find a set of C + 1 mutually exclusive and 
exhaustive intervals Z = {Ii} such that xl, x2 E li + 
K(x1)= K(x2). 

TTT- ---J L^ --^L-:^L LL- ---L,-- L..f--.. __-- ^^- --I-... 
vve ueeu IJO L'es:LI-lcb lJ11e pI-ulJlerrl uelul-e we ca11km1ve 

it because: 

1. the base attribute is continuous and needs to be dis- 
cretized (else an infinity of conditions of the form 
(Vx E Ii, K(x) = j’) will need to be verified). We 
do so as in Section 2. 

2. the projection of J classes on to a single axis does not 
always yield J intervals. This is because it may not 
be possible to satisfy the condition (Vx E li, K(s) = 
j’) for certain FMMs. For example, consider two 
equally weighted classes, one being N(0, 1) and the 
other being a bimodal distribution, consisting of 
N(-2,1) and N(+2,1). In this case, there exists 
no partitioning of the real number line into 2 inter- 
vals such that the condition (Vx E Ii, K(x) = j’) can 
be satisfied. Or one class may be subsumed by the 
other classes i.e. 3jVxK(x) # j. 

Problem Definition 3.2 Given a FMM consisting 
of J classes and a candidate set of cutpoints Co, find 
the smallest set C opt c CO, (corresponding intervals 
are I = {Ii}), such that x1, x2 E Ii 3 K(xl) = 
K&z). 

Theorem 3.1 Problem 3.5 can be solved in O(IColJ) 
time. 

Proof Sketch: Classifying a cutpoint into one of J 
classes using a single attribute (the base) requires O(J) 
work. We then make a single pass over the Cc cut- 
points, from left to right, accumulating adjacent cut- 
points with the same classification into an interval. 0 
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4 Continuous goal attributes 
Most existing work on discretization has been confined 
to discrete goal attributes i.e., where each instance has 
a nominal valued class attribute. A continuous valued 
goal attribute would have to be discretized (e.g., re- 
turn on investment could be mapped to {High, Low }) 
to fit into existing paradigms. We suggest that there 
are situations where it is preferable not to coerce an 
intrinsically continuous goal into discrete classes prior 
to discretizing the base e.g., discretizing age based on 
dollar value of insurance claims paid. 

To test this hypothesis, we discretized a synthetic 
data set created using the FMM (Section 3.1) with 2 
attributes (attribute 1 is base and attribute 2 is goal) 
and 3 classes (J = 3, K = 2) and parameters: 

‘dj 13j = l/J, Qj’Vk uj,k = 1 

111,l = -2, P2,l = 0, P3,l = 2 

/42,1 = -2, /J2,2 = %P3,2 = 4 

Discretizing the goal as Positive and Negative and 
setting the number of intervals to be 2 yielded cut- 
points of -2.174 and 0.157. However, without dis- 
cretizing the goal, we got cut-points of -1.0012 and 
1.0949. We believe that these cut-points correctly 
capture the difference between the positive and more 
positive instances which is washed out if the goal is 
discretized. However, if the goal were discretized as 
Negative (z < 0), Positive (0 < z < 2) and More- 
Positive (2 5 z), we get cut-points of -1.425 and 1.405. 

While the algorithms of Sections 2 and 3 extend 
naturally to continuous goals, extending the minimum 
error discretizer is not as straight-forward. This is be- 
cause it requires one to quantify the error associated 
with an instance having a goal value of z when the 
average goal value in the interval is y. In contrast, 
measuring the error of classifying an instance as blue 
when it is in fact red is simple. None of the error met- 
rics we considered seemed quite right. 

5 System Description 
We briefly describe some salient features of Id-Vis, 
our interactive, visual data-mining tool. The GUI is 
built using Tcl/Tk (Ousterhout 1994) and Tix (Lam 
1996). Id-Vis currently runs under Windows NT* 4.0 
on a 200 MHz. Pentium(R) Pro Processor. 

Snm~ nf thn Gmr tan&a nf n,,r rlmirm nhilnwmhv ITP. l.J”I.IU “L “Al.., ‘,bJ “~IIU”” “L “US U”Ul~” y’A’~“““y’LJ US”. 

Multiple Portals Users can interact with the sys- 
tem at their level of expertise and comfort. The 
system provides the user with information and ma- 
nipulation handles at the level of detail specified. For 
example, the user can go so far as to alter the pdfs by 

tweaking the kernel width used for the density esti- 
mation, or can let the system choose all parameters, 
including the discretization type, and the number 
and locations of the cut-points. 

Client-Server Partitioning The database resides 
on, and operations thereupon take place on, the 
server, while an appropriate distillation of the 
data is sent to the client, where all of the visual, 
GUI-based operations are performed at interactive 
speeds. When necessary during drill-down, requests 
are made of the server for more narrowly-focused 
data. 

User Primacy User-chosen values are always given 
priority over system-derived values. The latter, 
which are optimum by some metric, continue to be 
available as fall-back options. 

Interactivity Immediate feedback is provided dur- 
ing user experimentation, in easy-to-read graphical 
modes. Knowledge gained from this process is al- 
ways available for immediate recall. 

Portability All object creation/display operations 
are written in Tcl/Tk/Tix, while all speed-critical 
operations are implemented in ANSI C. 

Each analysis tool in Id-Vis presents the user with 
a graphical interface containing a set of interactive 
controls, display windows which project an immediate 
feedback to the manipulation of these controls, and a 
means to propagate the user-chosen values and param- 
eters downstream. 

Figure 1 shows the interface to the Discretizer tool. 
The top pane contains the interactive controls for mod- 
ifying the type of discretization, the type of badness 
measure (see Section 6 for definition) employed to eval- 
uate the results, the number and locations of the cut- 
points, and the loss functions associated with the var- 
ious goal categories, for a discrete goal. 

The bottom pane contains the display windows that 
provide the feedback. In this pane, the top left window 
displays the results of the discretization process, i.e. 
the base discretized into intervals,‘each with similar 
goal behavior. To start with, the system shows the 
optimal (i.e. with the least badness value) locations 
for the cut-points, for the Min. Classification Error 
type of discretization and classification error as the 
badness measure. Within each interval are shown the 
relative proportions of the goal categories, weighted by 
the loss functions. This display window is interactive, 
and provides controls for the user to add, delete and 
move the cut-point locations to satisfy specific user 
constraints or curiosity. Also, using the controls in the 
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Figure 1: Id-l/is Discretizer Window 

top pane, the user can experiment with other types 
of discretization algorithms. The bottom left display 
shows the locations of the valid cut-points for each type 
of discretization that the user tries out. 

The bottom right display shows the chosen badness 
measure’s values, for the current number of cut-points, 
over all discretization types. Blank fields indicate that 
the computation is not yet performed. When the user 
starts experimenting with the number and/or the loca- 
tions of the cut-points, this window provides a feedback 
on how the user-chosen values are performing relative 
to the system-derived optima. This serves as an aid 
to users in determining the extra cost involved in their 
choice. 

The central philosophy is that the system should 
place the user within the appropriate context (e.g. in 
the discretizer window, display system-derived num- 
ber and locations of the cut-points) and provide the 
user with the opportunity to intelligently modify (e.g. 
display the impact on accuracy of these modifications) 

these optima and propagate them downstream. 

5.1 “To cut or not to cut” 9 
The top right display window in the Discretizer inter- 
face displays the behavior of the chosen badness mea- 
sure, for the current type of discretization, as the num- 
ber of cut-points increases. This is very useful to the 
user in determining the number of cut-points that best 
discretize the data. All of our discretization strategies 
show a marked drop-off in the incremental reduction in 
the badness measure, when the number of cut-points 
is increased beyond that which is logical for the data. 
It is visually apparent to the user in a compelling man- 
ner. We will discuss more about this in Section 7. 

5.2 Client-Server Interactions 
When the server ships the data to the client (either 
initially, or in response to a change in the discretiza- 
tion type etc.), it executes the following steps: 1. after 
sorting the data by the base values, it streams this raw 
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data past a compactor which keeps track of the goal be- 
havior and assembles large regions tagged with a sum- 
mary description of the regional contents. e.g. region 
3 has 150 instances of red-category goals, 20 of green- 
category and 15 of blue-category. The explicit loca- 
tions of these instances within a region are not tracked; 
2. if the client needs the data in a non-pdf format (as 
at the start), these regions, along with their tags, are 
directly shipped to the client. Otherwise, the origi- 
nal data is streamed past a density-estimator, which 
generates a probability density function; 3. this pdf is 
evaluated at uniformly spaced points (say, 20000) and 
the results are sent to a distiller. It then re-evaluates 
the pdf such that the integral of the density between 
adjacent points (say, 1000) is equi-probable; 4. this 
distilled pdf is finally shipped to the client. 

As mentioned earlier, the top left display in the Dis- 
cretizer window shows the relative proportions of the 
goal categories within each interval. If more detailed 
information is desired, the user can click on the Drill 
Down button in the top pane. The client then asks 

Figure 2: Drill Down Results 

the user about the accuracy constraints on the request 
If these can be met using the locally available data, the 

. client generates the necessary population data. Else, 
the drill-down request, along with the cut-point loca- 
tions, is transmitted to the server. Depending on the 
accuracy required, the server computes the population 
figures within each interval either from the existing re- 
gions, or regenerates the regions appropriately. This 
data is then displayed on the client desk-top in a pop- 
up window (Figure 2). In future versions, we intend 
to furnish the user with the estimated costs of meeting 
the various levels of accuracy, before the user makes 
the choice. 

We have experimented with several discretization 
strategies, that differ both in the intuitions behind 
them as well in their mathematical development. In 
this section, we report on our experiments using these 
strategies on different data sets. 

Table 1: Cut-Point locations 

The following is a brief description of the data-sets 
upon which the experiments were performed. The 
Auto-Mpg (DSl) (Merz & Murphy 1996) contains 
398 instances concerning city-cycle fuel consumption, 
with each instance describing 6 continuous and 2 dis- 
crete attributes. We pruned it to 385 to focus on 
4/6/8-cylinder cars. The Synthetic Data-set 1 
(DS2) contains 1000 instances obtained from a pdf 
consisting of two overlapping normals, with each in- 
stance describing a discrete goal over a continuous 
base. The Synthetic Data-set 2 (DS3) contains 
5019 instances concerning the relation between the 
l--- _~ -I -..I----L!l-- ------J --a LL- I?---:,-- :------- TJyypes WI ialLWIIIWWIIt!S WWIIWI a.Ilcl IJIlt: 1a11111y 1IICUIIIBY. 

Figure 3 shows, for the Auto-Mpg data-set, the be- 
havior of the badness measure (i.e., the approximation 
introduced by partitioning the base range into inter- 
vals and assuming similar goal behavior throughout 
each interval) as the number of cut-points increases. 
For each type of discretization, only the correspond- 
ingly appropriate badness measure is shown, scaled 
such that the zero cut-point value = 100%. Obviously, 
the badness value decreases as the number of intervals 
allowed increases, reaching the zero value when the 
number of intervals equals the number of instances in 
the data-set. However, in practice, the desired number 
of intervals (for decision-support etc.) is rarely more 
than 6. For most data-sets, we can discern the logical 
number of cut-points from this figure, as the number 
when the incremental reduction in the badness (with 
increase in the number of cut-points) sharply falls off. 

Table 1 shows the cut-point locations, as returned 
by each type of discretization for the three data-sets, 
in each case for the logical number of cut-points. 

Columns 3, 4, 5, 6 show the cut-points found by 
using Classification Error CJZ, KL-distance KL, Ll- 
distance Ll, Class Information Entropy CIE, and Max- 
imum Likelihood Estimate EM. While DS.2 is best dis- 

- -?a- cretized with one cut-point (CPij, both DSi and US3 
are best discretized with two cut-points (CPl, CP2). 

‘7 Discussion 
Figure 3 shows quite clearly the rapid drop-off in the 
badness-measure reduction, with increasing number of 
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Figure 3: Badness Measure Behavior 

cut-points, beyond the number logical for the data. We 
feel that this figure provides a very intuitive and conve- 
nient means of assessing the number of cut-points that 
best discretize the attribute. In all the cases tested, 
both the CE and the CIE metrics show a dramatic 
and very conclusive plateauing of their badness mea- 
sures, beyond the appropriate number of cut-points. 
The other measures also show a pronounced decrease 
in the incremental reduction of the badness measure 
beyond the appropriate number of cut-points. 

All of the discretization strategies show substantive 
a~raement in the locations of the Cut-noints. The GE -o----- ____ 1 --_ 1.--_ -_--11-_-_L r --~~--- 
and EM metrics return values that are in close agree- 
ment, both being based on the raw data. Note that 
the cut-point locations returned by KL, Ll and CIE, 
while being based on the pdfs with all of the concomi- 
tant benefits, are also close to the above values for all 
practical purposes. 
* 

Discretization based on clustering EM often does not 
return a vaiid set of cut-points for cut-point numbers 
larger than this logical choice. For example, in the 
Auto-Mpg case, this algorithm returns only up to 2 
cut-points. So, unlike the other types of discretization, 
this method doesn’t have a one-to-one correspondence 
between the number of cut-points asked for and the 
~.~~ -~I. .~ -L...--- --1 numr3er rwxrneu. 

8 Conclusion and Future Work 
We have created a novel framework for interactive dis- 
cretization, which situates the user in an appropriate 
context and then provides visual controls to modify 
the knowledge gained and obtain graphical feedback of 
the consequences of doing so. We have incorporated 
two novel algorithms and have extended discretization 
to handle continuous goal attributes. 

An important area for future work is the partitioning 
of data and computation between the client and server 
so as to enable visual interactivity without compromis- 
ing scalability. 
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