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Abstract 

In this paper we present a method for discovering 
approximately common motifs (also known as ec- 
tive motifs) in three dimensional (3D) molecules. 
Each node in a molecule is represented by a 3D 
point in the Euclidean Space and each edge is rep- 
resented by an undirected line segment connect- 
ing two nodes in the molecule. Motifs are rigid 
substructures which may occur in a molecule af- 
ter allowing for an arbitrary number of rotations 
and translations as well as a small number (spec- 
ified by the user) of node insert/delete operations 
in the motifs or the molecule. (We call this ‘lap- 
proximate occurrence.“) The proposed method 
combines the geometric hashing technique and 
block detection algorithms for undirected graphs. 
To demonstrate the utility of our algorithms, we 
discuss their applications to classifying three fam- 
ilies of molecules pertaining to antibacterial sulfa 
drugs, anti-anxiety agents (benzodiazepines) and 
sntiadrenergic agents (,8 receptors). Experimen- 
tal results indicate the good performance of our 
algorithms and the high quality of the discovered 
motifs.’ 

Introduction 
Recently, a significant body of research has been per- 
formed for data mining in non-traditional data types 
such as sequences (Bailey & Elkan 1995; Hofacker 
et al. 1996; Mannila, Toivonen, & Verkamo 1995; 

‘Copyright @ 1997, American Association for Artificial 
Intelligence (www.aaai.org). All rights reserved. 

Wang et al 1994), trees (Wang et al. 1996) and 
graphs (Conklin, Fortier, & Glasgow 1993; Djoko, 
Cook, & Holder 1995) that commonly arise in sci- 
entific disciplines (Fayyad, Haussler, & Stolorz 1996; 
Shek et al. 1996). This paper focuses on a specific 
scientific domain, namely biochemistry, and presents 
techniques for discovering approximately common mo- 
tifs (also known as active motifs) in molecules. Topo- 
logically, molecules are three dimensional (3D) graphs 
(Rigoutsos, Platt, & Cahfano 1996). In biology, the 
tertiary structures of proteins are also 3D graphs (Fis- 
cher et al. 1992). 

3D Graph Representation of Molecules 
Each node in a molecule is represented by a 3D point 
in the Euclidean Space. Each edge is represented by 
an undirected line segment connecting two nodes in 
the molecule. A molecule can be divided into one or 
more rigid substructures (Rigoutsos, Platt, & Caiifano 
1996). In chemical compounds, for example, a ring 
is a rigid substructure. Thus, a molecule can be rep- 
resented by a 3D graph and a rigid substructure is a 
connected subgraph in it. 

Ii!iluamnlP 1~ Qngi&r j&J gpp~- G ipa Fig. 1 mpt.i.n- -+...A**-+--- A. 
ing two rigid substructures. Nodes in the substructures 
are numbered 0, 1, 2, 3, 4, 5 and 6, 7, 8, 9, 10, respec- 
tively. The two substructures in the graph can rotate 
with respect to each other around the edge {5,6}. 

The graph can be divided into substructure 0 (S-h-0) 
and substructure 1 (Strl) (see Fig. 2). Thus, Stro 
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consists of nodes numbered 0, 1, 2, 3, 4, 5 as well as 
edges connecting these nodes (Fig. 2(a)). Strr con- 
sists of nodes numbered 6, 7, 8, 9, 10 as well as edges 
connecting them (Fig. 2(b)). •1 

Fig. 1. A 3D graph. 
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Fig. 2. The rigid substructures of the graph in Fig. 1. 

We attach a local coordinate frame to each sub- 
structure. For instance, let us focus on the sub- 
structure Strs in Fig. 2. We attach a local coordi- 
nate frame to the node numbered 0 as shown in Fig. 
2(aj. This local coordinate frame is represented by 
three basis points P& , Pb2 and Pb3, with coordinates 
~~~(~~,Yo,~o),~bz(~0+~,310,~0) ~d%&o,yo+l,~o), 
respectively. The origin is Pbl and the three basis vec- 
tors me Qbl ,bz , Qbl,b3, and fil,bz x Glrb3. (Here, fil,bz 
represents the vector starting at point Pbl and ending 
at point Pb2. $bbl,bz x vbjbl,b3 stands for the cross product 
of the two corresponding vectors.) We refer to this co- 
ordinate frame as Substructure Frame 0, denoted S&is. 
Note that, for any i in the graph with global coordi- 
nate Pi(cc(,yi,zi), we can find a local coordinate of i 
with respect to SFO, denoted P,‘, where 

P; = I& = (5i - Xo,Yyi - Yo,Zi - 20). 

Active Motifs in Graphs 
We consider a motif in a graph G to be a rigid sub- 
structure of G. Deleting a node v from a motif (graph) 

means to remove the-corresponding point from the Eu- 
clidean Space and make the edges touching v connect 
with one of its neighbors v’. [This amounts to con- 
traction of the edge between v and v’ (Gabow, Galil, 
& Spencer 1984).] Inserting a node v into a graph 
is to add the corresponding point to the Euclidean 
Space and make a node v’ and a subset of its neigh- 
bors become the neighbors of v. Graph G matches 
graph G’ with n mutations if by applying an arbi- 
trary number of rotations and translations as well as 
n node insert/delete operations, one can transform G 
to G’. A motif M approx:imately occurs in a graph G 
(or G approximately contains M) within n mutations 
if M matches some subgraph of G with n mutations or 
fewer where n is chosen by the user. We are interested 
in finding motifs that approximately occur in a set of 
graphs. 

3 

(2) 

M2 

(b) 
3 

(4 

Fig. 3. (a) The set S of three graphs; (b) the motif 
exactly occurring in two graphs in S; (c) the motif ap- 
proximately occurring, within one mutation, in all the 
three graphs. 

Example 2. Consider the set S of three graphs in Fig. 
3(a). Suppose only exactly coinciding substructures 
(i.e., no mutations) occurring in at least two graphs 
and having size greater than 2 are considered as ‘active 
motifs.’ Then S contains one active motif shown in Fig. 
3(b). If rigid substructures having size greater than 4 
and approximately occurring in all the three graphs 
within one mutation (i.e. one node delete/insert is 
allowed in matching a motif with a graph), then S 
contains one active motif shown in Fig. 3(c). 0 
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To discover active motifs, we first find candidate sub- 
structures from the graphs and then evaluate their ac- 
L:..:C.. . ..A-... Ah... ,..w.-,+,:, hnah;r.m +c,nh,hn;,w,,, /T.vxv,,-19,, U”lb,y uaug IdiE: ~C”Mr;blL rrrwulLlg lJcx.A~L~~yuc. \UrN~IIwAuI 
& Wolfson 1988). To our knowledge, there are two re- 
search groups having done work that is closely related 
to ours: Djoko et aZ. (Djoko, Cook, & Holder 1995) 
studied techniques for substructure discovery in two 
dimensional graphs; Fischer et al. (Fischer et aE. 1992) 
searched for known motifs in 3D proteins. The novelty 
of our approach is to discover approximately common 
3D motifs without prior knowledge of their topologies, 
positions, or occurrence frequency in the graphs. We 
use chemical molecules as an example in the paper, 
though our techniques should generalize to any scien- 
tific domain where data is naturally represented as 3D 
graphs. 

Discovery Algorithm 
Terminology 
Let S be a set of 3D graphs. The occurrence num- 
ber of a motif M is the number of graphs G in S that 
approximately contain A4 within the allowed number 
of m~d&ka~s: Formallv the occurrence number of a - ----..--~ j --~~ 
motif M with respect to mutation d and set S, de- 
noted occurrence&(M), is Ic if there are Ic graphs 
in S that contain M within d mutations. For exam- 
ple, consider Fig. 3 again. Let S contain the three 
graphs in Fig. 3(a). Then occurrence-no$(Ml) = 2; 
occurrence-no~(M~) = 3. 

Given a set S of 3D graphs, our algorithm tries to 
fmd all the motifs M where M occurs in at least Occur 
graphs in S within the allowed number of mutations 
Mu-t and IMI 2 Size, where IM 1 represents the size, 
i.e., the number of noties, of the motif M. jitiut, Oixw 
and Size are user-specified parameters.) We can use 
the discovered results in several ways. For example, 
chemists may attempt to evaluate whether the approx- 
imately common motifs are in fact the active sites; bi- 
ologists and computer scientists may use the motifs to 
classify new molecules into one family or another as we 
will show in the “Experimental Results” section. 

Generating Candidate Motifs 
n-7~ alcmrithm mnskta nf t.wn nhasenr (1) find can&- “UI UVb”““““’ v”A~“.y.,y -I “.._ y-- 1-1. \-, ---- 
date motifs from the graphs in S; and (2) evaluate the 
activity of the candidate motifs to determine which of 
them satisfy the specified requirements. 

In phase (l), for each graph G in S, we start with 
the node having the largest degree and use a mod- 
ified depth-first search algorithm for finding blocks 
(McHugh 1990) to decompose the graph into substruc- 
tures. Instead of locating all edges belonging to a block 
as described in the origind algorithm, we locate all 

nodes of that block. The algorithm then marks out the 
detected blocks and partitions the remaining portion of 
fhm m-anh intn ~mnrrl~rd wht.rwq where ea,& su&,ree “IA.. ha-y” *-A”.# uAA-A--a-I ---“---L ----- 
is rooted at some node 21 in a block or at a node con- 
nected to v.~ We then throw away the substructures 
(blocks and unordered subtrees) M where (MI < Size. 
The remaining substructures constitute the candidate 
motifs generated from G. This algorithm runs in time 
linearly proportional to the number of edges in G. 

Hashing Candidate Motifs 

Phase (2) of the discovery algorithm consists of two 
subphasesm T.. ,..L-La-- 1Il suup11ase A of phase (2), we hash 
the candidate motifs generated from all graphs of S 
into a three dimensional hash table. For purposes 
of exposition, consider the substructure Stro in Fig. 
2. We choose any three nodes in Stro and calculate 
their three dimensional hash function value as follows. 
Suppose the chosen nodes axe numbered i, j, k and 
have global coordinates Pi (Q , yi, pi), Pj (zj , ?/j, ~j) and 
Pk (zk, yk, zk), respectively. Calculate II, 12, 2s where 

El = ((22 - “j)2 + (ya - yj)2 + (Zi - Zj)“) 
x 100 mod Prime mod Nrow, 

z2 = ((zi - 5k)2 + (yt - 2/k)2 + (zi - zk>2) 

x 100 mod Prime mod Nrm, 
z3 = ((Sk - zj)2 + (yk - yj>2 + (zk - zj>2) 

x 100 mod Prime mod Nrow. 

Here, we use a multiplier 100 and truncate the digits 
after the 2nd position on the right of the decimal point. 
The reason for using the multiplier is that we want the 
digits after the decimal point to contribute to the dis- 
tribution of the hash values. We truncate the values 
because only the first 2 digits are accurate. (The multi- 
plier is a parameter value observed in the experiments 
and is adjustable for different data.) Prime is a large 
prime number and Nrtnv is the cardindity of the hash 
table in each dimension. The node-triplet (i,j,k) will 
be hashed to the three dimensional bucket h[Z1][/2][/3]. 
Intuitively we use the squares of the lengths of the 
three edges connecting the three chosen nodes to de- 
A---:-, Al.,. h..,.,.,& ,,,.l%.~“” Q+r\m,q ;= +hn+ n#&&.o.. 5vn IJtxllllllC IJut: “ULlvzC a,uLu~DU. “~“LtzU LLl UIlul” CmAUI~“” rN&x. 
the graph identification number and the substructure 
identification number. In addition, we store the co- 
ordinates of the basis points of Substructure Frame 0 
(SFo) with respect to the three chosen nodes. 

Specifically, suppose the chosen nodes i, j, Ic are not 
collinear. We can construct another local coordinate 

‘Thus, for example, running the algorithm on the graph 
in Fig. 1 yields the two substructures in Fig. 2. 
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frame using $$,j, i&k and P&j X I& as basis vectors.3 
n-L.. i ^^._ -1:--A..- -P 33 -ALI. _,.,.--- L A.^ *I.:.. IlIt: LUUlUlIltLWS WI l-bl, Pb,, Pb3 WlCll lW~Cl;l, I,” ClllS 
local coordinate frame, denoted SF0 [i, j, k], form a 3 x 3 
matrix which is calculated as follows: 

x.4 -3 

where 

Thus suppose the graph in Fig. 1 has identification 
number 12. The hash table entry for the three cho- 
sen nodes i, j, k is (12,O,SFo[i, j,kJ). Since there are 

6 nodes in the substructure Strs, we have 6 
( ) 

3 = 

20 node-triplets generated from the substructure and 
therefore 20 entries in the hash table for the substruc- 
ture. 

Example 3. Suppose the global coordinates for the 
nodes numbered 0, 1, 2, 3, 4 in the substructure Stro 
of Fig. 2(a) are 

Po(1.0178,1.0048,2.5101), 
PI (1.2021,2.0410,2.0020), 
Pz(1.3960,2.9864,2.0006), 
P3(0.7126,2.0490,3.1921), 
Pq(0.7610,2.7125,3.0124). 

Fig. 4 shows the local coordinates, with respect to 
SFo, of the nodes 0, 1, 2, 3 and 4. 

3Note that the proper order of choosing the nodes in a 
triplet is significant. We determine the order of the three --^l-- L-. a--.22--1-&. AL.. A.-?^--,- c.p^--r.~ L- al.,.- ml., C.-L Il”Umi vy c;“nsKlanrcg cue bI-laIlg‘c: I”lLuGU u&y LUCUL .J.UG lllSb 
node chosen always opposes the longest edge of the triangle 
and the third node opposes the shortest edge. Thus, the 
order is unique if the triangle is not isosceles or equilateral, 
which usually holds when the coordinates are floating point 
numbers. In other cases we store ail configurations obeying 
the longest-shortest rule described above. When construct- 
in@ the lnral mnw7ina.t.e fmme wp ,~sp &p &st EQ& s &p o “a- .v-- -..-a-.--“- -a----, 
origin of coordinates and the vector corresponding to the 
shortest edge as the X-axis. 

P~(0.0000,0.0000,0.0000), 
P;(O.1843,1.0362,-0.5081), 
P;(O.3782,1.9816,-0.5095), 
P;(-0.3052,1.0442,0.6820), 
P;(-0.2568> 1.7077,0.5023). 

Fig. 4. The local coordinates, with respect to SFo, of 
nodes 0, 1, 2, 3, 4 in the substructure Stro of Fig. 2(a),>. 

Now, let Prime be 1009 and Nrow be 62. Thus, for 
example, for the nodes numbered 1, 2 and 3, the hash 
table address is h[31][41][28] and 

( 

-1.0567 0.3578 0.1739 
SFo[l,2,3] = -0.8758 0.0719 0.9072 

-0.0359 0.4175 0.0240 1 
As another example, for the nodes numbered 1,4 and 
2, the hash table address is h[31][26][42] and 

i 

0.3694 -1.3082 -0.2429 
SF0 [1,4,2] = -0.0435 -0.8571 -1.0067 

0.4552 -0.3437 -0.0869 1 

Similarly, for the substructure Strl, we attach a local 
coordinate frame SF1 to node 6 as shown in Fig. 2(b). 
There are 10 hash table entries for Strl, each having 
the form (12,1, SFl[Z, m, n]) where 1, m, n are any three 
nodes in Strr. 0 

Evaluating the Activity of a Motif 
Let X be the resultant hash table after hashing the can- 
didate motifs (substructures) generated from all graphs 
in S. In subphase B of phase (2) of our discovery algo- 
rithm, we evaluate the activity of each candidate motif 
Ad h-7 ..c.hnmh:,m ill ;n+r\ II li’,,h o..haC*..nC.,m /nwx+;c\ !.“I “J rwLacYuLLL~ LYJ. u.LU” I‘. ucm.Az UUVUUL UblJULG \UL”mJU, 

in ?l is associated with a counter, which is updated as 
illustrated by the following example. 

Suppose the two substructures (motifs) of graph G 
with identification number 12 in Fig. 1 have already 
been stored in the hash table 7-L. Suppose i, j, k are 
three nodes in the substructure Stro of G. Thus for this 
triplet, its entry in the hash table is (12,0, SF&j, k]). 
Now consider another motif M. We hash M using 
the same hash function. Let u, v, w be three nodes in 
M thd hnsw t.hhp wa.rne hash xldrew a.s i. i. 3: [i.e. the *,_ “-_” --. - “___ L --_-- ----_- -----CL -- -,J) .z \ -.-. .L-- 
triplet [u, v, w] hits the substructure Stro). Calculate 

SFM = SF@, j,k] x ( ~u,v~~u,*)+( ;) 

Intuitively, SFM contains the coordinates of the 
three basis points of the Substructure Frame 0 (SFo) 
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with respect to the global coordinate frame in which 
the motif M is given. The counter of the substructure 
Stre equals the total number of node-triplets of M that 
hit Strs and that yield the same SFM. 

Example 4. Consider the motif M in Fig. 5. 

X 

3 e---, YM 
I 
I 

4 

v 

Y Z 

2 
1 

0 

Y 
Coordinate Frame 

Fig. 5. A substructure (motif) M. 
In M, the nodes numbered 0, 1, 2, 3, 4 match, after 
rotation, the nodes numbered 5, 4, 3, 1, 2 in the sub- 
structure Stro in Fig. 2(a). The node numbered 0 in 
Stro does not appear in M (i.e. it is to be deleted). 
Thus, M matches Stro with 1 mutation. If the user- 
specified mutation number Mut is 1 or greater, then 
M satisfies that requirement. 

Now suppose in M, the globd coordinates of nodes 
numbered 1,2, 3 and 4 are 

F'l(-0.269000,4.153153,2.911494), 
P2(-0.317400,4.749386, 3.2535923, 

P~(0.172100,3.913515,4.100777), 
P,(O.366000,3.244026,3.433268). 

For the nodes numbered 3,4 and 2, the bucket address 
in the hash table is h[31][41][28] and 

-0.012200 5.005500 4.474200 
SFM = 

( 
0.987800 5.005500 4.474200 

-0.012200 4.298393 3.767093 ) 

For the nodes numbered 3,1 and 4, the bucket address 
is h[31] [26] [42] and 

( 

-0.012200 5.005500 4.474200 
SFM = 0.987800 5.005500 4.474200 

-0.012200 4.298393 3.767093 ) 

Referring to Example 3, these two matches (hits) 
have the same SFM, and therefore the counter for the 

substructure Stro of graph 12 is incremented by 2. In 
total, the counter of Stro after hashing M has value 
10 in this example. 0 

Note that, for any node i in the motif M with global 
coordinate Pi(xa, yi, xi), it has a local coordinate with 
respect to SFM, denoted Pi, where 

Here PC,, ,pCz and PC, are the three basis points of 
SFM and Vcl,i is the vector starting at PC, and ending 
at Pi. Thus, for example, the local coordinates, with 
respect to SFM, of nodes 3, 4 and 2 in M are 

P; (0.184300,1.036200, -0.508100), 
P~(0.378200,1.981600,-0.509500), 
P;(-0.305200,1.044200,0.682000). 

They match the local coordinates, with respect to 
SFo, of nodes 1, 2 and 3 of the substructure Stro (cf. 
Fig. 4). Likewise, the local coordinate, with respect to 
SFM, of node 1 in M is 

P;(-0.256800,1.707700,0.502300), 

which matches the local coordinate, with respect to 
SFo, of node 4 of the substructure Stro (cf. Fig. 4). 

Proposition. Let n be the counter value of a sub- 
structure (motif) S in the hash table T-l after rehashing 
a candidate motif M. Let G be the graph from which 
S is generated. Let IMI 2 Mut + 4. If n > @M where 

eM= (N-l) x (N-2) x (N-3) 
6 

and N = [MI - Mut, then M matehe S (i.e. M ap- 
proximatei OCCUTS in G) within Mut mutations. 
Proof Sketch. When n > 1, there are at least three 
node matches between S and M. Since three nodes 
are enough to set SFM at a fixed position and direc- 
tion, all the other nodes in M will have definite coor- 
dinates under this SFM. When another node-triplet 
match yielding the same SFM occurs, it means that 
there are at least one more node match between S and 
M. If there are N - 1 node matches, then n 5 0~. 
Therefore when n > @M, there are at least N node 
matches between S and M. Cl 
Intuitively, our scheme is to hash node-triplets and 
match the triplets. This proposition says that we need 
a sufficient number of matches between triplets in or- 
der to infer there is a match between the correspond- 
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ing motif and graphs. 4 The larger Mut is, the fewer 
triplet matches are needed. In Example 4, suppose the 
user-specified mutation number Mut is 1. The counter 
value of Stro is 10 after hashing M, which is greater 
than @M = (5-2)(5-3)(5-4)/6 = 1. By the proposition, 
M should match the structure Stro within 1 mutation, 
which is correct. 

Thus, after rehashing each candidate motif M into 
the hash table 3-1, we check the counter values of the 
substructures in a. If there are less than Occur graphs 
containing substructures whose counter value > @M, 
discard M. The remaining candidates are qualified 
motifs. 

Experimental Results 
w-w . 
We haw! impiemented the proposed algorithms using 
the C programming language on a SunSPARC 20 work- 
station running Solaris version 2.4. The data used 
came from three families of 3D molecules pertaining 
to antibacterial sulfa drugs (Family l), anti-anxiety 
agents (benzodiazepines) (Family 2) and antiadrener- 
gic agents (p receptors) (Family 3). The 3D structures 
for each of the compounds were generated from the 2D 
-,l..,..l,.. “C -..- A.....,. ,-I..&.-. I:.-&,.~ :, /T.T..,,,L o,--,, 
III”I~LllIcm BU LlLxJllLt: UQla IlmxxI 111 {11ad113Lll) O(tllllllCJ, 

& Taylor 1990). We used the molecular modeling soft- 
ware package SYBYL (version 6.0) to generate energy 
minimized structures.6 Table 1 shows the statistics 
concerning the data and the motifs discovered from 
them. The parameter values used were Size = 6, 
iwnrt A”1 WV = 3 tan.4 nnmrm - 9 Y) CUYU VIAULU, - V. 

#of Max Min #of motifs 
Family molecules size size found 

1 43 62 19 46 
2 26 59 30 20 
3 48 59 2n 17 

In-l,. * n-d- --.---l-~~ -J? -L.---Z-_, ---I--..,-- ..--J !- LL- 
la”le 1. ILK+ mlm”er “I CIlemlcal ln”lecuIeY llsecl 1n 6Ilt: 

experiments, their sizes, and the number of motifs dis- 
covered from the molecules. 

To evaluate the quality of the discovered motifs, we 
applied them to classifying the molecules using lo-way 
cross-validation. That is? we partitioned each family 
of molecules randomly into 10 subsets of as nearly 
equal size as possible. For each such subset S, we 

4Note that the proposition provides only the “sufficient” 
(but not the “necessary”) condition for finding the motifs. 
In general, our algorithms may miss some motifs, though 
this case does not happen in the experimental results pre- 
sented in the next section. 

6SYBYL is a trademark of TFUPOS Associates, Inc. at 
St. Louis, Missouri. 

took all molecules excluding S as the training sam- 
ple and used the molecules in S as the test data.8 We 
then found the active motifs from the training sam- 
ple of each family using the discovery algorithm de- 
scribed in the previous section (the parameter values 
used were Size = 6, Mut = 2, Occur = 1). Each mo- 
tif M of Family i is associated with a weight d where 
d = (ni - maxj{nj})/(lMI). Here 1 < i,j _< 3, i # j, 
and ni is M’s occurrence number in the training sam- 
ple of Family i. Intuitively, the more frequently a motif 
occurs in its own family and the less frequently it oc- 
curs in the other two families, the higher its weight is. 
The motifs with the weight greater than zero were then 
used as the characteristic motifs for their correspond- 
ing family. The averaging motif weight for a family 
is the sum of the weights of the family’s characteris- 
tic motifs divided by the total number of the family’s 
characteristic motifs. 

When classifying a test molecule Q, we first decom- 
posed Q into rigid substructures Qk, 1 5 k < m. We 
then calculated the number of characteristic motifs in 
Family i, denoted nt, 1 5 i < 3, that matched Q” 
within 2 mutations. Each Family i obtained a score 
Ni where N; = C& nt . The molecule Q was clas- 
sified into Family i with maximal N,. If two families 
tied on their scores, Q was classified into the family 
with the smaller averaging motif weight. If the scores 
were 0 for all families (i.e. the test molecule did not 
match any characteristic motif), then the “no-opinion” 
verdict was given. 

The metrics used to evaluate the effectiveness 
of our classification algorithm are precision rate 
(PR) and no-opinion rate (NR), where PR = 
(NumCorrect)/(NumTest) x 100% and NR = 
(NumNoOpinion)/(NumTest) x 100%. NumCorrect 
is the number of test molecules classified correctly, 
NumNoOpinion is the number of test molecules ob- 
t&ing the “no opinion” verdict;. mod Nwm.T~st is ) ---- _. -.~“- __” 
the total number of test molecules. Our experimen- 
tal results indicated a 91% precision rate and a 5% 
no-opinion rate on average. 

The majority of misclassified molecules came from 
Family 3 (antiadrenergic agents). A close look at the 
J,L_ .---.-yl--l -.L-. LLl_ I-_...--.--3 mt-I, P-..-I,--,, .--. udtd raved,ieu wny 6mb ndppeneu. I nib ramuy-s dv- 
eraging motif weight was less than 1. Also, very few 
active motifs existed in the family. 

‘Thus, the training sample consisted of 90% and the test 
data consisted of 10% of the molecules. Subsequent exper- 
iments revealed that training with 50% of the molecules 
gave nearly the same results! suggesting that relatively lit- 
tle training data is enough to achieve good results. 
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Conclusion 
Geometric hashing techniques have been used in many 
different applications, though few of them consider 
substructure matching. The only exception is (Rigout- 
SOS, Platt, & Califano 1996)) in which the authors pro- 
posed to use magic vectors for substructure matching. 
The choice of magic vectors is domain dependent and is 
based on the type of each individual graph. We extend 
the ideas there and provide a framework for substruc- 
ture discovery in 3D graphs. Currently we are com- 
bining the techniques presented in the paper with the 
algorithms for acyclic graph matching @hang, Wang, 
& Shasha 1996) and integrating them into our previ- 
ously developed pattern discovery toolkit for scientific 
and biochemical databases (Wang et a?. 1994). 
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