
Brute-Force Mining of Highkonfidence Classification Rules

Roberto J. Bayardo Jr.
The University of Texas at Austin

Department of Computer Sciences and Microelectronics and Computer Corporation
Austin, TX 78712 USA
bayardo@cs.utexas.edu

http://www.cs.utexas.edulusersfbayardo

Abstract
This paper investigates a brute-force technique for mining
classification rules from large data sets. We employ an
association rule miner enhanced with new pruning
strategies to control combinatorial explosion in the
number of candidates counted with each database pass.
The approach effectively and efficiently extracts high
confidence classification rules that apply to most if not all
of the data in several classification benchmarks.

Introduction
Several data mining tasks require dividing up the entities of
a database into various classes. Junk-mailers are well-
tnnxrrn I IPPVP nf ~lnacifirntinn tr=rhnnlnmr xl&mm it tn c~vnirl I\1n”*“a1 UY”I.2 “I uI~i).Tl~nYuu”AI LVVIIII”I”~,, uuu1g I% C” U.“lU

sending out flyers to persons unlikely to be interested in the
product being promoted. The task requires a cZuss@er that
is usually automatically generated from a “training data-
base” of pre-classified entities. Several approaches have
appeared in the AI, statistics, and data-mining literature,
and some methods made to scale to large data sets [Shafer
et al. 961. Because of the exponential complexity of con-
structing an optimal classifier through various means, exist-
ing techniques employ heuristics for controlling resource
consumption. Naive-Bayes classifiers make independence
assumptions to avoid computing an exponential number of
probabilities from the underlying data. The tree-induction
class of classifiers effectively grow in a greedy manner clas-
sification rules that recursively partition the database,
thereby limiting the space of rules that are considered.

This paper investigates brute-force identification of clas-
sification rules by only resorting to heuristics when neces-
sary to guarantee that the rules will be produced in
reasonable time. We demonstrate that an association rule
miner enhanced with additional pruning strategies is
remarkably effective at identifying rules which classify
most data in several training database benchmarks with
high confidence. On several data sets, this is accomplished
without any heuristic pruning whatsoever.

There are several uses for the rules produced by a brute-
force technique. They are often immediately useful to a
‘knowledge discovery end-user for understanding the reia-
tionships and dependencies between instance features and
their class. Decision trees induced from data are also easy
for an end user to understand, but because each “rule”
implied by a decision tree must be composed entirely of a

Copyright 1997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

limited number of conditions, these rules will not usually be
as concise as those produced by brute-force, and may also
contain irrelevant conditions. This suggests that rules iden-
tified by brute-force could be exploited by tree-inducers in
order to select better split points. Existing systems typically
use local metrics sometimes prone to error (e.g. see the
“Corral” data set in the Irvine repository). Fukuda et al. [96]
have demonstrated a related result by showing that associa-
tions discovered between two continuous valued attributes
can be used during tree induction to minimize tree height
(thereby resulting in more concise classification criteria).

Background
Tine probiem we are interested in is to produce ciassiiication
rules that apply to the given training database. More for-
mally, a training database D is a collection of instances
(Vl, v2, -*a, vm) where the vi range over the domain offea-
ture Ai , and the value of feature A, represents the class of
the instance. We assume the feature domains are nominal
(discrete). As a pre-processing step, any continuously val-
ued attributes can be discretized, usually without hurting
classification accuracy [Kohavi & Sahami 961. A classifica-
tion ruZe states the confidence with which particular fea-
tures determine some class according to the instances
within the training database. For instance,

Aivl, Ajv2 ~ A~v,, 95%
is how we denote a classification rule stating that an
instance with value y1 for feature Ai and value v2 for fea-
ture A j has class vc m 95% of all cases (or with 95% conji-
dence). Since the right hand side of a rule must contain only
a class feature for it to be a classification rule, we will use
the shorthand format Aivl, Aiv2 -+ v, .

The support of a rule or a set of feature values is the num-
ber of training database instances (or percent of training
database instances) that contain the values mentioned.
Because we wish classification rules to apply to data out-
side the training database, we are only interested in rules
which have a reasonably high level of support. We are also
only interested in rules which have good classification
power (high confidence). Following Agrawal et al. [96], we
assume there is a minimum-specified level of support (min-
sup) and confidence (minconJ) which a rule must meet for it
to be produced. A rule or set of feature values with mini-
mum support is said to beffequent.

Association rule miners have already been developed to
mine arbitrary rules from transactional (e.g. shopping trans-
action) data [Agrawal et al 961. Thus, the problem of min-

Bayardo 123

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

ing classification rules in a brute-force manner is a special
case of this particular problem, though applied to more-
structured data. Unfortunately, as we later demonstrate,
association rule miners when applied without modification
to classification data lead to combinatorial explosions
which prevents them from being useful in all but the sim-
plest of data sets. We enhance an association rule miner
with several additional pruning strategies to make it more
useful for mining classification rules from classification
data. First, we review the ideas behind efficient association
rule mining of transactional data.

With transactional data, each instance in the database
does not have a fixed number of features. Each instance is
instead a collection of one or more items. Let I denote the
set of all items mentioned in the database. An itemset is any
subset of I. Association rule miners such as Apriori
[Agrawal et al. 961 operate by making several passes over
the database, with the i th pass used for computing supports
of itemsets of size i , Rather than counting the support of
7;: g”de’a;si~~;ta;f r’li

6:

“,
. 3

y;~~~u~;;~ppYn~

strategy we call subset-sup h t-based pruning. Before each
pass i , it uses the set of frequent itemsets found from the
previous pass i - 1 (denoted as Fi _ t) to compute a set of
candidate itemsets Ci for which support wiii be counted.
The candidate set Ci is computed as the set consisting of
any i -itemset such that all of its i - 1 item subsets are in
F i- I . For the first pass, C, = I. Though this pruning
strategy does not change the worst case complexity of each
pass, in practice it is effective because the irregularity of
transaction data ensures that only few itemsets, once i
becomes sufficiently large, are frequent. Efficient data-
structures for implementing these techniques are detailed in
[Agrawal & Srikant 941.

There are other strategies for improving the performance
of association rule miners such as applying hash-based
reducers for minimizing candidates to count [Park et al. 951
and restricting the set of tuples examined to those that are
(potentially) relevant to the current pass (e.g. AprioriTID
[Agrawal et al. 961, and [Park et al. 951). These techniques
are complementary to the pruning strategies we propose
next.

Additional Pruning Strategies
Given a classification training database, we can treat the
potential feature values Ajv as the set of items Z and apply
an association rule miner such as Apriori to mine associa-
tion rules. Given unlimited resources, it would find all rules
(including classification rules) that meet the minimum sup-
port and confidence requirements. The problem with this
mnrnsch is that eyep instmca in 8 ciassificatjon d_&bgse -FL-- ----- -- = --_---_-- - _^_
has exactly m features, so assuming the domain of each
feature is reasonably restricted, even large itemsets are
likely to have minimum support. We often found the subset-
support-based pruning strategy ineffective on classification
data until after several passes of the algorithm, leading to
uncontrollable growth in the number of candidates. Addi-
tional strategies for controlling this explosion are described

here. The first techniques are non-heuristic in the sense that
they do not reduce the potential rule space considered. The
last techniques involve heuristics that can either increase
the granularity of the rule space searched, or reduce it by
eliminating some items from consideration.
Pruning Strategy 1 - Value Exclusion

This strategy exploits the fact that in classification data,
items from the same feature (e.g. Aivl and Aiv2) can never
be contained by the same instance. To implement it, the
candidate generator should avoid producing candidates
with more than one value for the same attribute. After the
second database pass, this pruning strategy is effectively
accomplished by the subset-support strategy already
present in Apriori since any 2-itemset with values from the
same feature will have support zero. Nevertheless, this
strategy speeds up the second pass, and it also speeds candi-
date generation on subsequent passes since subsets for can-
didates pruned by this technique do not have to be explicitly
checked by subset-support-based pruning.
Pruning Strategy 2 - (Near) Equivalence Exploitation

Occasionally an itemset will have support that is (nearly)
equivalent to the support of one of its subsets. For example,
suppose we have an itemset S = { Aivl, _AIv2} whose sup-
port is equal to the support of j Aivl > . criven this fact, we
know that any rule containing S as a subset is equivalent to
the rule formed by removing A .v2 since it will have equiv-
alent support, equivalent con dence, It: and applies to an
equivalent set of database instances. To prevent these equiv-
alent rules from being generated or incurring any overhead,
the exact-equivalence strategy removes from the set of fre-
quent itemsets any set S having a subset with equivalent
support before forming the next set of candidates.

A more common case arises when the support of an item-
set is very near the support of one of its subsets. For exam-
ple, suppose the support of {X, Y} is equal to the support
of {X} minus a small value t . Now consider any other fea-
ture Z and a class feature C. We can estimate the confi-
dence of rule X, Y, 2 + C using the following inequality:

sup(XZC) - t
sup(Xz>

I confidence I ssu$$??y,

If this confidence interval is entirely below minconf, then
there is no need to compute the support of itemset
{X, Y, 2, C} during the fourth pass.

Unlike exact-equivalence, the near-equivalence rule must
be carefully applied because in subsequent passes the sup-
port of a superset of an itemset pruned by the technique
may be required. Extending the previous example, even if
we know {X, Y, Z, C> does not imply a high confidence
rule, itemset (W, X, Y, 2, C} may imply a high confidence
rule festimated usinp the same ineoualitv technioue) and be ~..~. \-~.~---...-~ ..L---- .--- L..---- ---- - ,.... ---, .- -------,1 -, ..---
potentially frequent. For this case even though
{X, Y, Z, C} is not contained in the set of computed fre-
quent itemsets, we must ensure that {W, X, Y, 2, C} gets
generated as a candidate in order to preserve completeness.
Unfortunately, not having the support of {X, Y, 2, C} hin-
ders the ability of subset-support based pruning to deter-
mine whether {W, X, Y, 2, C} is potentially frequent, so

17.4 KDD-97

there is a trade-off between strength of this “near equiva-
lence” strategy and the strength of subset-support based
pruning.
Pruning Strategy 3 - Rule Structure Exploitation

Recall that we are only interested in classification rules.
Computing the support of a classification rule requires we
know the support of both the entire rule, and the support of
the left-hand side of the rule. If we can determine that for
every class item v, the rule Aiv r, A jvZ + vc is not of inter-
est, then there is no need to count the support of
{Aivl, y2). This pruning strategy exploits this fact. An
itemset of Ci is said to be useless if, for some i - 1 item
subset s’ of S, there exists no class item v, such that
s’ u {A lv’c} is in Ci . To implement this strategy, useless
candidates are pruned before the database pass commences.

There are other potential strategies for exploiting rule
structure, but several of them may conflict with the other
strategies we propose. For instance, the miner could avoid
counting the support of an itemset S that does not contain a
class item until an itemset consisting of S and some class
item v is known to be frequent. This strategy unfortunately
delays the point at which we can apply a strategy that
requires the support of S (such as, potentially, strategies 2
and 4). The strategy we suggest above allows rule structure
to be expioited to a lesser degree, though it provides the
guarantee that after pass i we know all frequent itemsets of
size i , and not just those containing class items. Inevitably
some data sets will benefit from stronger rule-structure
exploitation at the expense of other strategies affected by it,
though this trade-off remains to be fully investigated.
Pruning Strategy 4 - Redundancy Exploitation

The previous pruning strategies do not result in any
information loss in the sense that an association rule miner
ignoring them will produce a set of rules that applies to the
same set of tuples with the same confidence and support.
Strategy 2 can result in fewer rules being returned, but only
because rules that are equivalent to some other rule are
removed. The next pruning strategy is different than those
previous because it can result in some information loss,
though the information lost can be regarded as irrelevant
with respect to the given level of confidence desired.

The idea is to prevent continued effort at classifying
instances already classified by existing rules with high con-
fidence. To implement such a technique, after each pass i ,
we identify the frequent itemsets that imply rules with con-
fidence exceeding minconf. During the next database pass,
tuples can be marked if they are covered by this set while
counting candidate supports. During counting, also deter-
mine whether a candidate is supported by at least one
uncovered instance. At the end of the pass, if the candidate
:, ..,.+ -..--^_ &,,.I L.. ^+ I..--& ̂ I^ ^^_.^__ 2 :-,4 ̂ -^- :r ^^I L- 1s ‘l”L supp”‘LGu uy s11 IGLlLyL UIIC uJvGIcu 11IYLilllc;G, IL cm1 LJG
excluded from the set of frequent itemsets before forming
the next set of candidates.

Marking tuples is unfortunately expensive or impractical
in some situations. Luckily it is possible to approximate this
pruning technique without any tuple marking. The idea is to
exploit the fact that if a rule R meets minimum confidence,
then any rule containing R will apply to only covered

instances. Itemsets representing such rules can therefore be
pruned from the candidate set before counting commences.
Pruning Strategy 5 - Granularity Modification

Though an explosion in candidates to be counted with a
database pass is often substantially ameliorated by the
above strategies, in several cases they are not enough and
further information-loss must be accepted. In the worst
case, given in features E potential valuations of each
feature, there are up to I’
pruning strategy reduces rl

?
6

candidates during pass i . This
I’ term of this bound. The idea

is to combine particular valuations of some feature into a
single, larger granularity feature. For instance, if a feature
Ai, i # 1 can be labelled with values vl, v2, vg , the rule
considers treating any pair of those values as a single com-
posite item. The rule can be applied recursively in that a
composite item A,V can be further combined with another
feature Ajv or even A,V, to form another composite item.
The rule should not be applied to form a composite item
consisting of all potential valuations of the involved feature,
since every instance will, by definition, contain such an
item. Once a composite item is determined, the next set of
candidates is formed from the set of frequent itemsets mod-
ified by replacing each occurrence of the items used to form
the composite item with the composite item itself. Since
this results in duplicate itemsets, the implementation must
be made to remove them.

Various strategies can be used to determine which feature
valuations to combine in order to produce a composite valu-
ation. The strategy we use is to seek out pairs of rules from
the last produced set of frequent itemsets F, that differ by
exactly one valuation of a particular feature. The pair of
rules which comes nearest in confidence will be used to
obtain the composite item. Given a feature whose values
were obtained by discretizing a continuous attribute,
another technique would be to combine adjacent portions of
the discretized space.
Pruning Strategy 6 - Feature Selection

This strategy is a feature selection step applied when nec-
essary instead of as a preprocessing phase. It contends with
the p;ential explosion in the number of candidates due to
the .

0
term in the worst-case bound on candidates. The

idea ‘H o dynamically select a feature Ai mentioned in the
most recently obtained F, for removal. Any itemset in Fj
to contain the selected feature is removed from F, before
forming the set of candidates for the next pass. The feature
selected for removal should be, by some measure, the least
useful in predicting the class. For the evaluation below we
compute the mutual information Z(Ai, A,) for every fea-
ture appearing in F, and select the feature with the lowest
value for removal. A better strategy could consider the
:-IT---r:-- ----.:A-2 L-. AL- ,-----. -..1-, >--1-.-J Le. AL-
IIllUIlIldllUII ~IUVlWU Oy UK 12KgGSl rUlC5 UBIIV’SU IJ)’ UK

miner at the point the strategy is applied.

Evaluation
We implemented the Apriori algorithm and enhanced it
with the above pruning strategies in order to evaluate their
effectiveness. Pruning strategies 1 through 4 were uncondi-

Bayardo 125

Database instances features values confidence
Chess 3,196 37 2 90%

100%
Connect-4 67,557 43 3 90%

100%
I-hTll 9mz UVAAUI 128 7 2 /“I”

100%
DNA 3,174 61 4 90%

100%
Flare 1,066 11 3 90%.

100%
Led7 3,200 8 2 90%

100%
Letter 20,000 17 16 90%

. ArIm IlJU-70
Tic-Tat-Toe 958 10 3 90%

100%
Vote 435 17 3 90%

100%

tionally applied with each pass. For strategy 4, we used the
approximation based on rde sub-setting instead of the com-
plete tuple-marking implementation. For strategy 2, we
only implemented the exact-equivalence case. When the
candidate set being generated after a pass exceeds a particu-
lar threshold, pruning strategies 5 and 6 were invoked. On
our machine (64MB Spare Ultra l), the threshold was set to
30,000 candidates since larger sizes caused thrashing. For
applying strategies 5 or 6, our implementation first scores
all items using the feature selection metric of pruning strat-
egy 6. If the chosen feature has more than two potential val-
uations, then pruning strategy 5 is used to create a
composite item on that feature. If the feature has only 2
potential valuations, then pruning strategy 6 is invoked and
that feature is removed.

We ran the algorithm on several data sets from the Irvine
rmm&tnr., thsrt rnntn;ncvl nnmincal1.r w~l,~~rl featmwc l-ho ‘“y”Y’w’J LAILaC ““IILu)IIVU ““““,‘U”J .UIVYU IYUCUIVO. LllV

table above displays the performance in CPU seconds of
our enhanced Apriori on the various data sets for 90% and
100% confidence levels, using a minimum support of 1% or
20, whichever is the maximum. It also presents the speedup
over un-enhanced Apriori. In some cases un-enhanced
Apriori caused our machine to thrash (we did not cache
candidates to disk), at which point it was halted. For these
cases speedup is not reported. After speedup, the table
*,...a..+- *I.., “...-L*.. ,c..,,,An ..,“..:“,.A s..,^.. .l., ,I.-.*, IqJ”lLS LLlG ,lUlll”W “I pasatis IcqUIIGlJ ““GI CllG ULICLL.

On all but the DNA, Chess, and Connect-4 data sets, the
miner did not have to ever invoke the lossy pruning strate-
gies 5 a& 6. DNA proved the most difficult in this regard
because it consists of 62 features other than the class, each
with four potential valuations. The table displays as “loss”
the number of composite valuations formed summed with
the number of features removed. Note that performance on
the Vote data set increases substantially with lower confi- _I---- TV”:- :” AL” ---.-IL -c --.--:-- ^I--A--__ A .-.1:-L :- _.--. UGIICG. I 111s IS LI~G I-~SUIL UI Pruning slraragy 4 WIIIC;~ IS very
effective on this data set because after only two passes a
large percentage of the database is covered by high confi-
dence rules. The table also describes the rules and the num-

126 KDD-97

runtime speedup passes loss rules coverage
176 ? 11 33 279 92.5
189 ? 11 33 237 74.5

1382 ? 8 35 140 57.6
1437 ? 8 35 2 2.9

.04 25% 4 0 10 100

.OS 0% 4 0 6 100
239 ? 7 196 394 92.0
23% ? 7 197 269 65.0
.64 915% 7 0 19 75.8
.87 647% 7 0 5 9.3
1.7 23% 8 0 6 23.6
1.7 32% 8 0 0 0

23.4 182 7 0 4 4.0
-0 * *“A a.4 I6L 7 0 i i.i

2.8 0% 5 0 136 100
2.8 0% 5 0 86 98.3
3.7 ? 10 0 152 99.5

22.0 ? 12 0 378 99.5

ber of rules found by the rule miner for each run on the
various data sets. Except for the noisy data set Led7 and
Letter, the rule miner was effective at attaining high cover-
age at 90% confidence. The poor coverage on Letter is not
due to information loss and can be improved by lowering
confidence and/or support.

References
Agrawal, R., Mannila, H., Srikant, R. Toivonen, H. and Verkamo,
A T lnnl n--e l-c” ̂ ^_.” -. “E h”“̂ A”r:“.. 3-D..,“. T- Al ..^_^ ̂ I :.. ti. 1. 177”. rila IIIsL;““G‘y “1 fi.ss”uaLI”u RWGb. 111 f¶uYur~c~~ lx‘

Knowledge Discovery and Data Mining, AAAI Press, 307-328.

Agrawal, R., and Srikant, R. 1994. Fast Algorithms for Mining
Association Rules. IBM Research Report RJ9839, June 1993,
IBM Almaden Research Center, San Jose, CA.

Fukuda, T., Morimoto, Y. and Morishita, S. 1996. Constructing
t3ffidPnt n-do;- 7hPa h., TTrkrr nnt;m;l.,?rl hb-r;r. Aec,4a- YI,,~,cI,II UbL,I~I”,, llGL&l “J “OllL~ “yL,,u*~u 1’1U,,Lti1.~ I)uu”“Iu-
tion Rules. In Proc. of the 22nd Very Large Data Bases Confer-
ence, 146-155.

Kohavi, R., and Sahami M. 1996. Error-Based and Entropy-Based
Discretization of Continuous Features. In Proc. of the Second Int’l
Co@ on Data Mining and Knowledge Discovery,

Park, J. S., Chen, M.-S., Yu, P S. 1996. An Effective Hash Based
Algorithm for Mining Association Rules. In Proc. of the 1995
SIGMOD Conference on the Management of Data, 175-186.

Shafer, J. C., Agrawal, R., and Mehta, M, 1996. SPRINT: A Scal-
able Parallel Classifier for Data Mining, In Proc. of the 22th Znt’l
Co@ on Very Large Databases, 544555.

Srikant, R. and Agrawal, R. 1996. Mining Quantitative Associa-
tion Rules in Large Relational Tables. In Proc. of the ACM-SZG-
MOD Conference on Management of Data, 1 - 12.

