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Abstract 
This paper investigates a brute-force technique for mining 
classification rules from large data sets. We employ an 
association rule miner enhanced with new pruning 
strategies to control combinatorial explosion in the 
number of candidates counted with each database pass. 
The approach effectively and efficiently extracts high 
confidence classification rules that apply to most if not all 
of the data in several classification benchmarks. 

Introduction 
Several data mining tasks require dividing up the entities of 
a database into various classes. Junk-mailers are well- 
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sending out flyers to persons unlikely to be interested in the 
product being promoted. The task requires a cZuss@er that 
is usually automatically generated from a “training data- 
base” of pre-classified entities. Several approaches have 
appeared in the AI, statistics, and data-mining literature, 
and some methods made to scale to large data sets [Shafer 
et al. 961. Because of the exponential complexity of con- 
structing an optimal classifier through various means, exist- 
ing techniques employ heuristics for controlling resource 
consumption. Naive-Bayes classifiers make independence 
assumptions to avoid computing an exponential number of 
probabilities from the underlying data. The tree-induction 
class of classifiers effectively grow in a greedy manner clas- 
sification rules that recursively partition the database, 
thereby limiting the space of rules that are considered. 

This paper investigates brute-force identification of clas- 
sification rules by only resorting to heuristics when neces- 
sary to guarantee that the rules will be produced in 
reasonable time. We demonstrate that an association rule 
miner enhanced with additional pruning strategies is 
remarkably effective at identifying rules which classify 
most data in several training database benchmarks with 
high confidence. On several data sets, this is accomplished 
without any heuristic pruning whatsoever. 

There are several uses for the rules produced by a brute- 
force technique. They are often immediately useful to a 
‘knowledge discovery end-user for understanding the reia- 
tionships and dependencies between instance features and 
their class. Decision trees induced from data are also easy 
for an end user to understand, but because each “rule” 
implied by a decision tree must be composed entirely of a 

Copyright 1997, American Association for Artificial Intelligence 
(www.aaai.org). All rights reserved. 

limited number of conditions, these rules will not usually be 
as concise as those produced by brute-force, and may also 
contain irrelevant conditions. This suggests that rules iden- 
tified by brute-force could be exploited by tree-inducers in 
order to select better split points. Existing systems typically 
use local metrics sometimes prone to error (e.g. see the 
“Corral” data set in the Irvine repository). Fukuda et al. [96] 
have demonstrated a related result by showing that associa- 
tions discovered between two continuous valued attributes 
can be used during tree induction to minimize tree height 
(thereby resulting in more concise classification criteria). 

Background 
Tine probiem we are interested in is to produce ciassiiication 
rules that apply to the given training database. More for- 
mally, a training database D is a collection of instances 
( Vl, v2, -*a, vm) where the vi range over the domain offea- 
ture Ai , and the value of feature A, represents the class of 
the instance. We assume the feature domains are nominal 
(discrete). As a pre-processing step, any continuously val- 
ued attributes can be discretized, usually without hurting 
classification accuracy [Kohavi & Sahami 961. A classifica- 
tion ruZe states the confidence with which particular fea- 
tures determine some class according to the instances 
within the training database. For instance, 

Aivl, Ajv2 ~ A~v,, 95% 
is how we denote a classification rule stating that an 
instance with value y1 for feature Ai and value v2 for fea- 
ture A j has class vc m 95% of all cases (or with 95% conji- 
dence). Since the right hand side of a rule must contain only 
a class feature for it to be a classification rule, we will use 
the shorthand format Aivl, Aiv2 -+ v, . 

The support of a rule or a set of feature values is the num- 
ber of training database instances (or percent of training 
database instances) that contain the values mentioned. 
Because we wish classification rules to apply to data out- 
side the training database, we are only interested in rules 
which have a reasonably high level of support. We are also 
only interested in rules which have good classification 
power (high confidence). Following Agrawal et al. [96], we 
assume there is a minimum-specified level of support (min- 
sup) and confidence (minconJ) which a rule must meet for it 
to be produced. A rule or set of feature values with mini- 
mum support is said to beffequent. 

Association rule miners have already been developed to 
mine arbitrary rules from transactional (e.g. shopping trans- 
action) data [Agrawal et al 961. Thus, the problem of min- 
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ing classification rules in a brute-force manner is a special 
case of this particular problem, though applied to more- 
structured data. Unfortunately, as we later demonstrate, 
association rule miners when applied without modification 
to classification data lead to combinatorial explosions 
which prevents them from being useful in all but the sim- 
plest of data sets. We enhance an association rule miner 
with several additional pruning strategies to make it more 
useful for mining classification rules from classification 
data. First, we review the ideas behind efficient association 
rule mining of transactional data. 

With transactional data, each instance in the database 
does not have a fixed number of features. Each instance is 
instead a collection of one or more items. Let I denote the 
set of all items mentioned in the database. An itemset is any 
subset of I. Association rule miners such as Apriori 
[Agrawal et al. 961 operate by making several passes over 
the database, with the i th pass used for computing supports 
of itemsets of size i , Rather than counting the support of 
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strategy we call subset-sup h t-based pruning. Before each 
pass i , it uses the set of frequent itemsets found from the 
previous pass i - 1 (denoted as Fi _ t ) to compute a set of 
candidate itemsets Ci for which support wiii be counted. 
The candidate set Ci is computed as the set consisting of 
any i -itemset such that all of its i - 1 item subsets are in 
F i- I . For the first pass, C, = I. Though this pruning 
strategy does not change the worst case complexity of each 
pass, in practice it is effective because the irregularity of 
transaction data ensures that only few itemsets, once i 
becomes sufficiently large, are frequent. Efficient data- 
structures for implementing these techniques are detailed in 
[Agrawal & Srikant 941. 

There are other strategies for improving the performance 
of association rule miners such as applying hash-based 
reducers for minimizing candidates to count [Park et al. 951 
and restricting the set of tuples examined to those that are 
(potentially) relevant to the current pass (e.g. AprioriTID 
[Agrawal et al. 961, and [Park et al. 951). These techniques 
are complementary to the pruning strategies we propose 
next. 

Additional Pruning Strategies 
Given a classification training database, we can treat the 
potential feature values Ajv as the set of items Z and apply 
an association rule miner such as Apriori to mine associa- 
tion rules. Given unlimited resources, it would find all rules 
(including classification rules) that meet the minimum sup- 
port and confidence requirements. The problem with this 
mnrnsch is that eyep instmca in 8 ciassificatjon d_&bgse -FL-- ----- -- = --_---_-- - _^_ 
has exactly m features, so assuming the domain of each 
feature is reasonably restricted, even large itemsets are 
likely to have minimum support. We often found the subset- 
support-based pruning strategy ineffective on classification 
data until after several passes of the algorithm, leading to 
uncontrollable growth in the number of candidates. Addi- 
tional strategies for controlling this explosion are described 

here. The first techniques are non-heuristic in the sense that 
they do not reduce the potential rule space considered. The 
last techniques involve heuristics that can either increase 
the granularity of the rule space searched, or reduce it by 
eliminating some items from consideration. 
Pruning Strategy 1 - Value Exclusion 

This strategy exploits the fact that in classification data, 
items from the same feature (e.g. Aivl and Aiv2) can never 
be contained by the same instance. To implement it, the 
candidate generator should avoid producing candidates 
with more than one value for the same attribute. After the 
second database pass, this pruning strategy is effectively 
accomplished by the subset-support strategy already 
present in Apriori since any 2-itemset with values from the 
same feature will have support zero. Nevertheless, this 
strategy speeds up the second pass, and it also speeds candi- 
date generation on subsequent passes since subsets for can- 
didates pruned by this technique do not have to be explicitly 
checked by subset-support-based pruning. 
Pruning Strategy 2 - (Near) Equivalence Exploitation 

Occasionally an itemset will have support that is (nearly) 
equivalent to the support of one of its subsets. For example, 
suppose we have an itemset S = { Aivl, _AIv2} whose sup- 
port is equal to the support of j Aivl > . criven this fact, we 
know that any rule containing S as a subset is equivalent to 
the rule formed by removing A .v2 since it will have equiv- 
alent support, equivalent con dence, It: and applies to an 
equivalent set of database instances. To prevent these equiv- 
alent rules from being generated or incurring any overhead, 
the exact-equivalence strategy removes from the set of fre- 
quent itemsets any set S having a subset with equivalent 
support before forming the next set of candidates. 

A more common case arises when the support of an item- 
set is very near the support of one of its subsets. For exam- 
ple, suppose the support of {X, Y} is equal to the support 
of {X} minus a small value t . Now consider any other fea- 
ture Z and a class feature C. We can estimate the confi- 
dence of rule X, Y, 2 + C using the following inequality: 

sup(XZC) - t 
sup(Xz> 

I confidence I ssu$$??y, 

If this confidence interval is entirely below minconf, then 
there is no need to compute the support of itemset 
{X, Y, 2, C} during the fourth pass. 

Unlike exact-equivalence, the near-equivalence rule must 
be carefully applied because in subsequent passes the sup- 
port of a superset of an itemset pruned by the technique 
may be required. Extending the previous example, even if 
we know {X, Y, Z, C> does not imply a high confidence 
rule, itemset ( W, X, Y, 2, C} may imply a high confidence 
rule festimated usinp the same ineoualitv technioue) and be ~..~. \-~.~---...-~ ..L---- .--- L..---- ---- - ,.... ---, .- -------,1 -, ..--- 
potentially frequent. For this case even though 
{X, Y, Z, C} is not contained in the set of computed fre- 
quent itemsets, we must ensure that {W, X, Y, 2, C} gets 
generated as a candidate in order to preserve completeness. 
Unfortunately, not having the support of {X, Y, 2, C} hin- 
ders the ability of subset-support based pruning to deter- 
mine whether {W, X, Y, 2, C} is potentially frequent, so 
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there is a trade-off between strength of this “near equiva- 
lence” strategy and the strength of subset-support based 
pruning. 
Pruning Strategy 3 - Rule Structure Exploitation 

Recall that we are only interested in classification rules. 
Computing the support of a classification rule requires we 
know the support of both the entire rule, and the support of 
the left-hand side of the rule. If we can determine that for 
every class item v, the rule Aiv r, A jvZ + vc is not of inter- 
est, then there is no need to count the support of 
{Aivl, y2). This pruning strategy exploits this fact. An 
itemset of Ci is said to be useless if, for some i - 1 item 
subset s’ of S, there exists no class item v, such that 
s’ u {A lv’c} is in Ci . To implement this strategy, useless 
candidates are pruned before the database pass commences. 

There are other potential strategies for exploiting rule 
structure, but several of them may conflict with the other 
strategies we propose. For instance, the miner could avoid 
counting the support of an itemset S that does not contain a 
class item until an itemset consisting of S and some class 
item v is known to be frequent. This strategy unfortunately 
delays the point at which we can apply a strategy that 
requires the support of S (such as, potentially, strategies 2 
and 4). The strategy we suggest above allows rule structure 
to be expioited to a lesser degree, though it provides the 
guarantee that after pass i we know all frequent itemsets of 
size i , and not just those containing class items. Inevitably 
some data sets will benefit from stronger rule-structure 
exploitation at the expense of other strategies affected by it, 
though this trade-off remains to be fully investigated. 
Pruning Strategy 4 - Redundancy Exploitation 

The previous pruning strategies do not result in any 
information loss in the sense that an association rule miner 
ignoring them will produce a set of rules that applies to the 
same set of tuples with the same confidence and support. 
Strategy 2 can result in fewer rules being returned, but only 
because rules that are equivalent to some other rule are 
removed. The next pruning strategy is different than those 
previous because it can result in some information loss, 
though the information lost can be regarded as irrelevant 
with respect to the given level of confidence desired. 

The idea is to prevent continued effort at classifying 
instances already classified by existing rules with high con- 
fidence. To implement such a technique, after each pass i , 
we identify the frequent itemsets that imply rules with con- 
fidence exceeding minconf. During the next database pass, 
tuples can be marked if they are covered by this set while 
counting candidate supports. During counting, also deter- 
mine whether a candidate is supported by at least one 
uncovered instance. At the end of the pass, if the candidate 
:, ..,.+ -..--^_ &,,.I L.. ^+ I..--& ̂ I^ ^^_.^__ 2 :-,4 ̂ -^- :r ^^I L- 1s ‘l”L supp”‘LGu uy s11 IGLlLyL UIIC uJvGIcu 11IYLilllc;G, IL cm1 LJG 
excluded from the set of frequent itemsets before forming 
the next set of candidates. 

Marking tuples is unfortunately expensive or impractical 
in some situations. Luckily it is possible to approximate this 
pruning technique without any tuple marking. The idea is to 
exploit the fact that if a rule R meets minimum confidence, 
then any rule containing R will apply to only covered 

instances. Itemsets representing such rules can therefore be 
pruned from the candidate set before counting commences. 
Pruning Strategy 5 - Granularity Modification 

Though an explosion in candidates to be counted with a 
database pass is often substantially ameliorated by the 
above strategies, in several cases they are not enough and 
further information-loss must be accepted. In the worst 
case, given in features E potential valuations of each 
feature, there are up to I’ 
pruning strategy reduces rl 

? 
6 

candidates during pass i . This 
I’ term of this bound. The idea 

is to combine particular valuations of some feature into a 
single, larger granularity feature. For instance, if a feature 
Ai, i # 1 can be labelled with values vl, v2, vg , the rule 
considers treating any pair of those values as a single com- 
posite item. The rule can be applied recursively in that a 
composite item A,V can be further combined with another 
feature Ajv or even A,V, to form another composite item. 
The rule should not be applied to form a composite item 
consisting of all potential valuations of the involved feature, 
since every instance will, by definition, contain such an 
item. Once a composite item is determined, the next set of 
candidates is formed from the set of frequent itemsets mod- 
ified by replacing each occurrence of the items used to form 
the composite item with the composite item itself. Since 
this results in duplicate itemsets, the implementation must 
be made to remove them. 

Various strategies can be used to determine which feature 
valuations to combine in order to produce a composite valu- 
ation. The strategy we use is to seek out pairs of rules from 
the last produced set of frequent itemsets F, that differ by 
exactly one valuation of a particular feature. The pair of 
rules which comes nearest in confidence will be used to 
obtain the composite item. Given a feature whose values 
were obtained by discretizing a continuous attribute, 
another technique would be to combine adjacent portions of 
the discretized space. 
Pruning Strategy 6 - Feature Selection 

This strategy is a feature selection step applied when nec- 
essary instead of as a preprocessing phase. It contends with 
the p;ential explosion in the number of candidates due to 
the . 

0 
term in the worst-case bound on candidates. The 

idea ‘H o dynamically select a feature Ai mentioned in the 
most recently obtained F, for removal. Any itemset in Fj 
to contain the selected feature is removed from F, before 
forming the set of candidates for the next pass. The feature 
selected for removal should be, by some measure, the least 
useful in predicting the class. For the evaluation below we 
compute the mutual information Z(Ai, A,) for every fea- 
ture appearing in F, and select the feature with the lowest 
value for removal. A better strategy could consider the 
:-IT---r:-- ----.:A-2 L-. AL- ,-----. -..1-, >--1-.-J Le. AL- 
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miner at the point the strategy is applied. 

Evaluation 
We implemented the Apriori algorithm and enhanced it 
with the above pruning strategies in order to evaluate their 
effectiveness. Pruning strategies 1 through 4 were uncondi- 
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Database instances features values confidence 
Chess 3,196 37 2 90% 

100% 
Connect-4 67,557 43 3 90% 

100% 
I-hTll 9mz UVAAUI 128 7 2 /“I” 

100% 
DNA 3,174 61 4 90% 

100% 
Flare 1,066 11 3 90%. 

100% 
Led7 3,200 8 2 90% 

100% 
Letter 20,000 17 16 90% 

. ArIm IlJU-70 
Tic-Tat-Toe 958 10 3 90% 

100% 
Vote 435 17 3 90% 

100% 

tionally applied with each pass. For strategy 4, we used the 
approximation based on rde sub-setting instead of the com- 
plete tuple-marking implementation. For strategy 2, we 
only implemented the exact-equivalence case. When the 
candidate set being generated after a pass exceeds a particu- 
lar threshold, pruning strategies 5 and 6 were invoked. On 
our machine (64MB Spare Ultra l), the threshold was set to 
30,000 candidates since larger sizes caused thrashing. For 
applying strategies 5 or 6, our implementation first scores 
all items using the feature selection metric of pruning strat- 
egy 6. If the chosen feature has more than two potential val- 
uations, then pruning strategy 5 is used to create a 
composite item on that feature. If the feature has only 2 
potential valuations, then pruning strategy 6 is invoked and 
that feature is removed. 

We ran the algorithm on several data sets from the Irvine 
rmm&tnr., thsrt rnntn;ncvl nnmincal1.r w~l,~~rl featmwc l-ho ‘“y”Y’w’J LAILaC ““IILu)IIVU ““““,‘U”J .UIVYU IYUCUIVO. LllV 

table above displays the performance in CPU seconds of 
our enhanced Apriori on the various data sets for 90% and 
100% confidence levels, using a minimum support of 1% or 
20, whichever is the maximum. It also presents the speedup 
over un-enhanced Apriori. In some cases un-enhanced 
Apriori caused our machine to thrash (we did not cache 
candidates to disk), at which point it was halted. For these 
cases speedup is not reported. After speedup, the table 
*,...a..+- *I.., “...-L*.. ,c..,,,An ..,“..:“,.A s..,^.. .l., ,I.-.*, IqJ”lLS LLlG ,lUlll”W “I pasatis IcqUIIGlJ ““GI CllG ULICLL. 

On all but the DNA, Chess, and Connect-4 data sets, the 
miner did not have to ever invoke the lossy pruning strate- 
gies 5 a& 6. DNA proved the most difficult in this regard 
because it consists of 62 features other than the class, each 
with four potential valuations. The table displays as “loss” 
the number of composite valuations formed summed with 
the number of features removed. Note that performance on 
the Vote data set increases substantially with lower confi- _I---- TV”:- :” AL” ---.-IL -c --.--:-- ^I--A--__ A .-.1:-L :- _.--. UGIICG. I 111s IS LI~G I-~SUIL UI Pruning slraragy 4 WIIIC;~ IS very 
effective on this data set because after only two passes a 
large percentage of the database is covered by high confi- 
dence rules. The table also describes the rules and the num- 
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runtime speedup passes loss rules coverage 
176 ? 11 33 279 92.5 
189 ? 11 33 237 74.5 

1382 ? 8 35 140 57.6 
1437 ? 8 35 2 2.9 

.04 25% 4 0 10 100 

.OS 0% 4 0 6 100 
239 ? 7 196 394 92.0 
23% ? 7 197 269 65.0 
.64 915% 7 0 19 75.8 
.87 647% 7 0 5 9.3 
1.7 23% 8 0 6 23.6 
1.7 32% 8 0 0 0 

23.4 182 7 0 4 4.0 
-0 * *“A a.4 I6L 7 0 i i.i 

2.8 0% 5 0 136 100 
2.8 0% 5 0 86 98.3 
3.7 ? 10 0 152 99.5 

22.0 ? 12 0 378 99.5 

ber of rules found by the rule miner for each run on the 
various data sets. Except for the noisy data set Led7 and 
Letter, the rule miner was effective at attaining high cover- 
age at 90% confidence. The poor coverage on Letter is not 
due to information loss and can be improved by lowering 
confidence and/or support. 
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