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Abstract 

Research on knowledge discovery in databases (KDD) 
has been impeded by a limited vision of knowl- 
edge, inherited from machine learning (ML) and other 
branches of computer science. In contrast with KDD 
and ML, research on automation of scientific discovery 
(SD) took from natural sciences a broader perspective 
on knowledge. We analyze the typical ML view of dis- 
covery as supervised and unsupervised classification; 
the former viewed as concept learning, while the lat- 
ter as clustering and formation of concept hierarchies. 
We suggest a number of steps that lead beyond concept 
definitions, towards a more meaningful knowledge. We 
argue that a narrow view of knowledge is accompanied 
by a narrow view of the discovery method. Systems 
that learn concepts, find clusters or build taxonomies, 
stay on a single task, even if the results are poor, while 
an autonomous discoverer should be able to conclude 
that a given hypotheses space does not match the data 
and move the search to other spaces. As an example 
we consider taxonomy formation which results in a rea- 
soned choice between no taxonomy, one taxonomy, and 
several taxonomies. Finally, we briefly argue that SD 
can provide KDD with a broader vision of knowledge 
and discovery method. 

Limited view of knowledge in ML & 
KDD. 

This paper has been written from a personal perspec- 
tive of a member of SD and KDD communities who 
is concerned that the limited vision of knowledge can 
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seems to have seized ML. In a fast growing new domain 
such as KDD it is easy to reach the critical mass of con- 
tributors who will be able to create a self-propelling 
mechanism fueled by the sufficient supply of papers, 
reviewers and publication space. The critical mass can 
be perhaps as small as 100-200 people. The initial 
focus can be perpetuated. Even if a domain is nar- 
row by the external standards, new internal problems 
create for the insiders an impression of problem abun- 
dance. A narrow, shared set of values followed by the 
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insiders alienates non-followers, unable and unwilling 
to observe those values. It is increasingly difficult to 
hear and appreciate external criticism. 

We argue that many KDD contributions represent a 
limited view of knowledge and equally narrow view of 
discovery. In this perspective, influenced by Machine 
Learning, discovery is viewed as supervised and unsu- 
pervised classification. The former is literally viewed 
as concept learning, while the latter as clustering and 
formation of concept hierarchies. The main objects of 
knowledge are concepts, sets of clusters, and cluster 
hierarchies. They are defined by systems of rules and 
alternative descriptions such as trees. This perspective 
on discovery is furthered by the claim that concepts are 
the main target of learning and discovery. 

Weighted by the number of papers submitted to 
KDD conferences, this perspective on knowledge and 
discovery is heavily represented. For instance, at least 
16 out of 26 papers published in the proceedings of the 
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Lu & Motoda, 1997) fall into this category. 
Those forms of knowledge, however, are secondary in 

sciences. We consider why this is the case, and we sug- 
gest several ways that lead beyond concepts, towards 
a more meaningful knowledge. In distinction to KDD, 
SD progresses mainly through case studies of important 
discoveries drawn from natural sciences. It is worth- 
while for the KDD community to examine this comple- 
mentary perspective on discovery. SD aims at knowl- 
edge characteristic of natural sciences. The building 
blocks such as equations, differential equations, groups 
of symmetry, formal descriptions of structure, become 
components of complex systems of knowledge. In the 
SD systems concepts are secondary to laws and models. 

This paper does not propose a concrete new KDD 
method or application. It analyzes the fallacies of a 
widespread phenomenon, and it proposes several prin- 
ciples that apply to knowledge discovery and discovery 
system construction. It deals with a limited under- 
standing of knowledge, and thus it must examine philo- 
sophical foundations of notions such as knowledge, em- 
pirical contents, concepts and other entities postulated 
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and thus examines the notion of system autonomy and 
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shows ways towards a more open-minded discovery. 

Knowledge and empirical contents 
Since we will argue about knowledge and its empirical 
contents, let us introduce a few basic notions. For agent 
d, knowledge about domain D is any non-tautological 
statement that A believes in and A can evidence in D. 
Since we are not going to discuss different agents, we 
will skip references to A. 

Typical data considered in ML and KDD are lists of 
values for a fixed number of attributes that character- 
ize objects in a domain, so we will discuss concepts in 
terms of attributes and their values. Let us now distin- 
guish between observational attributes (concepts), the 
values of which for the concrete objects can be deter- 
mined by observation, and theoretical concepts, which 
must be determined through values of observational at- 
tributes. In database applications we can consider all 
attributes in each relational table as observational. For 
a piece of knowledge K, and for observational terms 
AI,. . . , A,, empirical contents of K can be defined 
as the set of all observational, non-tautological con- 
sequences of K. An observational consequence is ex- 
pressed by Al, . . . , A, and their values. 

Knowledge with empirical contents has several ap- 
pealing properties. First, since empirical contents of 
Ir’ is non-tautological, situations inconsistent with Ii’ 
are logically possible. They should not occur or K is 
false. In other terms, there is no empirical contents in 
Ii’ if it does not exclude any logically possible situa- 
tion. Second, every observational consequence can be 
viewed as a prediction. Sometimes the predictions are 
very concrete and represent individual facts. 

To illustrate these notions, Vz(Ara: + AQ) can be 
used to express empirical contents, since it is not a 
tautology and is made of observational terms. Con- 
crete predictions, Air + Azr, can be inferred from 
that statements for each record or entity T. Empirical 
contents of those predictions is narrow. Notice that 
Air + Ap, or its equivalent ~Alr V Azr, do not 
predict an individual observation, but if it is further 
known that Air, a concrete prediction of Azr follows. 
Concrete individual observations have the logical form 
of ground literals (atomic sentences or their negations), 
which we will call facts. 

It is very simple and tempting to count the number 
of facts that can be inferred from a known fact, and we 
will do it in this paper to discuss empirical contents of 
concrete forms of knowledge. 

Concepts and knowledge 
Formally, a concept can be represented by a predicate, 
such as Dx. Since Da: contains z as a free variable, it 
does not have a truth value. Dz is satisfied by objects , 
which belong to the extension of D and dissatisfied by 
objects in the complement of D. Satisfaction of Dz 
by object T does not lead to any extra observational 
statement about r. In contrast, statements without 

free variables are either true or false. Consider the 
regularity “All ravens are black,” formally expressed 
as Vx(Rx + Bx). It is a statement which would be 
false if a non-black raven exists. For each object T, the 
observational conclusion is Rr --+ Br or TRr V Br. 

Any observational language provides room for many 
concepts. For instance, in the language of R and B, 
we can define a concept of black non-raven: -Rx V Bz, 
a concept of black raven, a concept of raven which is 
non-black, and so forth. None of them contains any 
claims about the situation in the world. Some of them 
can be empty. Many are not useful. In conclusion: 
empirical contents is present in regularities but 
not in concepts understood as predicates. 

In sciences and in mathematics concepts can be 
viewed as investments. They demonstrate their value 
by qualities of laws and theorems expressed in their 
terms. Generality, accuracy and utility of laws (the- 
orems) and models justify the investment made by 
introduction of a concept used in those laws (theo- 
rems, models). SD systems (BACON: Langley et al. 
1987; KEKADA: Kulkarni & Simon. 1987; IDS: Nord- 
hausen & Langley, 1993; MECHEM: Valdes-Perez, 
1992; FAHRENHEIT: Zytkow, 1996) explore this view 
of concepts, keeping them only when justified by the 
simultaneously discovered knowledge. 

Concept learning from examples 
In machine learning, concept learning from examples is 
one of the dominant themes, and it also focuses dispro- 
portionate attention in KDD. It applies to any data ma- 
trix, where one attribute describes the membership in 
the target class (concept) C, indicating for each record 
T, whether it belongs to that class, or not. Examples 
can be denoted as Cr, counterexamples as $r. The 
task is to construct a definition of the target class in 
terms of the observational attributes Al, . . . , A,. 

We can call the task the discovery of concept defini- 
tions. It occupies an important niche: capture judge- 
ment of an expert who can classify object into two (or 
more) categories. The results are typically expressed 
by logical definitions by equivalence, decision trees, and 
sets of rules. 

Equivalence 
Consider a classical definition that can be a result of 
concept learning 

Vx(Cx E Dx), 

where Dx is a Boolean expression formed from descrip- 
tors (statements such as Al(x) = e) that use the at- 
tributes Al, . . . , A,, and their values. Such a defini- 
tion can be viewed as a special case of regularity. It 
can be empirically verified on the provided examples 
and counterexamples. Whenever an expert (teacher) is 
available, C is observational, so the definition has em- 
pirical contents. One prediction (of Cr or 4r) can be 
made and verified for each record. The definition can 
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be used to predict class membership for other records, 
which haven’t been classified by the teacher, but then it 
acts as a norm, not as a descriptive regularity. When 
C is not observational, Vz(Ct - Dz) does not have 
empirical contents, as no conclusion can be expressed 
purely in terms of Al, . . . , A,. Such a definition cannot 
be falsified. In conclusion, a concept definition by 
equivalence provides one prediction per object 
but may have no empirical contents. 

A data miner will be well advised to seek multiple 
definitions of concept C, by predicates El%, . . . , &x. 
Jointly, multiple definitions of C possess empirical con- 
tents, expressed by the statement of their equivalence 
VX(ElX E . . * 2 ,?&z). One observation E;r for object 
T leads to n - 1 predictions of facts. Alternative defi- 
nitions make such concepts resistant to missing data. 

In conclusion, it is possible to discover a con- 
cept with significant empirical contents by ac- 
cumulating different definitions by equivalence, 
but there is little interest in ML and KDD 
in this approach. Few exceptions are systems such 
p COBWEB (Fisher, 1987) and 49er (Zembowicz & 
Zytkow, 1996). 

A decision tree, when the tests at each internal node 
are exhaustive and do not overlap, while leaves are la- 
beled with C and -C, is no different from a definition 
by equivalence. The same conclusions apply to their 
empirical contents. 

Partial definitions 
A common approach to concept learning from exam- 
ples is through one-way conditionals, also called rules, 
sought by many systems. Each is a partial definition 
in one of two forms: 

Vx(Cx --t Op), 

Vx(&x --f Cx). 
Rules in the first form (equivalent to Vz(lDiz --f 
-Cx)) determine counterexamples, while rules in the 
second form determine examples. When a teacher is 
not around, C is not observational, no set of alter- 
native rules for examples has empirical contents, but 
there is empirical contents in each pair of rules, one for 
examples and one for counterexamples 

Vx(Dzx + DlX). 

This statement excludes objects which are D2 but not 
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joint empirical contents. 
In conclusion: empirical contents can be in- 

creased by seeking many alternative rules for 
examples and alternative rules for counterex- 
amples, but this path has not attracted interest 
in ML and KDD. Systems such as LERS (Grzymala, 
Busse, 1989) are exceptions. 

Clustering 
In clustering the task is more open than in concept 
learning, aimed at discovering classes not prescribed 
by examples. Given a database, clustering seeks first to 
divide all records into classes which have the highest in- 
traclass similarity and interclass dissimilarity, and then 
to find a description of each class. This can be consid- 
ered the most typical task of clustering, although there 
are many other versions. 

Lack of empirical contents 
Partitioning of records into classes by itself does not 
generate any statements. Partitions created in the first 
stage are then characterized by class descriptions, in 
a process analogous to learning from examples. Each 
class is distinctly labeled and typically a set of exhaus- 
tive and mutually exclusive descriptions is sought, one 
for each class. 

A set of clusters can lead to knowledge with empir- 
ical contents if, in the space of possible events, empty 
areas occur in addition to the areas covered by clusters. 
Those empty areas indicate logically possible events 
that do not physically happen. When a description of a 
--A -P-I.--L-..- -IT?-.--- -.---I-. ----- :A. ---A-.--- -----!-f -_1 se6 01 uusbers mwrns empy areas, lb capbures ernpmcal 
contents. However, the majority of clustering methods 
with the exception of COBWEB, its descendents, and 
49er (Zembowicz Zytkow, 1996), neglect knowledge of 
empty areas, so the empirical contents is lost. In con- 
clusion: the empirical contents of clusters, if 
there is any, is not stated in the first phase and 
typically is neglected in the second. Methods 
of clustering do not seek descriptions that sepa- 
rate what exists from what cannot, disregarding 
the empirical contents. 

Towards meaningful clustering 

Taxonomies should be limited to situations in which 
data must be split into classes characterized by different 
properties. A single universal description is simpler 
and shorter than a conjunction of many, each applied 
to a limited class. For instance, a regularity y = uz 
between observational attributes x and y will be poorly 
represented by clusters of data. y = ax distinguishes 
events which are possible from those impossible. It 
yields various observational consequences and testable 
predictions. A valid clustering method should be able 
to realize that different clusters follow the same pattern 
and return a single class that satisfies a single equation, 
or even better: should not create different clusters in 
the first nlace In conclusion, do not divide what r--.--r -~- 
can be explained by a single regularity obeyed 
by all records. 

While predictivity of a cluster hierarchy can guide 
conceptual clustering (COBWEB: Fisher, 1987), in 
many datasets the resultant hierarchy may capture 
only a limited subset of regularities and produce only a 
crude approximation of regularities obeyed by the data. 
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Zembowicz & Zytkow, 1996 demonstrate that a hierar- 
chy more expressive than COBWEB’s can be built by 
combining knowledge in the form of different equiva- 
lence and subset relations, but this clearly shows that 
plenty of knowledge requires other forms of expression. 

The role of clustering and concept learning from ex- 
amples has been negligible in SD. Clustering has not 
been considered by SD contributors, with the excep- 
tion of IDS (Nordhausen & Langley, 1993). In IDS, 
clustering hasn’t been as productive as expected, be- 
cause it has been applied prior to rather than within 
the mechanism for regularity detection, violating the 
principle: concepts must be learned in feedback 
with discovery of knowledge. 

Knowledge in a taxonomy 
Taxonomies are sought in natural sciences, typically 
at preliminary stages of theory formation. Knowledge 
contained in a taxonomy can be expressed as a con- 
junction of several types of statements. Our examples 
below refer to the situation depicted in Figure 1. 

Figure 1: Fragment of a taxonomy: do represents the 
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dr; dr is the test leading to dr; children of dr are distin- 
guished by descriptors dz, da, d.+ El is a conjunction 
of descriptors equivalent to dl; 11 is a conjunction of 
descriptors that can be inferred at node dl; Ez and 1~ 
play the same role at node d2. 

Child class is a non-empty subset of parent class: 

3x[d,,x & dlx & d2x];. . .; 3x[d,,x & dlx & d4x] 

At each node, taxonomy is exhaustive and disjoint 
with respect to the physically possible objects: 

dos & dlx --+ (dax xor dsx xor dax) 

Empirical content of each node is represented by 
statements of the form: 

dox & dlx z EIX, dox & dlx & dzx G Ezx, 

dot & dlx + 11x:, dox & dlx & dzx 3 122, 

where Elx = (erx s . . . s ekx), and ei,i = 1,. . ., lc 
are the descriptors that are alternative equivalential 
definitions of class di . 
Similarly Irx = (irx.& . . . & irx), where ij,j = 

, . . . , I, are the descriptors that can be inferred for 
dl. Respectively E2 includes all equivalent descrip- 
tors, while 4 all inferred descriptors for da. 

Empirical contents permits atomic predictions about 
concrete objects. For instance, if an object T is known 
to belong to dz, all facts in E2r and 12~ can be claimed 
about T, as well as all facts in Elr and Irr, and so on 
for all ancestor nodes of dz. 

Taxonomies produced from clusters by methods of 
machine learning rarely possess much empirical con- 
tents. In contrast, taxonomies produced by combin- 
ing equivalence relations can include as much empirical 
contents, as justified by the data. 

A taxonomy must be exhaustive and disjoint only 
in respect to the objects that exist in the real world: 
among objects that belong to dl (in Figure 1) no ob- 
ject is excluded and each is included in one of child 
categories. Each object that satisfies do & dl must sat- 
isfy exactly one of the tests d2, d3, or dd. Since real 
world taxonomies are approximate, limited exceptions 
are admissible. 

Even though a taxonomy can capture plenty of em- 
pirical knowledge, its expressive power is very limited. 
Membership criterion for each class is represented by 
a unary predicate and empirical content of each class 
and relations between classes are represented by logical 
relations between unary predicates. In conclusion, 
knowiedge contained in a taxonomy is seriousiy 
limited compared to the full expressive power 
of first-order languages. 

How many taxonomies? 
A clustering method should be able to produce not one 
but as many taxonomies as justified by data. Imagine 
a database DB of attributes Al,. . . , A,, in which one 
taxonomy can be developed for attributes AI, . . . , Ak 
and another taxonomy for attributes &+I, . . . , A,, if 
we apply a taxonomy formation system separately to 
each of these two projections of DB. Suppose that both 
taxonomies split objects in different ways, while each 
has a substantial empirical contents. We should re- 
quire from a discovery system that it generates both 
taxonomies when given the entire DB. The existing 
clustering systems are obsessed with single taxonomies, 
however. Further, if some variables are related by equa- 
tions and other relations which are poorly represented 
by taxonomies, these extra pieces of knowledge should 
also be recognized by a KDD system (Zembowicz & 
Zytkow, 1993), rather than shredded and distributed 
over many nodes in a taxonomy. 

When should two taxonomies be merged rather than 
kept separately? Consider a simple example of two tax- 
onomies, each consisting of a root and two child nodes. 
TL,. c,.,c +n.r,Ynn-.r “w-.1:+, *h:,“+, - l..,“,” K? 
Ill-z 1119lJ lm*“u”rrry upllru “LJ‘jm,‘J into two Cla33G.Y “1 

and (72, such that Cr is characterized by Ala: and A~x, 
while C2 is described by ~Alx and -Azx. This means 
that Vx(Aix E A~x). The second taxonomy consists 
of classes C’s and Cd, each characterized in similar way 
by predicates Brx and &a and by their complements, 
We can always put them together in one taxonomy, by 
attaching the appropriate parts of C’s and Cd under Cr 
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and their complementary parts under C2. This would 
create a taxonomy with an extra layer of two internal 
nodes Ci and Cz, and four leaves, unless some of the 
leaves are empty. If the joint taxonomy does not sim- 
plify the global description, by reducing the number of 
nodes or descriptors, then it is more beneficial to keep 
them separately. A taxonomy building system should 
be able to determine that. 

Ontological claims of a formalism 
It is easy to prove that no new empirical claims (pre- 
dictions) arise from building a multilayer taxonomy in 
addition to all that can be inferred from all equiva- 
lence and subset relations. But even if no additional 
predictions can be made, the resultant multi-layered 
taxonomy, optimized to the smallest number of nodes 
(each characterized by as many properties as possible), 
can be very important. Since Aristotle, these criteria 
have been used to guide search for “natural classes.” 
Each natural class can be further investigated, and can 
reveal further empirical contents. This process may go 
beyond mining a given database. 

The ontological claims about existence of classes that 
are revealed by an optimal taxonomy are not different 
from ontological claims made for other forms of knowl- 
edge, such as coefficients in equations (BACON: Lang- 
ley et al. 1987; IDS: Nordhausen & Langley, 1993). 

Autonomy of a discoverer 
To grant an agent A with a discovery of X, we must be 
sure that X was not provided by another agent. The 
less guidance has been provided by external sources, 
the more autonomous is a discovery. One of the ele- 
ments of autonomy is the choice between different hy- 
potheses spaces. d’s autonomy is seriously limited if 
it is able to search only for knowledge in one form, for 
instance for decision trees. Since applications of each 
form of knowledge are limited, an autonomous search 
system must be able to recognize that a hypotheses 
space S is wrong for a given dataset, and do not focus 
“obsessively” on S. Otherwise it may find weak knowl- 
edge expressible in S, while overlooking much stronger 
knowledge which can be expressed in other forms, that 
can be found in other hypotheses spaces. As we ar- 
gued, concept learning, clustering and taxonomy for- 
mation are narrow discovery tasks. It is possible that 
the input data do not justify them and the results are 
poor. This may be not harmful when the results are 
examined and rejected by a human operator who then 
re-directs the search to another space. But when the 
,..-hA%.” ,.P L..,,.+L,,,, ,,A ,..,,:hl, C,v.,, A  l,,,...l llUlllVcx3 “L IlJ~“lr1103E3 auu y”uol”lr; I”11113 “I RIIVYYI- 
edge are very large, keeping a human operator in the 
loop slows down the process and prevents large scale 
exploration. 

In conclusion, a discovery system should be 
able to decide that data cannot be described 
within a given hypotheses space, and determine 
that the search continues in other spaces (Zem- 

bowicz & Zytkow, 1996). That does not happen in 
concept learning, clustering and taxonomy formation 
systems. They try to create the best result in a given 
space, even if the best system of clusters may not be 
good at all. 

Expressive forms of knowledge 
Definitions are a limited form of knowledge. Laws of 
science and scientific models provide a far greater po- 
tential for predictions. Regularities can be expressed 
in many forms that go beyond concept definitions, and 
all of them should be targets of discovery. 

Many forms of knowledge are useful, in addition 
to equivalence relations, partial definitions and tax- 
onomies. All of them, but primarily their combina- 
tions, should be the target of discovery systems: 
Contingency tables (CTs) can be used when the 
number of values per attribute is not large. They pro- 
vide the most primitive, yet straightforward and gen- 
eral induction by totaling the data in a finite number 
of categories, and interpreting the empirical frequen- 
cies as probabilities of occurrence. CTs are rarely used 
in natural sciences, but are important in social sci- 
ences. Many systems of rules: concept definitions and 
taxonomies can be generated from a set of CTs, de- 
pending on the dynamically determined needs (Zytkow 
& Zembowicz, 1993; Klijesgen, 1996). 
Subset graphs can be generated by combining many 
subset relations common in scientific databases in do- 
mains such as biology and medicine. Subset relations 
may represent relationships between species. In some 
databases, thousands of such relations can be found, 
prompting a theory which combines, by transitivity, 
all subset relations into a subset graph (Zembowicz & 
Zytkow, 1996). Taxonomies can also use subset rela- 
tions as we discussed earlier. 
Equations have been the most common target in SD 
(Langley et al., 1987; Nordhausen & Langley, 1993; 
Zytkow & Zembowicz, 1993). They are rare, yet im- 
portant in databases (Piatetsky & Matheus, 1991). 
Differential equations can be obtained by a combi- 
nation of numerical differentiation of data and search 
for equations (Dzeroski & Todorovski, 1993). They 
may be more useful in model formation than algebraic 
equations, because dy/dx captures a particular elemen- 
tary change of y caused by external circumstances. 
Those elementary changes can be combined in the pro- 
cess of model formation. 
Equation clusters are multiple equations that hold 

rlmCnn,.C CA,, n ,Y.“,.l... ,c ,.,-,A,,1 “++“:h..+,” in a g;ven ualJaBI.Yb I”I a ljrvup “I IAuIIIl7IILaI cl.lrCIIVUbI;D. 
When attributes Al, . . . A, are mutually related by 2-D 
equations of the form Ai = f(Aj) we say that the joint 
regularity is an equation cluster. The knowledge of one 
value of one attribute is sufficient to predict the values 
of all other attributes in the equation cluster, similarly 
to a node in a taxonomy that captures many equiva- 
lence relations. For instance, 49er found a cluster of 
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equations in the data collected for the SENIC Project 
(1980) on the rate of hospital-acquired infections in 
U.S. hospitals. The attributes: Number-of-beds, 
Number-of-nurses, Available-facilities, Culturing-ratio, 
X-rav-rn.t.in nnd Tnfmtinn-yj& me rd~.t.~d hv r&r-w& .- ‘“= &.“‘--, -.*... *.s---d--- , --1------ - -~ =I-- 
equations. 
Extrema (max and min) are important in spectral 
databases, in stock market data, in data about ecosys- 
tems, and so on. Extrema may have an ontological 
interpretation: for instance they indicate presence of 
chemical species. 

This list includes only those elementary forms of 
knowledge handled by SD systems, which are common 
in databases. Many other forms of scientific knowledge 
have been considered in SD, and may inspire KDD in 
the future (Langley et al, i%G; Shrager & Langley, 
1990; Shen, 1994). Many pieces of knowledge in 
various forms must be combined with one an- 
other to create empirically rich and adequate 
models of complex processes and situations. 

Merging KDD with Automated 
Scientific Discovery 

Why is the focus on concept learning and cluster for- 
mation so common in ML and KDD? Why is rule-based 
view nf Imnwla-lcw rlnmina.nt? Tt ~c-p.rnq that the narrow ..Y,. IA 1.A --..--.. bv -vaaa* --*- 2. -2 I-----c 1---L 1--- - ---- 
view of knowledge comes from computer science educa- 
tion which includes a negligible amount of sciences, no 
theory of science and little statistics. In contrast, many 
SD contributors have strong scientific background and 
understand various expressive forms of knowledge typi- 
cal to natural sciences, as well as methods by which sci- 
entists go about hypotheses generation and evaluation. 
The paradigmatic problems considered in SD have been 
different cases of scientific discovery. This has been 
possible not only because the majority of contributors 
have scientific knowledge of an insider, but because this 
knowiedge has been further combined with phiiosophy 
of science, resulting in an elevated self-consciousness 
about knowledge and method. Thus SD has plenty to 
offer KDD. The results of SD, however, are largely un- 
known. Since it is difficult to pass on the SD values to 
the KDD community without being involved in KDD 
research, the interaction between both communities is 
essential. In the long run, the broader vision of knowl- 
edge developed in SD is going to enhance KDD, but 
the benefits will be mutual. By focusing on databases, 
SD can find new and practically important problems, 
cinro clat.ahaaea aw ahnnrlnnt. 2nd thnv differ from- &a YI1kVY uu”..u”~“y u-W -ll--x1.- 1 ---- L-a-J 
available to scientific discoverers. It will be challenging 
to adapt SD systems to those data and to use KDD 
methods in SD systems. 

Equating knowledge with concepts is harmful be- 
cause it focuses attention on limited forms of knowl- 
edge, while knowledge in other forms is not explored 
and remains undetected. It also prevents the discov- 
erer from exploiting the feedback that knowledge may 

have on the task of concept formation. Although it is 
true that laws relate concepts, and concepts are neces- 
sary, the reasons for a particular choice of concepts are 
revealed by expressive empirical theories. 

Acknowiedgment: speciai thanks for the siigges- 
tions made by three anonymous referees. 
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