
A Visual Interactive Framework for Attribute Discretization

Ramesh Subramonian, Ramana Venkata, Joyce Chen
Microcomputer Research Laboratory

Intel Corporation
2200 Mission College Blvd., MS RN6-35

Santa Clara, CA 95052-8119
{subramon, rvenkatl, qjchen}@gomez.sc.intel.com

Abstract

Discretization is the process of dividing a continuous-
valued base attribute into discrete intervals, which
highlight distinct patterns in the behavior of a re-
lated goal attribute. In this paper, we present an in-
tegrated visual framework in which several discretiza-
tion strategies can be experimented with, and which
visually assists the user in intuitively determining the
appropriate number and locations of intervals. In ad-
dition to featuring methods based on minimizing clas-
sification error or entropy, we introduce (i) an opti-
mal algorithm that minimizes the approximation in-
trodnced lp discretimtinn ad (ii\ a nnvd al!mrithm --L---2-_‘-.>--- A-_ \.., 1 -_- .-_ -~o-~‘L--
that uses an unsupervised learning technique, cluster-
ing, to identify intervals. We also extend discretiza-
tion to work with continuous-valued goal attributes.

1 Introduction
Discretization is the process by which the range of a
given base attribute (or independent variable) is parti-
tioned into mutually exclusive and exhaustive intervals
based on the value of a related goaE attribute (or de-
,r.,A#w,, .,nl:nhlr\\ ..,hnnn Llthn.r:r,- . ..n lA l:l,, cr.
pcxrucxrll "cumvlr;,, WIIVJG l.J~ua”I”I wr; W”UlU IlILt? b”

understand or predict. While the goal is typically
discrete/nominal-valued, we extend discretization to
continuous goals.

The motivations for discretization are:
Summarization: it provides a high level overview
of the behavior of the goal vis-a-iris the base, by par-
titioning the base into intervals within which the goal
behavior is similar.
Decision Tree Splits:, when a continuous’ attribute
is used as a decision variable, it needs to be broken
into regions, each of which constitutes a path out of a
decision node.
Simplicity of learning: several learning algorithms
restrict attributes to be discrete. Discretization al-
lows us to convert continuous attributes into nominal-

‘Copyright 01997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

82 KDD-97

valued ones, and discrete attributes into intervals, al-
beit with some concomitant i0ss of information.

We refer the reader to (Dougherty, Kohavi, & Sa-
hami 1995), for an excellent survey of the work on
discretization. The following references constitute the
most germane comparisons. (Fayyad & Irani 1993)
use minimum entropy as a discretization metric and
use the minimum-description-length principle to de-
termine the appropriate number of intervals. (Kerber
1991) suggests that intra-interval similarity should be
maximized and inter-interval similarity should be min-
imized, (MRA.SS 1994) nrovider, an efficient kxwithm ,- --.-.-_ -L L -, r-- __--L -__ _________ 1 1-o---L _____

that minimizes classification error.
The input to our discretization algorithms could be

either the raw data or a joint probability density func-
tion (pdf) of the base and goal derived from the data.
Using the data eliminates errors introduced by estimat-
ing a pdf. However, using a pdf enables us to exper-
iment with more meaningful error metrics. It allows
experienced users to encode their intuitions in a disci-
plined fashion, by altering the shape and type of kernel
used for density estimation. Further, it lends itself to
a ciient-server architecture where density estimation
could be done on the server (perhaps as a data-blade)
and a compact representation shipped to the client to
enable interactivity.

1.1 Contributions

We have:

1. built a visual framework (Figure 1) which allows
experimentation with different discretization strate-
m.:ncl rl:GL,n,+ m.~ml.nro A:,+,,..,l, ,-a..+ r\e:n+n n&h,,, pxi, uIIIczIrx1~ IIUIIILI-ZLD “I lllbcil “axi) Lub-p”‘IIbJ “UICX

than those recommended by the algorithm, and dif-
ferent metrics to judge goodness of discretization
(Section 5). We believe that the single most impor-
tant contribution of this paper is its demonstration
that the visually interactive paradigm of learning,
which brings the user and machine into a tight loop,
is both viable and useful.

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

2.

3.

4.

5.

6.

introduced a new discretization algorithm based on
clustering (Section 3).

formalized the notion that discretization is a form of
approximation and provided an efficient algorithm
that captures this intuition (Section 2).

provided a proof (by example) that the algorithm of
(Fayyad & Irani 1993) does not find the best multi-
interval split whereas our algorithm does (Section 2).

extended discretization to work with continuous goal
attributes and demonstrated that doing so, rather
than imposing artificial categories on the goal, can
be advantageous (Section 4).

demonstrated that density estimation can be gain-
fully used for interactive discretization (Section 7).

2 Discretization to minimize
difference

Intuition The effect of discretization is to approxi-
mate the goal behavior as being the same over an entire
!-..-."A :..J.r\..-ml U,.,"?. .l:,.,....-.+:~,c:~, ft"J..b"," &L, :,:,c
ucmt: IllbCl "al. IltmLC) UIDLl~blzxzbl"lI J‘"‘bW‘" Cllt: J""Ib

pdf, PG,B, of the goal G and the base B, to a constant
value within each interval. This suggests that the best
discretization is that which minimized the approxima-
tion introduced.

Given p and a set of intervals Z = {Ii}, one
can define the approximation qG,B as follows: (i)
h, b2 E Ii * qG,B(g, bl) = qG,B(g, 62) and (ii)
&I. c, PG,Bbr bldb = I&. c, qG,B[& b]db. Hence,
we &ant to find the set of iniervals that minimizes the
distance between p and q. To indicate its derivation
from Z, we write q as q(1).

Metrics used to measure the distance between the
two pdfs, p and q, are:
1. Kulback-Leibler (KL) distance (Cover &
Thomas 1991) = D(pllq) = &p(z) log $$
2. L-1 norm D(Plld = s,cc, I PWI -cdgl~l I) P[Wb.

Our implementation offers minimization of Class
Information Entropy (CIE) (Fayyad & Irani 1993)
as an option. CIE = - xi q(bi) Cj q(gjlbi) log(gjIbi)
where i spans the intervals, and j spans the values the
goal can assume. It can be shown that minimizing
KL-distance is equivalent to minimizing CIE.

Problem Statement For ~m-mutational mn-noses. r---ll--_-----.- r--r-LA,
we evaluate p at n values of B chosen so that the inte-
gral of the density between adjacent points is roughly
the same. Formally, let pG,B(g,b) be a pdf s.t. g E
{gi),b E Z?O = {bi) where bi E R,i < j + bi <
bj, l&l = n. Given Bo, define CO = { bi+ii+l }. With
any set of cutpoints, C, one can define an associated

set of mutually exclusive and exhaustive intervals, de-
noted as Z(C).

Problem Definition 2.1 Given a pdfp evaluated at
a set of initial points Bo, a candidate set of cutpoints
CO, a desired number of cutpoints C, jind Copt E CO
such that (i) [C&l = C (ii) D~llq(Z(C,,t))) is mini-
mum.

Algorithm SP We create a weighted, undirected
graph where the nodes are the candidate cutpoints,
Co, augmented by two distinguished vertices, a source
S and a destination D representing the left and right
extrema of the base. Each node i has a location Eoci
such that i < j + loci < Eocj. We create edges
eij = (i,j),i < j. The weight, wi,j of ei,j, is the
distance between p and q over the interval spanned by
eij . Recall that this distance is D(pllq) conditioned
on b E [Zoci,Zocj]. Finding the optimal cutpoints is
equivalent to finding the shortest path from S to D of
a specified length, which is C + 1 in our case. This
is easily done by dynamic programming. Note that
i < k < j + ~ik + Wkj < Wij. This reflects our intu-
ition that the more the number of cutpoints, the less
the discrepancy between p and q.

Theorem 2.1 Algorithm SP solves Problem 2.1 in
O(n”(C + 1)) time using O(n”) space.

Proof Sketch: The graph has O(n2) edges. Let
sp(i, j, 1) be the shortest path from i to j of length
1. Calculating sp(S, D, Ic) requires O(n) work to find
the minimum of sp(S, i, Ic - 1) + sp(i, D, 1). Maintain-
ing sp(S, i, k) for all values of i requires O(n2) work for
each value of L. Creating a single edge weight could re-
quire as much as O(n) work, since it might span O(n)
intermediate nodes. However, earful organization and
re-use of computations and amortizing the cost over all
edges, allows us to compute all edge weights in O(n2)
work. To see why this is true, observe that sp(i+l, j, 1)
can be easily derived from sp(i, j, 1) by subtracting the
influence of sp(i,i + l,l). The “subtraction” process
requires O(1) work but is too detailed for presentation
here. q

Sub-optimality of greedy algorithms (Fayyad &
Irani 1993)‘s algorithm to discretize based on minimiz-
ing Class Information Entropy (CIE) is greedy, in that
it ~V-PEPVT~~PP nuictintr rhnirnc nf rlrtnnintc rirhrm waroh- AU y&u”.,’ I.,” V”‘““‘LLt, “LA”.UU” “I YYYy”“.‘“” ..ALVSI ““~I_“~-
ing for additional cutpoints. A simple example shows
that this is a sub-optimal strategy. Let the data ini-
tially fall into 4 intervals and let the goal have 2 classes.
Let ci,j be number of instances in interval Ii of class
j. Let cl,1 = 48,~~ = 16, c2,1 = 65,~~ = 53,
C3,1 = 43,c3,2 = 73, C4,l = 84,C4,2 = 70. The best

Subramonian 83

one cutpoint is between intervals 1r/12. The best two
cutpoints are between intervals I2/I3 and Is/14 yield-
ing CIE = 0.67117 . A greedy algorithm, forced to
retain its first cutpoint when looking for its second,
could not find the optimal two cutpoints. Setting cut-
points between intervals 11 /Is and 1s /14 yields CIE =
0.67168. Setting cutpoints between intervals II/&J and
I2/I3 yields CIE = 0.67222.

3 Maximizing adjacent differences
Another approach to discretization is suggested by the
rationale that adjacent intervals ought to be as dis-
similar as possible; else, they should not have been
separate intervals at all. Kerber (Kerber 1991) calls
the “defining characteristic of a good discretization”
as “intra-interval uniformity and inter-interval differ-
ence.” However, his Chimerge algorithm has the draw-
backs that (a) it does not specify what objective func-
tion it is trying to optimize (b) the algorithm merges
small intervals to achieve large ones. However, for
small intervals, the x2-test, used to judge whether in-
tervals ought to be merged, is imprecise.

Our approach uses ciustering to partition the space
(defined by the range of the base and goal attributes)
into classes so as to minimize intra-class differences and
maximize inter-class differences. We then project the
class descriptions down onto a single axis, the base, to
determine intervals. The advantage is that we leverage
the robustness of clustering algorithms. We use a vari-
ant of AutoClass, which has performed well in many
other domains (Cheeseman & Stutz 1996). We believe
that this is an intersting application of unsupervised
learning techniques for a supervised learning problem.

Our notion of clustering, explained below, hypoth-
esizes that there exists a parametrized description of
the data generation process that needs to be discovered
by the clustering algorithm. The data is presented to
the clustering algorithm which aims to find the best
description. This typically involves a computationally
expensive search.

3.1 The Finite Mixture Model (FMM)
The FMM postulates that the data is generated in the
following fashion. Assume that the number of classes,
J, is known. First, class probabilities, pj are selected.
Assume attributes are independent. To each attribute
Ic of each class _i is assigned a functional form Fjik with
parameters {yj,,~+} (e.g., a Gaussian and corresponding
mean and standard deviation ,Uj,k, aj,h). Typically, the
choice of functional forms is restricted to a few simple
ones.

Instances are generated as follows. First select a
class: class j is selected with probability pj. The lath

attribute of the instance is determined by drawing a
random variable from Fj,k and parameters {yj,h}.

3.2 Problem Statement
Given the data, the number of classes, C + 1, and the
types of functional forms permissible, the first prob-
lem is to find the best parameters (whether Maxi-
mum Likelihood estimates or Maximum A Posteriori
estimates, if a Bayesian approach is preferred). Let
vj(b) = Fj(b : {Y~,B}) be the probability that a ran-
dom variable B drawn from the distribution Fj,B with
parameters {T~,B} has values in [b, b + dbl. For ex-
ample, N(z : ~,a) = &exp(-i(y)2) Let q(b)
be the probability that an instance whose base value
is b belongs to class j i.e., wj(b) = ~j vj (b)

Cjpjuj(b)’ Let

K(b) = j’ s.t. 7” wj(b) = wjt(b).

Problem Definition 3.1 Given C and a FMM, the
problem is to find a set of C + 1 mutually exclusive and
exhaustive intervals Z = {Ii} such that xl, x2 E li +
K(x1)= K(x2).

TTT- ---J L^ --^L-:^L LL- ---L,-- L..f--.. __-- ^^- --I-...
vve ueeu IJO L'es:LI-lcb lJ11e pI-ulJlerrl uelul-e we ca11km1ve

it because:

1. the base attribute is continuous and needs to be dis-
cretized (else an infinity of conditions of the form
(Vx E Ii, K(x) = j’) will need to be verified). We
do so as in Section 2.

2. the projection of J classes on to a single axis does not
always yield J intervals. This is because it may not
be possible to satisfy the condition (Vx E li, K(s) =
j’) for certain FMMs. For example, consider two
equally weighted classes, one being N(0, 1) and the
other being a bimodal distribution, consisting of
N(-2,1) and N(+2,1). In this case, there exists
no partitioning of the real number line into 2 inter-
vals such that the condition (Vx E Ii, K(x) = j’) can
be satisfied. Or one class may be subsumed by the
other classes i.e. 3jVxK(x) # j.

Problem Definition 3.2 Given a FMM consisting
of J classes and a candidate set of cutpoints Co, find
the smallest set C opt c CO, (corresponding intervals
are I = {Ii}), such that x1, x2 E Ii 3 K(xl) =
K&z).

Theorem 3.1 Problem 3.5 can be solved in O(IColJ)
time.

Proof Sketch: Classifying a cutpoint into one of J
classes using a single attribute (the base) requires O(J)
work. We then make a single pass over the Cc cut-
points, from left to right, accumulating adjacent cut-
points with the same classification into an interval. 0

a4 KDD-97

4 Continuous goal attributes
Most existing work on discretization has been confined
to discrete goal attributes i.e., where each instance has
a nominal valued class attribute. A continuous valued
goal attribute would have to be discretized (e.g., re-
turn on investment could be mapped to {High, Low })
to fit into existing paradigms. We suggest that there
are situations where it is preferable not to coerce an
intrinsically continuous goal into discrete classes prior
to discretizing the base e.g., discretizing age based on
dollar value of insurance claims paid.

To test this hypothesis, we discretized a synthetic
data set created using the FMM (Section 3.1) with 2
attributes (attribute 1 is base and attribute 2 is goal)
and 3 classes (J = 3, K = 2) and parameters:

‘dj 13j = l/J, Qj’Vk uj,k = 1

111,l = -2, P2,l = 0, P3,l = 2

/42,1 = -2, /J2,2 = %P3,2 = 4

Discretizing the goal as Positive and Negative and
setting the number of intervals to be 2 yielded cut-
points of -2.174 and 0.157. However, without dis-
cretizing the goal, we got cut-points of -1.0012 and
1.0949. We believe that these cut-points correctly
capture the difference between the positive and more
positive instances which is washed out if the goal is
discretized. However, if the goal were discretized as
Negative (z < 0), Positive (0 < z < 2) and More-
Positive (2 5 z), we get cut-points of -1.425 and 1.405.

While the algorithms of Sections 2 and 3 extend
naturally to continuous goals, extending the minimum
error discretizer is not as straight-forward. This is be-
cause it requires one to quantify the error associated
with an instance having a goal value of z when the
average goal value in the interval is y. In contrast,
measuring the error of classifying an instance as blue
when it is in fact red is simple. None of the error met-
rics we considered seemed quite right.

5 System Description
We briefly describe some salient features of Id-Vis,
our interactive, visual data-mining tool. The GUI is
built using Tcl/Tk (Ousterhout 1994) and Tix (Lam
1996). Id-Vis currently runs under Windows NT* 4.0
on a 200 MHz. Pentium(R) Pro Processor.

Snm~ nf thn Gmr tan&a nf n,,r rlmirm nhilnwmhv ITP. l.J”I.IU “L “Al.., ‘,bJ “~IIU”” “L “US U”Ul~” y’A’~“““y’LJ US”.

Multiple Portals Users can interact with the sys-
tem at their level of expertise and comfort. The
system provides the user with information and ma-
nipulation handles at the level of detail specified. For
example, the user can go so far as to alter the pdfs by

tweaking the kernel width used for the density esti-
mation, or can let the system choose all parameters,
including the discretization type, and the number
and locations of the cut-points.

Client-Server Partitioning The database resides
on, and operations thereupon take place on, the
server, while an appropriate distillation of the
data is sent to the client, where all of the visual,
GUI-based operations are performed at interactive
speeds. When necessary during drill-down, requests
are made of the server for more narrowly-focused
data.

User Primacy User-chosen values are always given
priority over system-derived values. The latter,
which are optimum by some metric, continue to be
available as fall-back options.

Interactivity Immediate feedback is provided dur-
ing user experimentation, in easy-to-read graphical
modes. Knowledge gained from this process is al-
ways available for immediate recall.

Portability All object creation/display operations
are written in Tcl/Tk/Tix, while all speed-critical
operations are implemented in ANSI C.

Each analysis tool in Id-Vis presents the user with
a graphical interface containing a set of interactive
controls, display windows which project an immediate
feedback to the manipulation of these controls, and a
means to propagate the user-chosen values and param-
eters downstream.

Figure 1 shows the interface to the Discretizer tool.
The top pane contains the interactive controls for mod-
ifying the type of discretization, the type of badness
measure (see Section 6 for definition) employed to eval-
uate the results, the number and locations of the cut-
points, and the loss functions associated with the var-
ious goal categories, for a discrete goal.

The bottom pane contains the display windows that
provide the feedback. In this pane, the top left window
displays the results of the discretization process, i.e.
the base discretized into intervals,‘each with similar
goal behavior. To start with, the system shows the
optimal (i.e. with the least badness value) locations
for the cut-points, for the Min. Classification Error
type of discretization and classification error as the
badness measure. Within each interval are shown the
relative proportions of the goal categories, weighted by
the loss functions. This display window is interactive,
and provides controls for the user to add, delete and
move the cut-point locations to satisfy specific user
constraints or curiosity. Also, using the controls in the

Subramonian 85

Figure 1: Id-l/is Discretizer Window

top pane, the user can experiment with other types
of discretization algorithms. The bottom left display
shows the locations of the valid cut-points for each type
of discretization that the user tries out.

The bottom right display shows the chosen badness
measure’s values, for the current number of cut-points,
over all discretization types. Blank fields indicate that
the computation is not yet performed. When the user
starts experimenting with the number and/or the loca-
tions of the cut-points, this window provides a feedback
on how the user-chosen values are performing relative
to the system-derived optima. This serves as an aid
to users in determining the extra cost involved in their
choice.

The central philosophy is that the system should
place the user within the appropriate context (e.g. in
the discretizer window, display system-derived num-
ber and locations of the cut-points) and provide the
user with the opportunity to intelligently modify (e.g.
display the impact on accuracy of these modifications)

these optima and propagate them downstream.

5.1 “To cut or not to cut” 9
The top right display window in the Discretizer inter-
face displays the behavior of the chosen badness mea-
sure, for the current type of discretization, as the num-
ber of cut-points increases. This is very useful to the
user in determining the number of cut-points that best
discretize the data. All of our discretization strategies
show a marked drop-off in the incremental reduction in
the badness measure, when the number of cut-points
is increased beyond that which is logical for the data.
It is visually apparent to the user in a compelling man-
ner. We will discuss more about this in Section 7.

5.2 Client-Server Interactions
When the server ships the data to the client (either
initially, or in response to a change in the discretiza-
tion type etc.), it executes the following steps: 1. after
sorting the data by the base values, it streams this raw

86 KDD-97

data past a compactor which keeps track of the goal be-
havior and assembles large regions tagged with a sum-
mary description of the regional contents. e.g. region
3 has 150 instances of red-category goals, 20 of green-
category and 15 of blue-category. The explicit loca-
tions of these instances within a region are not tracked;
2. if the client needs the data in a non-pdf format (as
at the start), these regions, along with their tags, are
directly shipped to the client. Otherwise, the origi-
nal data is streamed past a density-estimator, which
generates a probability density function; 3. this pdf is
evaluated at uniformly spaced points (say, 20000) and
the results are sent to a distiller. It then re-evaluates
the pdf such that the integral of the density between
adjacent points (say, 1000) is equi-probable; 4. this
distilled pdf is finally shipped to the client.

As mentioned earlier, the top left display in the Dis-
cretizer window shows the relative proportions of the
goal categories within each interval. If more detailed
information is desired, the user can click on the Drill
Down button in the top pane. The client then asks

Figure 2: Drill Down Results

the user about the accuracy constraints on the request
If these can be met using the locally available data, the

. client generates the necessary population data. Else,
the drill-down request, along with the cut-point loca-
tions, is transmitted to the server. Depending on the
accuracy required, the server computes the population
figures within each interval either from the existing re-
gions, or regenerates the regions appropriately. This
data is then displayed on the client desk-top in a pop-
up window (Figure 2). In future versions, we intend
to furnish the user with the estimated costs of meeting
the various levels of accuracy, before the user makes
the choice.

We have experimented with several discretization
strategies, that differ both in the intuitions behind
them as well in their mathematical development. In
this section, we report on our experiments using these
strategies on different data sets.

Table 1: Cut-Point locations

The following is a brief description of the data-sets
upon which the experiments were performed. The
Auto-Mpg (DSl) (Merz & Murphy 1996) contains
398 instances concerning city-cycle fuel consumption,
with each instance describing 6 continuous and 2 dis-
crete attributes. We pruned it to 385 to focus on
4/6/8-cylinder cars. The Synthetic Data-set 1
(DS2) contains 1000 instances obtained from a pdf
consisting of two overlapping normals, with each in-
stance describing a discrete goal over a continuous
base. The Synthetic Data-set 2 (DS3) contains
5019 instances concerning the relation between the
l--- _~ -I -..I----L!l-- ------J --a LL- I?---:,-- :------- TJyypes WI ialLWIIIWWIIt!S WWIIWI a.Ilcl IJIlt: 1a11111y 1IICUIIIBY.

Figure 3 shows, for the Auto-Mpg data-set, the be-
havior of the badness measure (i.e., the approximation
introduced by partitioning the base range into inter-
vals and assuming similar goal behavior throughout
each interval) as the number of cut-points increases.
For each type of discretization, only the correspond-
ingly appropriate badness measure is shown, scaled
such that the zero cut-point value = 100%. Obviously,
the badness value decreases as the number of intervals
allowed increases, reaching the zero value when the
number of intervals equals the number of instances in
the data-set. However, in practice, the desired number
of intervals (for decision-support etc.) is rarely more
than 6. For most data-sets, we can discern the logical
number of cut-points from this figure, as the number
when the incremental reduction in the badness (with
increase in the number of cut-points) sharply falls off.

Table 1 shows the cut-point locations, as returned
by each type of discretization for the three data-sets,
in each case for the logical number of cut-points.

Columns 3, 4, 5, 6 show the cut-points found by
using Classification Error CJZ, KL-distance KL, Ll-
distance Ll, Class Information Entropy CIE, and Max-
imum Likelihood Estimate EM. While DS.2 is best dis-

- -?a- cretized with one cut-point (CPij, both DSi and US3
are best discretized with two cut-points (CPl, CP2).

‘7 Discussion
Figure 3 shows quite clearly the rapid drop-off in the
badness-measure reduction, with increasing number of

Subramonian 87

DE: Auto-Mpg CPs us Badness %

100

90

80

70

0 1 2 3 4 5 6 7 8
of CPS

Figure 3: Badness Measure Behavior

cut-points, beyond the number logical for the data. We
feel that this figure provides a very intuitive and conve-
nient means of assessing the number of cut-points that
best discretize the attribute. In all the cases tested,
both the CE and the CIE metrics show a dramatic
and very conclusive plateauing of their badness mea-
sures, beyond the appropriate number of cut-points.
The other measures also show a pronounced decrease
in the incremental reduction of the badness measure
beyond the appropriate number of cut-points.

All of the discretization strategies show substantive
a~raement in the locations of the Cut-noints. The GE -o----- ____ 1 --_ 1.--_ -_--11-_-_L r --~~---
and EM metrics return values that are in close agree-
ment, both being based on the raw data. Note that
the cut-point locations returned by KL, Ll and CIE,
while being based on the pdfs with all of the concomi-
tant benefits, are also close to the above values for all
practical purposes.
*

Discretization based on clustering EM often does not
return a vaiid set of cut-points for cut-point numbers
larger than this logical choice. For example, in the
Auto-Mpg case, this algorithm returns only up to 2
cut-points. So, unlike the other types of discretization,
this method doesn’t have a one-to-one correspondence
between the number of cut-points asked for and the
~.~~ -~I. .~ -L...--- --1 numr3er rwxrneu.

8 Conclusion and Future Work
We have created a novel framework for interactive dis-
cretization, which situates the user in an appropriate
context and then provides visual controls to modify
the knowledge gained and obtain graphical feedback of
the consequences of doing so. We have incorporated
two novel algorithms and have extended discretization
to handle continuous goal attributes.

An important area for future work is the partitioning
of data and computation between the client and server
so as to enable visual interactivity without compromis-
ing scalability.

9 Acknowledgments
We would like to thank Richard Wirt, Dave Sprague,
Bob Dreyer and the Microcomputer Laboratory at In-
tel Corporation for providing support for this work.
Other trademarks are the property of their respective
owners.

References
Cheeseman, P., and Stutz, J. W. 1996. Bayesian
classification (autoclass): Theory and results. In et al,
U. M. F., ed., Advances in Knowledge Discovery and
Data Mining. AAAI Press/MIT Press.
Cover, T., and Thomas, J. 1991. Elements of Infor-
mation Theory. Wiley and Sons.
Dougherty, J.; Kohavi, R.; and Sahami, M. i995. Su-
pervised and unsupervised discretization of continu-
OlJfj fp&_?rp,s. In prQgp&p<gs Qf the 12th _T??gern,f?‘Q&
Conference on Machine Learning, 194-202.

Fayyad, U. M., and Irani, K. B. 1993. Multi-interval
discretization of continuous-valued attributes for clas-
sification learning. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence,
1022-1027.
Kerber, R. 1991. Chimerge: Discretizaion of numeric

7 attributes. In Proceedings of the 10th lVationa1 Con-
ference on Artificial Intellgence, 123-128.
Lam, I. K. 1996. The Tix Programming Guide.
http://www.xpi.com.
Maass, W. 1994. Efficient agnostic pat-learning with
simple hypotheses. In Proceedings of the 7th Annual
ACM Conference on Computational Learning Theory,
67-75.

Merz, C. J., and Murphy, P. 1996. UCI Repository
?f learning databases.
http://www.ics.uci.edu/mlearn/MLRepository.html.
Ousterhout, J. K. 1994. Tel and the Tk Too&it. Ad-
dison Wesley.

88 KDD-97

